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1 Overview

In this lecture we review the standard version of VCG using the Clark pivot rule, discuss
its applications and characteristics, and finally get a little bit into combinatorial auctions.

2 VCG Standard Version (Clark Pivot Rule)

In the previous lecture, we saw three versions of VCG. Today we will continue our discussion
on the final version that uses the Clark pivot rule.

Recall the general setup of VCG. The setup considers n players and a set A of alternatives
(or outcomes). Player i has a valuation function vi, and v represents the vector of valuation
functions of players. We denote by pi(v) the payment of player i and by f(v) the allocation
under valuation v. Although we mainly talked about positive values, e.g., the prices of
a printer, the setting flexibly allows both positive and negative values. Given a vector of
valuation functions v, what a VCG mechanism does is (1) compute the allocation and (2)
charge people money.

Specifically, given a vector of valuation functions v, a VCG mechanism with Clark pivot
payments determines f(v) and pi(v) such that

• f(v) = argmaxa∈A
∑

j vj(a),

• pi(v) = maxa
∑

j 6=i vj(a)−
∑

j 6=i vj(f(v)).

The first equation computes the optimal allocation maximizing the social welfare; the second
equation computes how much each player should pay to the mechanism. The Clark pivot
rule essentially sets the first term in pi(v) to be maxa

∑
j 6=i vj(a), or the social welfare for

everybody else if player i were not there. Thus pi(v) is equal to (maximum social welfare if
i were absent) - (the social welfare of others when i is present), which is exactly player i’s
externality.
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Therefore, player i’s utility (ui(v)) when he or she reports truthfully can be derived as

ui(v) = vi(f(v))− pi(v) (1)

=
∑

j

vi(f(v))−max
a

∑

j 6=i

vj(a) (2)

= max
a

∑

j

vj(a)−max
a

∑

j 6=i

vj(a) (3)

2.1 Properties

The above design offers several nice properties:

1. Incentive-compatible (IC). This implies that people will report their true valua-
tions and do not need to guess how much other players might want to bid. To see
why, consider player i misreports and unilaterally changes the valuation from vi to
v′i, then the utility becomes ui(v

′
i, v−i) =

∑
j vj(f(v

′
i, v−i)) −maxa

∑
j 6=i vj(a), which

is smaller than ui(v) because the first part in ui(v
′
i, v−i) (i.e.,

∑
j vj(f(v

′
i, v−i))) is the

social welfare of one allocation whereas the first part in ui(v) (i.e., maxa
∑

j vj(a))
is the social welfare of the optimal allocation. Intuitively, we can also argue that
the above mechanism is incentive-compatible because the utility of player i does not
depend on his or her own reported valuation.

2. Maximize social welfare. This is guaranteed by design as f(v) is assigned the
alternative maximizing the social welfare.

3. No payment to bidders. This is also guaranteed by design because the Clark
pivot rule ensures pi(v) ≥ 0 for all i. The see why pi(v) never goes negative, note
that maxa

∑
j 6=i vj(a) ≥

∑
j 6=i vj(f(v)) because the left hand side is the optimal social

welfare without i and the right hand side is the social welfare of a certain allocation
without i.

4. Individual rationality (IR) if vjs are non-negative. This means no negative
utility. Utilities never go below zero because in Equation 3, for all i maxa

∑
j vj(a) ≥

maxa
∑

j 6=i vj(a), if vj ≥ 0 for all j. We can also interpret this as adding one more
player will never decrease the social welfare.

2.2 Examples

Let’s instantiate VCG in the context of two interesting examples: bilateral trade and public
project.
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Bilateral Trade

Consider a car trading scenario with one seller S and one buyer B where vs and vb are how
much S and B value the car, respectively. There are two alternatives: i.e., A ={seller has
car (no trade), buyer has car (trade)}. Our goal is to design a VCG mechanism to help the
trade happen.

One tricky thing about this setting is the seller begins with the car. So if we want to equate
individual rationality (people participate willingly) with the notion of having nonzero utility,
we should give the seller a valuation of 0 on the “no-trade” alternative and a valuation of
−vs on the “trade” alternative. In particular, since there are now negative valuations, we
will not want to use the Clarke pivot since that always uses non-negative payments and so
will violate individual rationality. In fact, let’s figure out what the right pivot rule is, if we
enforce that no payments are made under the “no-trade” alternative. In fact, this will turn
out to correspond to “VCG version 1” where the mechanism ensures that all players get
utility equal to the social welfare.

Specifically, to maximize the social welfare (i.e., achieve social efficiency), the car goes to
the buyer if vb > vs; and the seller keeps the car if vs ≥ vb. So what does VCG do in this
case? It first asks the two players for valuations, and then it determines their payments.

Now let’s find out how much each player should pay when no payments are made in the
case of no trade (i.e., when vs ≥ vb). In other words, there exist a VCG mechanism, hs and
hb such that

pb(v) = hb(vs)− vs(no-trade) = 0, (4)

ps(v) = hs(vb)− vb(no-trade) = 0. (5)

That is, hb(vs) = vs(no-trade) and hs(vb) = vb(no-trade). Therefore, the payments when
the trade happens are

pb(v) = hb(vs)− vs(trade) = vs(no-trade)− vs(trade) = vs, (6)

ps(v) = hs(vb)− vb(trade) = vb(no-trade)− vb(trade) = −vb. (7)

Because when trade happens, S’s valuation decreases by vs (as the seller gives out the car)
and B’s valuation increases by vb (as the buyer gets the car).

In sum, we have designed an incentive-compatible mechanism in which B pays vs and S

collects vb if vb > vs, and no payments are made if vs ≥ vb. However, the mechanism has
to subsidize the cost. It can be shown that it is impossible to get all the desired properties
(as described in Section 2.1) in bilateral trade.

Public Project

The department is considering getting a 3-D printer that costs $C, and each potential user
i has a valuation vi on the printer.
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To maximize the social welfare, the department will only get the printer if
∑

j vj ≥ C.
(Formally we should view the department as an extra player whose valuation on obtaining
the printer is −C.) But how much should the department charge each user in order to
get the true valuation? Clearly, without any payment, users have incentives to overstate
their values; whereas with payment linear to each user’s valuation, for example, users have
incentives to understate their values.

Notice that with the Clarke pivot rule, if the presence of player i does not change the
alternative chosen, then pi(v) = 0 since the two terms in the payment definition cancel out.
Formally applying VCG with the Clark pivot rule, we obtain

pi(v) = 0 , if
∑

j 6=i

vj ≥ C or
∑

j

vj < C, (8)

pi(v) = C −
∑

j 6=i

vj , if
∑

j 6=i

vj < C and
∑

j

vj ≥ C. (9)

Equivalently, pi(v) = max{0, C−
∑

j 6=i vj}. In other words, if player i is not pivotal (whether
player i is present or not does not affect the result), player i has no incentives to pay any
money. But if player i is pivotal, he or she will be willing to pay up to his or her own
valuation of the printer. Also, nobody is charged if the printer is not purchased.

However, note that the payments collected by the department may be less than C. For
example, if everybody’s value is more than C

n−1 where n is the number of users, then the
department gets the printer while nobody has to pay.

Again, it is impossible to maximize social welfare without the department subsidizing the
cost.

3 Characterizations of Incentive Compatible Mechanisms

3.1 The Revelation Principle

Claim 1 Any incentive-compatible non-direct revelation can be converted to incentive-
compatible direct revelation.

We are not going to formally prove this. Roughly let’s think of “non-direct” as multi-round.
The intuition is that if a non-direct mechanism is IC, then it means that there is a well-
defined way to play the mechanism and the mechanism does not depend on other players’
behaviors. Hence, we can have the mechanism executes the protocol for us.

This result allows us to focus on a simpler class (i.e., direct revelation than non-direct
revelation) when we try to figure out what a mechanism is doing. Note that sometimes we
may want to employ non-direct revelation, as direct revelation may be computational hard
in some cases.
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3.2 Direct Characterization

We saw in the examples of bilateral trade and public project that the mechanism cannot
be incentive compatible without subsidizing the cost. It would be nice if we can character-
ize incentive-compatible VCG mechanisms such that we know the conditions under which
incentive-compatible is achievable.

Theorem 2 A direct revelation mechanism is IC iff for all vi and v−i:

1. If f(vi, v−i) = f(v′i, v−i), then pi(vi, v−i) = pi(v
′
i, v−i), and

2. f(vi, v−i) = argmaxa∈f(·,v
−i)[vi(a)− pi(a, v−i)].

The first condition basically says the payment pi only depends on the output of f(vi, v−i) but
not on vi directly, and hence we can call this payment pi(a, v−i) where a is the alternative
given by f . The second condition says that the mechanism maximizes the utility of player
i given a fixed v−i.

Sketch of Proof: We show these conditions are necessary and sufficient.

Necessity: If the first condition is violated, i.e., ∃vi, v
′
i, s.t. f(vi, v−i) = f(v′i, v−i) but

pi(vi, v−i) > pi(v
′
i, v−i), then player i is better off by switching to v′i. Also, if the second

condition is violated, i.e., f(vi, v−i) = a but argmaxx∈f(·,v
−
)[vi(x) − pi(x, v−i)] = a′ 6= a,

then ∃v′i s.t. f(v
′
i, v−i) = a′ and player i is better off by claiming v′i.

Sufficiency: Suppose by contradiction the mechanism is not IC, and thus there exists a
player i who can get a higher utility by switching to v′i from vi. However, when f(vi, v−i) =
f(v′i, v−i), the utility remains the same; and when f(vi, v−i) = a 6= f(v′i, v−i) = a′, the
new utility (vi(a

′)− pi(a
′, v−i)) is not higher than the old utility (vi(a)− pi(a, v−i)) either,

because the second condition maximizes the old utility over (·, v−i).

We can prove many other theorems based on this nice result.

4 Combinatorial Auctions

Now we detour a little bit to talk about combinatorial auctions.

Consider n items and m bidders. Each bidder i has a valuation function vi: subsets of
{1, 2, · · · , n} → R, and vi(∅) = 0.

It is natural to consider the following two-dimensional problem spaces with four categories:

limited supply unlimited supply

maximize welfare VCG, but might be computationally hard give things for free

maximize revenue may talk about later (*) our focus
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Limited supply means we have n items and one copy of each item; unlimited supply means
we have n items and unlimited copies of each item, e.g., software. Generally, mechanisms
with unlimited supply are easier to handle than those with limited supply.

This following example illustrates why combinatorial auctions with limited supply may be
computationally hard.

Example 1 Assume each bidder i wants a specific set of items Si, vi(Si) = 1, and for all
S 6= Si, vi(S) = 0.

Maximizing the social welfare here is equivalent to maximizing the number of non-
overlapping sets (the maximum set packing problem), which is known to be NP-complete.

For combinatorial auctions with unlimited supply, if the goal is to maximize social welfare,
we can simply give out items for free as they are unlimited. But it gets complicated when
the goal is to maximize revenue. Two typical approaches are: (1) assume the valuation
functions follow certain probability distributions, and (2) compare the worst case to the
optimal social welfare or to the case with the best fixed prices on items. We will study the
second approach next.

Consider a simple scenario with one item, such as water. To compare the maximum revenue
to the OPT social welfare, we can apply the randomized weighted majority algorithm that
we learned a couple of lectures ago. For example, we can imagine a mechanism that asks
each person to submit his or her bid and then adjusts the price adaptively based on the
observations so far. Since the value a player says will not affect the player’s payment, such
a mechanism is incentive compatible.

Formally, assume values are between 1 and H, we will prove that

• it cannot beat 1
logH ×OPT , but

• it can get O( 1
logH )×OPT .

Can you come up with a probability distribution over valuations (i.e., a randomized adver-
sary) as an example of the first bullet point?

We will continue on this topic in the next lecture.
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