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Abstract

A strong earthquake occurred in 2002 off-shore from the northern coast of Sicily in the Southern Tyrrhenian Sea
(Italy), and was followed by a series of hundreds of aftershocks. Communications through the fibre-optic cable be-
tween Palermo and Rome were interrupted a few hours after the occurrence of the main shock. After the required
technical checks, the failure point was found a few kilometres away from the seismic sequence area. A few days lat-
er, a specialised cable ship reached the failure area. One side of the cable was completely burnt, while about three
kilometres of cable was found locked. Tests on slices of cable showed that the temperature at which the cable was
heated went well above 700°C. We can speculate that the earthquakes triggered off the emission of a submarine la-
va flow that buried, trapped and burnt the fibre-optic cable. The revising of the bathymetric survey made before the
cable’s deployment allowed for the identification of a low seamount in the vicinity of the rupture. This structure could
represent the lava flow’s source volcano.

Key words seismicity and volcanic activity in deep anomalous year from a geodynamic point of view
marine areas — fibre-optic cable failure — Southern for the Southern Tyrrhenian Sea and Sicily
Tyrrhenian Sea (Italy). In May of that year the off-shore earth-

quake was preceded by the strong high-energy
«strombolian» activity of Stromboli. It was then

1. Introduction followed by an unusually explosive Etna eruption
with associated earthquakes starting in October,
This paper deals with some very interesting and by a remarkable degassing episode at Pana-
observations on a possible seafloor eruption in rea in November. Finally, an unusual lava-flow
the Southern Tyrrhenian Sea. We tried to demon- eruption by Stromboli associated with the sliding
strate, also by laboratory experiments, that the oc- of a volcano flank occurred in December. The
currence of a strong off-shore earthquake (Sep- failure of the volcano’s submarine part triggered
tember 2002) triggered off a significant lava flow. off a tsunami that caused substantial damage to
This flow trapped the Rome-Palermo submarine the island’s coastline. It is hard to tell whether
communication cable, burning it and interrupting there are physical links between all the aspects of
communications in the process. These events this sequence of events; however, this lies beyond
were part of a long sequence. In fact, 2002 was an the aim of our paper.

2. Tectonic outline
Mailing address: Dr. Paolo Favali, Istituto Nazionale di . . . .
Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Thf? Tyrrheman Sea is a back-arc basin, with
Roma, Italy; e-mail: paolofa@ingv.it a maximum water depth of around 3600 m,
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Table 1. Age (Ma) of the seven Aeolian Islands and
some seamounts, arranged from the youngest to the
oldest (Beccaluva et al., 1985; Kilburm and McGuire,
2001).

Island Age (Ma)
Alicudi 0.06
Vulcano 0.12
Panarea 0.15
Lipari 0.16
Stromboli 0.23
Palinuro 0.35
Salina 0.43
Enarete 0.73
Eolo 0.81
Filicudi 1.02
Sisifo 1.30

which opened 10 Ma ago. The opening of the
basin progressed towards SE in Pleistocene with
the formation of the Magnaghi-Vavilov (7-3.5
Ma) and the Marsili basins (1.7-1.2 Ma) (Kastens
et al., 1988; Mongelli et al., 2004). Its opening
has been related to the sinking of the Adriatic-
Ionian lithosphere with a rollback mechanism
(Malinverno and Ryan, 1986; Faccenna et al.,
1996). The Tyrrhenian Basin is also characterised
by high heat flow values, up to over 200 mW/m’
(Della Vedova et al., 1991; Mongelli et al., 2004).

The Tyrrhenian morphology is complex but
similar to larger ocean basins in having an
abyssal plain, seamounts and well-developed
continental shelves (Marani et al., 2004a-c). The
seven Aeolian Islands and the seamounts form a
volcanic necklace. They began to develop about
one million years ago with the Alicudi Island
being the youngest (see table I; Beccaluva et al.,

Fig. 1. Sketch of the Southern Tyrrhenian Sea (redrawn simplified from Marani et al., 2004b,c), including
coastlines and isobaths (every 500 m). All the volcanic islands (in grey in the figure) and submerged seamounts
are indicated, except the Vavilov seamount that lies at NW out of the map. Proceeding from NE counter-clock-
wise: Pl — Palinuro; Gb — Glabro; Al — Alcione; La — Lametini; St — Stromboli; Pa — Panarea; Vu — Vulcano; Li
— Lipari; Sa — Salina; Fi — Filicudi; Ac — Alicudi; Eo — Eolo; En — Enarete; Pr — Prometeo; Us — Ustica; Si — Sisi-
fo; Gl — Glauco (Marani and Gamberi, 2004; Trua et al., 2004). The circles represent the main shock (M., 5.9)
and its most energetic aftershocks according to table II, where the errors in km can be found. The star indicates

the cable failure point.
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1985; Kilburn and McGuire, 2001). Besides
these islands and Ustica, many volcanic sea-
mounts have been recognised (Marani and
Gamberi, 2004). The submerged Aeolian Arc
starts from north with the Palinuro volcanic
complex (striking E-W for 75 km) and Glabro
seamount, the easternmost from Palinuro. Then
the north-eastern part with three volcanoes, Al-
cione and the twin cones of the Lametini
seamounts, lie in the Calabrian slope. The sub-
merged western arc is aligned in a NW direction
and is located to the west of Alicudi Island, and
consists of Eolo, Enarete, Sisifo and Glauco
seamounts from SE to NW. A lava field, called
Prometeo, has been recently discovered be-
tween these last sea-mounts and Ustica (Trua et
al., 2003). The Aeolian magmas belong to Is-
land Arc Basalt (IAB)-type (Trua et al., 2004).
Ustica is an inactive Pleistocene Island, which
dates from 0.735 to 0.132 Ma (Etiope et al.,
1999). Its volcanics are classified, together with
volcanic products of the Prometeo lava field lo-
cated slightly NW of area studied in this paper,
as Island Ocean Basalt (IOB)-type (Trua et al.,
2003, 2004). The two central volcanoes, Vavilov
(elongated about 30 km in a N-S direction, with
maximum width of 14 km) and Marsili (elongat-
ed about 60 km NNE-SSW, with a mean width
of 16 km), are located in the middle of the two
basins Magnaghi-Vavilov at NW and Marsili at
SE, respectively (Marani and Gamberi, 2004).
Figure 1 shows a sketch of the Southern Tyr-
rhenian Sea together with some information rel-
evant for this work.

3. Seismicity

On September 6, 2002 (01:21 GMT) a M,,
5.9 shallow earthquake (5-10 km) occurred off-
shore the northern coast of Sicily in the Southern
Tyrrhenian Sea, WSW of Alicudi (Azzaro et al.,
2004). The seismic event was followed by hun-
dreds of aftershocks over the following three
months. The main seismic event struck all of the
northern coast of Sicily, even causing some dam-
age in the town of Palermo. In an area 20 km of
radius from the failure cable point, 654 after-
shocks were localised by the INGV seismic net-
work up to the end of December 2002 (115
shocks just in the first day). In particular, five
earthquakes with magnitude between 3.5 and 4.3
occurred within less than one hour (see table II;
INGYV, 2005), and the largest aftershock (M 4.6)
on September 27 (fig. 1).

This seismic activity was very important if
compared with the recent past. For instance, in
the same area only 59 earthquakes were lo-
calised by the same network from January 1,
1994 to September 5, 2002 (maximum magni-
tude 2.8). This is also true if we consider that the
seismic activity of the Tyrrhenian Basin is poor-
ly monitored and localised, due to the presence
of an on-shore network alone (Favali et al.,
2004). The epicentral area is located WSW of
Alicudi roughly in the middle between this is-
land and Ustica Island. In an adjacent area (with-
in 100 km) another seismic sequence recently
occurred in 1998 with maximum magnitude 4.3
(Agate et al., 2000). In the historical seismic cat-

Table II. List of the major shocks (M =3.5) occurring on September 6, 2002 (INGYV, 2005); the last column
indicates the distance in km of each seismic event from the rupture in the fibre-optic cable.

Time (GMT) M Latitude (°N) Longitude (°E) Distance
(errors in km) (errors in km) from the rupture (km)
01:21:28.6 5.6 (Mw=5.9) 38.381(x1.4) 13.701 (= 1.4) 8.6
01:33:15.9 4.2 38.380 (= 1.9) 13.670 (= 1.8) 6.4
01:39:53.6 39 38.339 (= 2.7) 13.734 (= 2.9) 13.6
01:45:30.3 4.3 38.435 (= 2.0) 13.731 (= 1.4) 10.7
02:08:58.2 3.6 38.443 (= 2.3) 13.773 (= 2.2) 14.4
02:15:53.6 3.5 38.490 (= 1.6) 13.807 (= 1.2) 19.0
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alogue other off-shore earthquakes that affected
the northern coast of Sicily are reported; among
these the 1726 and 1940 earthquakes were the
major events, both with significant damage also
affecting Palermo (Boschi et al., 1997; Azzaro
et al., 2004). The 2002 earthquake focal mecha-
nism is reversed like all the mechanisms of
events located along the northern margin of Sici-
ly, having a contractional axis with an approxi-
mately N-S strike (Vannucci et al., 2004). This is
in accordance with the area’s geodynamic frame-
work (Malinverno and Ryan, 1986; Faccenna
et al., 1996; Agate et al., 2000).

Table III. Main characteristics of LWP 8-fibre cable.

4. Communications cable failure

Communications between Rome and Paler-
mo broke down at 04:55 GMT, 03:34 hours after
the occurrence of the main shock. The total
length of the optic cable connecting the two sites
is 444.5 km, and 49 segments with four relays
subdivide the cable. The fibre-optic cable is a
Pirelli Light Weight Protected (LWP). This type
of cable is generally used at any sea depth be-
tween 1500 m and 6000 m. It has an optic core
with eight fibres placed inside a composite unit,
comprising two layers of carbon steel wires and

Aluminium tape thickness mm 0.30
Overall diameter (nominal) mm 28.40
Weight in air (approximately) kg/m 1.10
Weight in water ( approximately) kg/m 0.45
Breaking load kN 100.00
Short-term allowable load (1 h) kN 85.00
Torque Nm/kN 0.40
Reverse bend resistance (r=1 m) cycles 30.00
Hydrostatic pressure resistance MPa 70.00
Minimum breaking strain of steel wires MPa 1900.00
Aluminium tape D.C. resistance (10°C) W/km 1.30
Capacitance MF/km 0.20
Composite unit D.C. resistance (10°C) W/km 1.00
@ ®

Fig. 2. Picture of the LWP-optic cable (left) and its actual section (right).

Fig. 3. Photograph of the end of the burnt fibre-optic cable taken on board the cable ship just after the recovery.
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a high conductivity copper tube. The main char-
acteristics of the cable are summarised in table
I and a picture is shown in fig. 2 together with
the actual section.

According to the tests carried out by Palermo
Terminal Station (TS) the cable presented all the
fibres broken at 41.6 km from TS and at a depth
of about 1450 m, based on the bathymetry per-
formed before the cable deployment. The cable
ruptured a few kilometres away from the seismic
sequence area (fig. 1). A few days later (on Sep-
tember 14) a cable ship reached the area of the
failure to repair the damage. The ship made many
attempts to recover the two sides of the broken
cable. On the Palermo side, 5051 m of cable up to
the fault were recovered. This end of cable ap-
peared to be been broken by mechanical tension,
probably due to the recovery operations. On the
Rome side, 3409 m of cable up to the fault were
recovered, whereupon the end was found to be
burnt (fig. 3). The optical tests performed from
the ship confirmed that 2880 m of cable had gone
missing.

5. Laboratory test results

One end of the cable was broken by mechan-
ical tension with almost 3 km lost, while the oth-

er burnt end supports the hypothesis that some-
thing locked the cable at a temperature high
enough to burn it. In order to confirm whether
this hypothesis is feasible and to check the be-
haviour with temperature of the materials the
cable was made of, especially the chemical ele-
ments with higher melting temperatures (see
table IV; Weast, 1976-1977), we decided to heat
different original slices of cable at increasing
temperature steps with an oven able to reach
high temperature values. The oven reached a
maximum temperature of 1100°C (Model BE-
43N Bicasa SpA). The initial steps were 130°,
230°, 250°, 350° and 750°C, at these stages the
non metallic parts were seen to melt. To check
the fusion time and temperature of the alumini-
um, we decided to perform another test at §10°C

Table IV. Density, fusion and ebullition tempera-
tures for copper and aluminium, two of the elements
the LWP cable is made of (Weast, 1976-1977).

Chemical p (g/cm’)  Fusion Ebullition
element temperature temperature
°O) O
Copper (Cu) 8.92 1083.4+0.2 2567.0
Aluminium (Al) 2.72 660.4+= 2467.0

Fig. 4. The results of the oven tests at 810°C with time of 5 min (left) and 15 min (right).
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leaving the sample there for one, five and fifteen
minutes. In the first two steps the time was not
enough for the oven temperature to reach the de-
sired level, whereas in the last test the alumini-
um finally melted. In this latter case, NaCl was
also added (fusion temperature 801°C) to have
another independent control of the oven temper-
ature. The results of the steps at 810°C with
times of five and fifteen minutes are shown in
fig. 4 (pictures on the left and right-hand sides,
respectively). On the grounds of the test results,
we concluded that the minimum temperature (at
which the cable was heated) was well over
700°C for a length of time significant enough to
melt and damage the cable definitively.

6. Discussion

The time difference (3:34 h) between the main
seismic event and the line interruption makes it
unlikely that trapping, pulling and breaking of the
underwater cable could be due to fractures, faults,
collapses directly linked to the seismic events.
The distance between the cable and the epicentral
area (=8 km), the imprisonment of the cable —
the failure to recover more than 2.8 km cable
with an approximately N-S strike, parallel to the
maximum inclination of the seabed — the traction
and breakage of the cable, the disappearance of

the internal resins, the fusion of the cylindrical
aluminium ring (7=2660°C, see table 1V), the
temporal interval between seismic swarm and
transmission interruption on the cable, are all da-
ta and clues coherent and plausible with a signif-
icant deepwater lava flow. Moreover, the same
data should underline a good enough fluidity, it-
self of basaltic-andesitic magmas that are char-
acterised by a temperature of less than or equal
to 1100°C at emission, and 700-750°C at time of
tightening.

The seismic activity’s time trend (September-
December 2002) and the seismogram records are
typical of a so-called «seismic sequence», per-
fectly suited to the expected size of the seismo-
genic structure, with a main shock (the largest in
magnitude) and hundreds of aftershocks in a few
months (with magnitude over 4.0 in only a few
cases). Hence, given the area’s seismic «histo-
ry», the main earthquake and its aftershocks are
recognised as being the trigger of the lava effu-
sion. Finally, the shallow epicentral depth (5-10
km) and the time difference between the seismic
event and the interruption allow us to evaluate
the average speed of lava climbing at 3-8 km/h.
These range values are completely coherent with
the distance between the areas of the shock oc-
currence and the cable failure. Last but not the
least, the bathymetric survey that was performed
to define the cable route before its deployment

Fig. 5. N-S bathymetric profile parallel to the cable route, based on the data collected to decide the cableway
before its deployment. The figure shows, in the middle, a seamount about 10 km wide (N-S direction) and 0.6
km high. The arrow roughly indicates the cable rupture area. The vertical scale is exaggerated 10 times with re-

spect to the horizontal scale.
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shows the presence of a low seamount in the
proximity of the rupture area (fig. 5). This
seamount (about 10 km wide in N-S direction
and 0.6 km high) roughly elongated N-S with
steep flanks in the northern and southern edges
striking E-W and the physiographic shape of a
volcano structure, can be considered as the
source of the lava flow. The cable rupture oc-
curred on its flank. Submarine eruptions in the
Italian seas are not that unusual, as historical
events reported by Mercalli demonstrate (Mer-
calli, 1883).

7. Conclusions

A 5.9 earthquake occurred off-shore WSW
Alicudi, and 3 h later the communications along
the main fibre-optic cable connecting Palermo
to Rome were interrupted. The repair opera-
tions found the cable burnt, with almost 3 km of
cable lost. In an attempt to clarify the cause-ef-
fect relationships between the earthquake oc-
currences and the cable interruption, and to
model a feasible explanation, we decided to
check the cable’s behaviour with the tempera-
ture in laboratory tests. By progressively heat-
ing up some cable samples up to 810°C we
demonstrated that the cable had been heated to
a minimum temperature well over 700°C. This
temperature excludes the hydrothermal vents as
a potential cause of the burning. Therefore, we
inferred that the earthquakes had triggered a
deepwater lava flow, with this effusion causing
the damage, trapping and burning the cable.
The presence in the vicinity of the failure point
of a volcano-shape seamount can corroborate
the hypothesis of this structure as a source of
effusion.

Finally this paper shows also the importance
of considering geo-hazards (seismicity, volcanic
activity and slope instabilities) in planning the
deployment of network infrastructures on the
seafloor, such as communications cables. This
should allow us to avoid unnecessary risks for
such infrastructures, also reducing the direct and
indirect economic consequences, respectively,
the repair and service costs, along with the even
higher costs incurred by the breakdown in com-
munication flows.
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