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Introduction 
 
In this tutorial, you will learn the basic elements of 
boundary-scan architecture — where it came from, what 
problem it solves, and the implications on the design of an 
integrated-circuit device. This tutorial also provides an 
overview of the data standards applicable to the boundary-
scan architecture and an overview of the software tools 
available to perform boundary-scan-based tests. 

The core reference is the standard: 

IEEE Standard 1149.1-1990 “Test Access Port and 
Boundary-Scan Architecture,” available from the 
IEEE, 445 Hoes Lane, PO Box 1331, Piscataway, 
New Jersey 08855-1331, USA.  

The standard was revised in 1993 and again in 1994. You 
can also obtain a copy of the standard via the WWW on the 
IEEE home page at: http://standards.ieee.org/catalog. 

The 1993 revision to the standard, referred to as “1149.1a,” 
contained many clarifications, corrections, and minor 
enhancements. Two new instructions were introduced in 
1149.1a and these are described in this tutorial. 

The 1994 supplement contains a description of the 
Boundary-Scan Description Language (BSDL). 

For further, more recent publications on the boundary-scan 
architecture, see the Bibliography at the end of this tutorial. 
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Chapter 1: The Motivation for Boundary-
Scan Architecture 
 
Since the mid-1970s, the structural testing of loaded printed 
circuit boards (PCBs) has relied very heavily on the use of 
the so-called in-circuit “bed-of-nails” technique (Figure 1). 
This method of testing makes use of a fixture containing a 
bed-of-nails to access individual devices on the board 
through test lands laid into the copper interconnect, or other 
convenient contact points. Testing then proceeds in two 
phases: the power-off tests followed by power-on tests. 
Power-off tests check the integrity of the physical contact 
between nail and the on-board access point. They then 
carry out open and shorts tests based on impedance 
measurements. 
 

 
Figure 1:  ICT vs. Functional Test 

 
Power-on tests apply stimulus to a chosen device on a 
board, with an accompanying measurement of the response 
from that device. Other devices that are electrically 
connected to the device-under-test are usually placed into a 
safe state (a process called “guarding”). In this way, the 
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tester is able to check the presence, orientation, and 
bonding of the device-under-test in place on the board. 
 
Fundamentally, the in-circuit bed-of-nails technique relies on 
physical access to all devices on a board. For plated-
through-hole technology, the access is usually gained by 
adding test lands into the interconnects on the “B” side of 
the board — that is, the solder side of the board. The advent 
of onserted devices (surface mount) meant that 
manufacturers began to place components on both sides of 
the board — the “A” side and the “B” side. The smaller pitch 
between the leads of surface-mount components caused a 
corresponding decrease in the physical distance between 
the interconnects. This had serious impact on the ability to 
place a nail accurately onto a target test land. The whole 
question of access was further compounded by the 
development of multi-layer boards. 
 
Such was the situation in the mid-1980s when a group of 
concerned test engineers in a number of European 
electronics systems companies got together to examine the 
problem and its possible solutions. The group of people 
called themselves the Joint European Test Action Group 
(JETAG). Their preferred method of solution was based on 
the concept of a serial shift register around the boundary of 
the device — hence the name “boundary scan.” Later, the 
group was joined by representatives from North American 
companies and the ‘E’ for “European” was dropped from the 
title of the organization leaving it Joint Test Action Group 
(JTAG). This was the organization that finally converted 
their ideas into an international standard. 
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Chapter 2: The Principle of Boundary-Scan 
Architecture 
 
Each primary input signal and primary output signal is 
supplemented with a multi-purpose memory element called 
a boundary-scan cell. Cells on device primary inputs are 
referred to as “input cells;” cells on primary outputs are 
referred to as “output cells.” “Input” and “output” is relative 
to the core logic of the device. (Later, we will see that it is 
more convenient to reference the terms “input” and “output” 
to the interconnect between two or more devices.) See 
Figure 2. 
 

Any Digital Chip

Each boundary-scan cell can:
❏ Capture data on its parallel input PI
❏ Update data onto its parallel output PO
❏ Serially scan data from SO to its neighbor’s SI
❏ Behave transparently: PI passes to PO
❏ Note: all digital logic is contained inside the 

boundary-scan register

Memory
Element

PI

PO

SOSI

Test Data In (TDI)

Test Clock (TCK)

Test Mode Select (TMS)

Test Data Out (TDO)

 
Figure 2:  Principle of Boundary-Scan Architecture 

 
The collection of boundary-scan cells is configured into a 
parallel-in, parallel-out shift register. A parallel load 
operation, called a “capture” operation, causes signal values 
on device input pins to be loaded into input cells and, signal 
values passing from the core logic to device output pins to 
be loaded into output cells. A parallel unload operation — 
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called an “update” operation — causes signal values 
already present in the output scan cells to be passed out 
through the device output pins. Signal values already 
present in the input scan cells will be passed into the core 
logic. 
 
Data can also be shifted around the shift register, in serial 
mode, starting from a dedicated device input pin called 
“Test Data In” (TDI) and terminating at a dedicated device 
output pin called “Test Data Out” (TDO). The test clock, 
TCK, is fed in via yet another dedicated device input pin and 
the mode of operation is controlled by a dedicated “Test 
Mode Select” (TMS) serial control signal. 
 

Using the Scan Path 
 
At the device level, the boundary-scan elements contribute 
nothing to the functionality of the core logic. In fact, the 
boundary-scan path is independent of the function of the 
device. The value of the scan path is at the board level as 
shown in Figure 3. 
 

Core Logic

TDI

TCK

TMS

TDO

Core Logic

TDI

TCK

TMS

TDO

Core Logic

TDI

TCK

TMS

TDO

Core Logic

TDI

TCK

TMS

TDO

TDI

TCK

TMS

TDO

 
Figure 3:  Using the Boundary-Scan Path 
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Figure 3 shows a board containing four boundary-scan 
devices. Notice that there is an edge-connector input called 
TDI connected to the TDI of the first device. TDO from the 
first device is connected to TDI of the second device, and so 
on, creating a global scan path terminating at the edge 
connector output called TDO. TCK is connected in parallel 
to each device TCK input, TMS works similarly. 
 
In this way, particular tests can be applied to the device 
interconnects via the global scan path — by loading the 
stimulus values into the appropriate device-output scan cells 
via the edge connector TDI (shift-in operation), applying the 
stimulus (update operation), capturing the responses at 
device-input scan cells (capture operation), and shifting the 
response values out to the edge connector TDO (shift-out 
operation). 
 
Essentially, boundary-scan cells can be thought of as 
“virtual nails.” 

Figure 4 shows a basic universal boundary-scan cell. It has 
four modes of operation: normal, update, capture, and serial 
shift. The memory element is shown to be a simple D-type 
flip-flop with front-end and back-end multiplexing of data. 
(As with all circuits in this tutorial, it is important to note that 
the circuit shown in Figure 4 is only an example of how the 
requirement defined in the Standard could be realized. The 
IEEE 1149.1 Standard does not mandate the design of the 
circuit, only its functional specification.) 
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M u x 

 
Figure 4:  Basic Boundary-Scan Cell  

During normal mode, Data_In is passed straight through to 
Data_Out. During update mode, the content of the output 
register is passed through to Data_Out. During capture 
mode, the Data_In signal is routed to the shift register and 
the value is captured by the next ClockDR. During shift 
mode, the Scan_Out of one register flip-flop is passed to the 
Scan_In of the next via a hard-wired path. Note that both 
capture and shift operations do not interfere with the normal 
passing of data from the parallel-in terminal to the parallel-
out terminal. This allows the capture of operational values 
“on the fly” and the movement of these values for inspection 
without interference. This application of the boundary-scan 
architecture has tremendous potential for real-time 
monitoring of the operational status of a system — a sort of 
electronic camera taking snapshots — and is one reason 
why TCK is kept separate from any system clocks. 
 
The use of boundary-scan cells to test the presence, 
orientation, and bonding of devices in place was the original 
motivation for inclusion in a device. The use of scan cells as 
a means of applying tests to individual devices is not the 
major application of boundary-scan architecture. Consider 
the reason for boundary-scan architecture in the first place. 
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The prime function of the bed-of-nails in-circuit tester was to 
test for manufacturing defects, such as missing devices, 
damaged devices, open and short circuits, misaligned 
devices, and wrong devices. See Figure 5. 
 

Driver Sensor

Defects covered:
nail - plated-through hole - interconnect - solder -
leg - bond wire - device - bond wire - leg - solder -
interconnect - plated-through hole - nail

 
Figure 5:  Bed-of-Nails Fault Coverage 

In-circuit testers were not intended to prove the overall 
functionality of the devices. It was assumed that devices 
had already been tested for functionality when they existed 
only as devices (i.e., prior to assembly on the board). 
Unfortunately, in-circuit test techniques had to make use of 
device functionality in order to test the interconnect structure 
— hence the rather large libraries of merchant device 
functions and the problems caused by increasing use of 
ASICs. 
 
Given that boundary-scan architecture was seen as an 
alternative way of testing for the presence of manufacturing 
defects, we should question what these defects are, what 
causes them, and where they occur.  
 
An examination of the root cause for defects shows them to 
be caused by any one of three “shock waves”: electrical 
shock (e.g., electrostatic discharge), mechanical shock 
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(e.g., clumsy handling), or thermal shock (e.g., hot spots 
caused by the solder operation). A defect, if it occurs, is 
likely present either in the periphery of the device (leg, bond 
wire, driver amplifier), in the solder, or in the interconnect 
between devices. It is very unusual to find damage to the 
core logic without there being some associated damage to 
the periphery of the device. 
 
In this respect, the boundary-scan cells are precisely where 
we want them — at the beginning and ends of the core 
function of the device (see Figure 6) 
 

In this mode (INternal TEST), defects covered are:

Driver Sensor

Boundary-scan cells are "Virtual Nails"

scan cell - device - scan cell

 
Figure 6:  Boundary-Scan Fault Coverage (Intest) 

and at the beginning and end of interconnect paths (see 
Figure 7). 
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In this mode (EXternal TEST), defects covered are:

Driver Sensor

scan cell - driver - bond wire - leg - solder - interconnect -
solder - leg - bond wire - driver - scan cell

 
Figure 7:  Boundary-Scan Fault Coverage (Extest) 

Using the boundary-scan cells to test the core functionality 
is called “internal test,” shortened to Intest. Using the 
boundary-scan cells to test the interconnect structure 
between two devices is called “external test,” shortened to 
Extest. The use of the cells for Extest is the major 
application of boundary-scan architecture, searching for 
opens and shorts plus damage to the periphery of the 
device. Intest is only really used for very limited testing of 
the core functionality (i.e., an existence test — “are you 
there, are you alive?”) to identify defects such as devices 
missing, incorrectly oriented, or misalignment. 
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Chapter 3: IEEE 1149.1 Device Architecture 
After nearly five year’s discussion, the JTAG organization 
finally proposed the architecture shown in Figure 8. 
 

Test Data In
TDI Test Data Out

TDO

Test Mode Select
TMS

Test Clock
TCK

Bypass register

Test Reset
TRST* (optional)

Any Digital Chip

Any Internal Register

Identification Register

Boundary-Scan Register

Instruction Register

TAP
Controller

1

1

1

 
Figure 8:  IEEE 1149.1 Chip Architecture 

Figure 8 shows the following elements: 
 
�� A set of four dedicated test pins — Test Data In (TDI), 

Test Mode Select (TMS), Test Clock (TCK), Test Data 
Out (TDO) — and one optional test pin Test Reset 
(TRST*). These pins are collectively referred to as the 
Test Access Port (TAP). 

�� A boundary-scan cell on each device primary input and 
primary output pin, connected internally to form a serial 
boundary-scan register (Boundary Scan). 

�� A finite-state machine TAP controller with inputs TCK, 
TMS, and TRST*. 

�� An n-bit (n ≥ 2) Instruction Register (IR), holding the 
current instruction. 
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�� A 1-bit bypass register (Bypass). 
�� An optional 32-bit Identification Register (Ident) capable 

of being loaded with a permanent device identification 
code. 

 
At any time, only one register can be connected from TDI to 
TDO (e.g., IR, Bypass, Boundary-scan, Ident, or even some 
appropriate register internal to the core logic). The selected 
register is identified by the decoded output of the IR. Certain 
instructions are mandatory, such as Extest (boundary-scan 
register selected), whereas others are optional, such as the 
Idcode instruction (Ident register selected). 
 
Let’s take a closer look at each part of this architecture. 

The Instruction Register 
An Instruction Register (IR) has a shift section that can be 
connected to TDI and TDO, and a hold section, holding the 
current instruction as shown in Figure 9. 
 

Scan Register
(Scan-in new  instruction/scan-out capture bits)

Scan Register
(Scan-in new  instruction/scan-out capture bits)

Hold register
(Holds current instruction)

Hold register
(Holds current instruction)

Decode LogicDecode Logic

10Higher order bits:
current instruction, status bits, informal ident, 
results of a power-up self test, ….

TAP
Controller

TAP
Controller IR Control

From
TDI

To
TDO

DR select and control signals routed to selected target register

 
Figure 9:  The Instruction Register 
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There may be some decoding logic between the two 
sections depending on the width of the register and number 
of different instructions. The control signals to the IR 
originate from the TAP controller and either cause a shift-in, 
shift-out through the IR shift section, or cause the contents 
of the shift section to be passed across to the hold section 
(update operation). It is also possible to load (capture) 
certain hard-wired values into the shift section of the IR. The 
IR must be at least two-bits long (to allow coding of the 
three mandatory instructions — Bypass, Sample/Preload, 
Extest —  but the maximum length of the IR is not defined. 
In capture mode, the two least significant bits must capture 
a 01 pattern (see Figure 9). The values captured into 
higher-order bits are not defined. One possible use of these 
higher order bits is to capture an informal identification code 
if the 32-bit Ident register is not implemented. In practice, 
the only mandated bits for IR capture is the 01 pattern. We 
will return to the value of capturing this pattern later in this 
tutorial. 
 

The Instructions 
 
The IEEE 1149.1 Standard describes three mandatory 
instructions: Bypass, Sample/Preload, and Extest. 
 
The Bypass instruction must be assigned an all-1s code and 
when executed, causes the Bypass register to be placed 
between the TDI and TDO pins. By definition, the initialized 
state of the hold section of the IR should contain the Bypass 
instruction unless the optional Identification Register (Ident) 
has been implemented, in which case, the Idcode instruction 
should be present in the hold section. 
 
The Sample/Preload instruction selects the boundary-scan 
register when executed. The instruction sets up the 
boundary-scan cells either to sample (capture) values 
moving in to the device or to preload known values into the 
output boundary-scan cells prior to some follow-on 
operation. The code for the Sample/Preload instruction is 
not defined. 
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The Extest instruction selects the boundary-scan register 
when executed, preparatory to interconnect testing. The 
code for Extest is defined as the all-0s code. 
 
The IEEE 1149.1 Standard defines a number of optional 
instructions (instructions that do not need to be 
implemented, but which have a prescribed operation when 
they are used). Examples of optional instructions include: 
 
Intest, the instruction that selects the boundary-scan 
register preparatory to applying tests to the core logic of the 
device. 
 
Idcode, the instruction to select the Identification Register 
between TDI and TDO, preparatory to loading the Idcode 
code and reading it out through TDO. Note that if the Idcode 
instruction is loaded and there is no Identification Register 
present on the device, then the Idcode instruction must be 
interpreted as if it were the Bypass instruction. 
 
Runbist, the instruction to initiate an internal self-test routine 
and to place the pass/fail result register between TDI and 
TDO. 
 
Two new instructions introduced in the 1993 revision, 
1149.1a, were Clamp and Highz. Clamp is an instruction 
that drives preset values onto the outputs of devices 
(established initially with the Sample/Preload instruction) 
and then selects the Bypass register between TDI and TDO 
(unlike the Sample/Preload instruction). Clamp would be 
used to set up safe “guarding” values on the outputs of 
certain devices in order to avoid bus contention problems, 
for example. 
 
Highz is similar to Clamp, but it leaves the device output 
pins in a high-impedance state. Highz also selects the 
Bypass register between TDI and TDO. 
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With the exception of Extest and Bypass, the codes for all 
instructions are undefined. Given the need for three 
mandatory instructions, the minimum length of the IR is two 
bits. The maximum length is undefined. Any instruction can 
have more than one code and all unused codes are 
interpreted as Bypass. Note that the designer may use 
certain codes to implement “private” instructions — that is, 
instructions whose functions are not made public. In these 
circumstances, the designer must state that these codes are 
private so that the user can avoid loading the codes.  
 

Using the Instruction Register (IR) 
Before proceeding with a description of other parts of the 
architecture, we will first examine how to load the IR and 
decode its contents. Consider the board circuit shown in 
Figure 10. 
 

� Problem: Set device 1 in Bypass, devices 2 and 3 in Extest ready for  
interconnect test

� Step 1: Select IRs as active registers in all devices.  Load Bypass code 
into 1 (all-1s); Extest code into 2 and 3 (all-0s)

………….1111 …………0000 …………0000

TDI

TMS

TCK

TDO

1 2 3

 
Figure 10:  Using the Instruction Register — Step 1 



Boundary-Scan Tutorial 

 16 

Assume that what we want to do is to place Chip 1 into 
bypass mode (to shorten the time it takes to get test 
stimulus to follow-on devices) and place chips 2 and 3 into 
Extest mode preparatory to setting up tests to check the 
interconnect between Chips 2 and 3. This set-up requires 
loading the Bypass instruction (all-1s) into the IR of chip 1, 
and the Extest instruction (all-0s) into the IRs of Chips 2 and 
3. 
 
Step 1 is to connect the IRs of all three devices between 
their respective TDI and TDO pins. This is achieved by a 
special sequence of values on the serial control line TMS 
going to each TAP controller. Note that the TMS (and TCK) 
lines are connected to all devices in parallel. Any sequence 
of values on TMS will be interpreted in the same way by 
each TAP controller. Later, we will see the precise TMS 
sequence to select the IR between TDI and TDO. For now, 
we will assume that such a sequence exists. 
 
Step 2 is to load the appropriate instructions into the various 
IRs via the global connection of IRs. If we assume simple 
two-bit IRs per device, this operation amounts to a serial 
load of the sequence 110000 into the edge-connector TDI to 
place 00 in the IRs of Chips 2 and 3, and 11 in the IR of 
Chip 1. The IRs are now set up with the correct instructions 
loaded in their shift sections. 
 
Step 3, shown in Figure 11, is to continue with values on 
TMS to cause each TAP controller to issue the control-
signal values to transfer the values in the shift sections of 
the IRs to the hold sections where they become the current 
instruction. This is the Update operation. At this point, the 
various instructions are obeyed — that is, Chip 1 deselects 
the IR and selects the Bypass register between TDI and 
TDO (Bypass instruction), and Chips 2 and 3 deselect their 
IRs and select their boundary-scan registers between TDI 
and TDO (Extest instruction). The devices are now set up 
ready for Extest operation. 
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� Step 2: decode and execute new instructions.  New target 
registers are selected

� Devices now set up to apply interconnect tests between 
devices 2 and 3

TDI

TMS

TCK

TDO

1 2 3

 
Figure 11:  Using the Instruction Register — Step 3 

Use of the “Capture 01” Mode 
Previously we discussed the capture of the fixed 01 pattern 
into the least two significant positions of the Instruction 
Register. Normally, we would think only of “shift and update” 
operations for the IR. The question arises — what is the use 
of the “capture 01” pattern? 
 
To answer this question, we need to think about the use of 
boundary-scan architecture at the board level. Consider 
again the circuit in Figure 10. 
 
Previously, we saw how to set up a test environment 
preparatory to carrying out interconnect tests. To do this, we 
made use of the test infrastructure (i.e., the on-chip 
boundary-scan features plus the board-level TMS and TCK 
connections and the chip-to-chip TDO-to-TDI 
interconnects). It is important to know that this infrastructure 
is fault-free before making use of it. In other words, we must 
first “test the tester” before using the tester to test other 
parts of the board. This is the purpose of the IR capture 01 
operation. 
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Essentially, what happens is as follows: 
 
Step 1: Apply the sequence to TMS, which causes each 

device to place the IR between TDI and TDO. At 
this stage, there is a serial shift register that starts 
at the board TDI input and ends at the board TDO 
output and which is made up of the various IRs in 
the devices — an IR chain. 

 
Step 2: Apply an additional sequence to TMS to cause 

each IR to capture the hardwired 01 into the least 
two significant positions of the IR. Higher-order 
bits capture what they are set up to capture. 
These values are not mandated by the Standard. 
The captured 01 values constitute a checkerboard 
“flush” test for the serial IR chain. 

 
Step 3: Clock the captured values out of the IR chain to 

the board’s TDO output. 
 
If the sequence TDO: 10…10…10… emerges, then we can 
be reasonably sure of the following facts: 
 
�� The TMS control signal is properly connected from the 

board’s TMS input to the TMS inputs of every device. 
�� The TCK control signal is properly connected from the 

board’s TCK input to the TCK inputs of every device. 
�� The TDO from one device is properly connected to the 

TDI of its logical neighbor. 
�� Each internal TAP controller is at least capable of 

responding correctly to the sequences on TMS that 
cause the IR both to capture and to shift. 

 
It is usual to feed the inverse values 10 into the board TDI 
input so as to know when to terminate the shift-out phase 
(Step 3). These bits are called the “sentinel” bits. They have 
an added benefit as they help to remove a possible cause of 
incorrect diagnosis if there is a TDI-to-TDO short circuit on 
one of the devices. 
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Steps 1 to 3 represent a minimum integrity test for the 
boundary-scan infrastructure. Additional tests can be 
included. For example: load and execute the Bypass 
instruction into all devices to show that the bypass registers 
are functioning correctly; load an instruction (e.g., Extest) to 
select the boundary-scan register and pass a flush test 
through the register to check the integrity of the boundary-
scan cells. The question that is raised is why do all these 
additional integrity tests? If our purpose is just to test for 
manufacturing defects on the test infrastructure, the IR 
checkerboard test is probably sufficient. All additional 
integrity tests deal with testing the functionality of the IEEE 
1149.1 features on the devices. We could argue that this is 
more a chip test requirement, not a board test requirement 
(in fact, the same argument used earlier to explain why the 
Intest instruction is not mandatory). 
 
Most test engineers run the extra integrity tests as time 
permits. These tests provide additional confidence that the 
test infrastructure is healthy before using it to test other 
parts of the board. 
 

The Test Access Port (TAP) 
We return now to the TAP and its controller (Figure 12). The 
TAP consists of four mandatory terminals plus one optional 
terminal. 
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ClockDR
ShiftDR
UpdateDR
Reset*
Select
ClockIR
ShiftIR
UpdateIR
Enable

TMS

TCK

TRST* (Optional)

Test Access Port

Controller

 
Figure 12:  TAP Controller Global View 

The mandatory terminals are: 
 
�� Test Data In (TDI): serial test data in with a default value 

of 1. 
�� Test Data Out (TDO): serial test data out with a default 

value of Z and only active during a shift operation. 
�� Test Mode Select (TMS): serial input control signal with 

a default value of 1. 
�� Test Clock (TCK): dedicated test clock, any convenient 

frequency. 
 
The optional terminal is: 
 
�� Test Reset (TRST*): asynchronous TAP controller reset 

with default value of 1 and active low. 
 
TMS and TCK (and the optional TRST*) go to a finite-state 
machine controller, which produces the various control 
signals. These signals include dedicated signals to the IR 
(ClockIR, ShiftIR, UpdateIR) and generic signals to all data 
registers (ClockDR, ShiftDR, UpdateDR). The data register 
that actually responds is the one enabled by the conditional 
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control signals generated at the parallel outputs of the IR, 
according to the particular instruction. Additionally, there are 
generic Select, Reset, and Enable signals. 
 
Figure 13 shows the state table for the TAP controller. The 
value on the state transition arcs is the value of TMS. A 
state transition occurs on the positive edge of TCK and 
output values change on the negative edge of TCK.  
 
 

T e s t - L o g i c- 
R e s e t 

R u n - T e s t / 
I d l e Select-

DR-Scan

Capture-DR

Shift-DR

Exit1- DR

Pause-DR

Exit2- DR

Update- DR

Select-
IR-Scan

Capture- IR

Shift-IR

Exit1- IR

Pause- IR

Exit2- IR

Update-IR

1 

0 

1

1

1

1

1

1

1

1

1

1

111 
0 

0

0

0
0

0
0

0

0

0

0
0

0
0

0

11

 
Figure 13:  TAP Controller State Table Diagram 

The TAP controller initializes in the Test-Logic-Reset state 
(“Asleep” state). While TMS remains a 1 (the default value), 
the state remains unchanged. Pulling TMS low causes a 
transition to the Run-Test/Idle state (“Awake, and do 
nothing” state). Normally, we want to move to the Select-IR-
Scan state ready to load and execute a new instruction.  
 
An additional one-one sequence on TMS will achieve this. 
From here, we can move through the various Capture-IR, 
Shift-IR, and Update-IR states as required. The last 
operation is the Update-IR operation and, at this point, the 
instruction loaded into the shift section of the IR is 
transferred to the hold section to become the current 
instruction. This causes the IR to be deselected as the 
register connected between TDI and TDO and the data 
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register identified by the current instruction to be selected as 
the new target register between TDI and TDO (e.g., if the 
instruction is Bypass, the Bypass register is the selected 
data register). From now on, we can manipulate the target 
data register with the generic Capture-DR, Shift-DR, and 
Update-DR control signals. 
 
Note that there is no master reset to the TAP controller if 
the optional TRST* is not implemented. The TAP controller 
is mandated to power up in the Test-Logic Reset state. If 
there is a need to re-initialize the controller, it can be done 
by holding TMS high and clocking TCK up to a maximum of 
five clocks. In general, TMS = 0 holds the current state 
whereas TMS = 1 causes a state transition. The reader is 
invited to verify that from any start state, five TCKs is 
sufficient to return the controller to the Test-Logic-Reset 
state, given that TMS remains at logic 1. 
 
Each of the main branches of the state table contains 
additional Exit and Pause states. The Exit1 state allows a 
transition from the shift operation to Update. It also allows 
the controller to be placed in a Pause state. This might be 
necessary if, for example, all devices have their boundary-
scan registers selected as the data registers and an 
external tester pin channel is either loading or unloading test 
data (e.g., as in the use of Extest to test interconnect 
structures). If the length of the chained boundary-scan 
registers is longer than the memory associated with the 
tester channel then it will become necessary to update or 
unload the content of the channel memory before resuming 
the shift operation through the boundary-scan path. The 
Pause state enables this action and Exit2 state allows a 
return to the shift operation. 
 
In general, a TAP controller requires four state flip-flops and 
another four flip-flops to hold the values of certain output 
signals. The additional next-state decoder and output 
decoder logic adds another 20 to 40 gates. 
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The Bypass Register 
Figure 14 shows a typical design for a Bypass register. It is 
a 1-bit register, selected by the Bypass instruction and 
provides a basic shift function. There is no parallel output 
(which means that the Update-DR control has no effect on 
the register), but there is a defined effect with the Capture-
DR control — the register captures a hard-wired value of 0. 
We will shortly explain the value of this. 
 

� One-bit shift register
� Selected by the Bypass instruction
� No parallel output
� Captures a hard-wired 0
� Note: Bypass is power-up instruction

if no Identification Register present

D

Clk

Q
0

From TDI
To TDO

ShiftDR

ClockDR

 
Figure 14:  The Bypass Register 

The Identification Register 
The optional Identification (Ident) register is a 32-bit register 
with capture and shift modes of operation (Figure 15). The 
captured 32 bits identify the device through the following 
fields: 
�� Bit 0 (least significant bit) is always 1. 
�� Bits 1 - 11 identify the manufacturer of the device using 

a compact form of the JEDEC identification code. 
�� Bits 12 - 27 provide a 16-bit free format part number 

field. 
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�� Bits 28 - 31 provide a 4-bit free format field to specify up 
to 16 different versions of the same basic device. 

 

VersionVersion Part NumberPart Number Manufacturer
Identity

Manufacturer
Identity

4-bits
Any format

16-bits
Any format

11-bits
Coded form
of JEDEC

D

Clk

Q
ID Code bit

Shift in
Shift out

ShiftDR

ClockDR

TDI TDO
LSBLSB

1

 
Figure 15:  Device Identification Code Structure 

Once captured, the 32-bit identification code can be shifted 
out through TDO for inspection. Figure 15 also shows a 
possible implementation of one cell in the 32-bit register. 
 
We will now investigate why the least significant bit (lsb) of 
the Ident register is a 1 and why the Bypass register 
captures a hard-wired value of 0. 
 

Use of the lsb = 1 Feature 
Consider the following field servicing scenario. A customer’s 
computer system has broken down. The cause is suspected 
to be a hardware fault on a particular board. There are 
many variations of the board and the service engineer 
needs to identify the board type and the component 
versions. All the engineer knows is that there are boundary-
scan components on the board and the location of the 
primary (edge-connector) TDI, TDO, TMS, TCK ports plus 
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Power and Ground. The following procedure identifies the 
boundary-scan components on the board and whether or 
not they have Ident registers. 
 
Step 1: Power up the board and sequence values on TMS 

to enter the Select DR-Scan state. By default, the 
instruction loaded into the hold stage of every 
boundary-scan device on power-up must be 
Idcode if the device contains an Ident register, or 
Bypass if the device does not contain an Ident 
register. This is mandated by the standard. This is 
shown in Figure 16. 

 

TDI

TMS

TCK

TDO

1 2 3

� Problem: determine how many devices on the board have boundary 
scan; where they are in the chain; and identify those with Identification
Registers

� Solution: power-on, go to Select DR_Scan > Capture_DR > Shift_DR
� Leading 0 indicates a Bypass-only device
� Leading 1 indicates an Ident device.  Next 31 bits are of interest

 
Figure 16:  Use of the lsb = 1 Feature — Step 1 

 
Step 2: Capture the hard-wired values (Capture-DR) in 

the default selected Bypass or Ident register. 
 
Step 3: Shift (Shift-DR) the captured values out through 

the primary TDO output. See Figure 17. A leading 
0 identifies a device without an Ident register. A 
leading 1 identifies a device with an Ident register, 
in which case the next 31 bits are of interest. 
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� Clock out content of concatenated registers though TDO
� Note: front-end open TDI will  feed logic 1s into the chain

� Terminate with all-1s (8 x 1s: illegal JEDEC code)

TDI

TMS

TCK

TDO

1 2 3

Logic 1

 
Figure 17:  Use of the lsb = 1 Feature — Step 3 

In the situation of a true “blind” interrogation (i.e., one in 
which it is not known how many devices on the board have 
IEEE 1149.1 features), the process can be terminated by 
feeding in an illegal sequence through the primary TDI and 
waiting for this sequence to appear at the primary TDO. 
Such a sequence is seven consecutive 1s in bits 1-7 of the 
manufacturer identity field. The JEDEC coding system 
avoids this sequence. It is usual to add a further 0 to this 
sequence just in case the primary TDI is stuck-at-1. See 
Figure 17. 
 

Boundary-Scan Register 
We are now ready to take a more detailed look at the 
boundary-scan cells. Boundary-scan cells are placed on the 
device signal input ports, output ports, and on the control 
lines of bidirectional (I/O) ports and tristate (0, 1, Z) ports. 
These cells are linked together to form the boundary-scan 
register. The order of linking is determined by the physical 
adjacency of the pins and/or by other layout constraints. 
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The boundary-scan register is selected by the Extest, 
Sample/Preload, and Intest instructions. 
There are many different designs for boundary-scan cells. 
Figure 18 shows a simple design capable only of capture 
and shift operations. Such a cell could be used on device 
inputs that are especially sensitive to extra loading on the 
Data_In signal e.g., a system clock. (Note: the three 
mandatory instructions do not require an update operation 
on the input scan cells.) 
 

Only Capture and Shift: No update

Used on sensitive device inputs (e.g., System Clock)

1
1

G

Data_In
(PI)
ShiftDR

Scan In
(SI)
ClockDR

Data_Out
(PO)

Scan Out
(SO)

1D Q

C1

Note: Mandatory instructions do not require Update on
input scan cells.

 
Figure 18:  Basic Boundary-Scan Cell (Input) 

Figure 19 shows a more universal design for a boundary-
scan cell: it is capable of all three operations of capture, 
shift, and update, and is suitable as a cell on the device 
inputs or outputs. This design has separate flip-flops for 
shift and hold functions. Data can be shifted through the 
boundary-scan shift path without interfering with the value in 
the hold section (which could be routed to the data-out port 
through the output multiplexer). 
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ClockDR
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1D
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(PI) Data Out

(PO)Shift
Register

Parallel Output
Register

Input
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Figure 19:  Basic Boundary-Scan Cell (Input/Output) 

Figure 20 shows why a hold section might be required. 
Assume that the three outputs from the boundary-scan 
device are control signals to the Chip-Select (CS) controls 
of three RAM devices. In the normal course of events, only 
one RAM is selected to talk to the data bus. This means that 
most combinations of the three CS signals are illegal.  
 

 

 
Figure 20:  A Reason for the Hold State 
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It would be impossible to guard against illegal sequences if 
we were passing data along the boundary-scan path without 
the hold element and the output multiplexer was open to the 
shifting values. If the multiplexer was open to the values 
generated by the core logic, we may still have a problem if 
we are not exercising tight control over the status of the 
core logic. A simple solution is to include the hold section 
and to use the Clamp instruction to load safe values into the 
hold sections. Then, pass these values out through the 
output multiplexer. 
 

Providing Boundary-Scan Cells 
Primarily, boundary-scan cells must be provided on all 
device input and output signal pins, with the exception of 
Power and Ground. Note that there must be no circuitry 
between the pin and the boundary-scan cell with the 
exception of driver amplifiers or other forms of analog 
circuitry. 
 
In the case of pin fan-in, boundary-scan cells should be 
provided on each primary input to the core logic. In this way, 
each input can be set up with an independent value. This 
provides the maximum flexibility for Intest. 
 
Similarly, for the case of pin fan-out: if each output pin has a 
boundary-scan cell, then so Extest is able to set different 
and independent values. 
 
Where there are tristate output pins, then there must be a 
boundary-scan cell on the status control signal into the 
output driver amplifier. Figure 21 shows a simple example of 
a tristate output pin.  
 



Boundary-Scan Tutorial 

 30 

 

C o r e L o g i c 

T D I 

T C K 

T M S 

E x t r a B o u n d a r y- 
S c a n C e l l 

TDO

 
Figure 21:  Control of Tristate Outputs 

Figure 22 shows the set up for a bidirectional I/O pin. Here, 
we see that three boundary-scan cells are required: one on 
the input side, one on the output side, and one to allow 
control of the I/O status. 
 
 

C o r e L o g i c 

T D I 

T D O 

T C K 

T M S 

T h r e e B o u n d a r y-S a 
c e l l s p e r b i d i r e c t i o n a l pin 

c n 

 
Figure 22:  Bidirectional Input/Output Pins 
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Accessing Other Core-Logic Registers 
The IEEE 1149.1 architecture does allow the definition and 
use of “private” instructions to access any suitable internal 
shift registers. An example could be an instruction InScan to 
allow access to an internal scan path register via the TDI-
TDO route. 
 
Another important optional instruction is RunBist. Because 
of the growing importance of self-test structures, the 
behavior of RunBist is defined in the standard. The self-test 
routine must be self-initializing (i.e., no external seed values 
are allowed), and the execution of RunBist essentially 
targets a self-test result register between TDI and TDO. 
Once the self-test routine is initiated, the TAP controller is 
held in its Run-Test/Idle state for the duration of the test. 
The self-test clock can either be TCK or some other suitable 
and available clock. 
 
At the end of the self-test cycle, the targeted register holds 
the pass/fail result. It is important that this value is not 
changed by any subsequent pulses on TCK. In this way, 
parallel self-tests of different lengths on different devices on 
the same board can be carried out. When the final (i.e., the 
longest in run time) self-test is complete, all results can be 
clocked out along the register path made up of the linked 
individual result registers. 
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Chapter 4: Application at the Board Level 

General Strategy 
As a complement to this tutorial, we will look briefly at the 
three major stages of board-test strategy for a board 
populated by IEEE 1149.1-compliant devices (a “pure” 
boundary-scan board).  
 
A general-purpose, three-step strategy for testing a pure 
boundary-scan board is: 
 
Step 1. Carry out a boundary-scan infrastructure test by 

using either the blind interrogation technique 
described earlier (pages 29-30) or through the 
Capture-IR/Shift-IR operations to load and shift 
the built-in checkerboard values. Further optional 
infrastructure tests can be carried out if time 
permits. 

 
Step 2. Use the Extest instruction to apply stimulus and 

capture responses across the interconnect 
structures between the devices on the board. 

 
This is the major application of boundary-scan 
architecture and we will return to the basic 
algorithms later in this tutorial. 

  
Step 3. Carry out either a limited “existence” test on the 

individual devices (using Intest) or initiate device 
self-test routines (using RunBist). 

 
At the end of Step 3, we have “tested the tester” (Step 1); 
tested the regions most susceptible to assembly damage 
caused by electrical, mechanical, or thermal shock (Step 2); 
and tested that the right devices are in their correct 
positions on the board (Step 3). 
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Interconnect Test Example 
Consider the simple four-net interconnect structure shown in 
Figure 23. Assume both devices are IEEE 1149.1 compliant 
and the left-hand device drives values into the right-hand 
device. Assume further that there is an unwanted short-
circuit defect between Nets 1 and 2, and an unwanted open-
circuit defect along Net 4. How can we test for such 
defects? 
 

Net 1

Net 2

Net 3

Net 4

Chip 1 Chip 2Open

Short

Problem: How to test for the open and short faults?

 
Figure 23:  Interconnect Testing Example 

Figure 24 shows a solution. The short circuit (assumed to 
behave logically like a wired-AND gate) is detected by 
applying unequal logic values (i.e., logic 1 on Net 1, logic 0 
on Net 2) from Chip 1 to Chip 2. The wired-AND behavior 
causes Chip 2 to receive two logic 0s, allowing identification 
of the defect. 
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Net 1

Net 2

Net 3

Net 4

Chip 1 Chip 2Open

Short
Stimulus in Response out

Assume wired-AND

Assume stuck-at-0

1

0

1

0

0

0

 
Figure 24:  Interconnect Testing Solution 

Similarly, if the open-circuit behaves like a stuck-at-0 fault, 
the defect is detected by applying a logic 1 from Chip 1 on 
Net 4 and observing that Chip 2 captured a logic 0. 
 
A question arises — can we devise a general-purpose 
algorithm for creating a series of tests capable of detecting 
any 2-net short circuit (of either a wired-AND or a wired-OR 
nature) and any single-net open circuit (causing either a 
stuck-at-1 or a stuck-at-0 fault)? 
 
This question was answered in 1974 in connection with a 
similar requirement for testing ribbon cables (Kautz, IEEE 
Trans. Computers, 1974, pp. 358-363). Consider Figure 25.  
 
This diagram shows three consecutive tests applied to Nets 
1 to 4. The first test is the vertical pattern 1110; the second 
is 0101; and the third is 1001. Think about the patterns 
“horizontally”; that is, the sequence 101 applied to Net 1, 
and so on. We can consider 101 to be a binary code 
assigned to Net 1. Similarly, the three tests define other 
horizontal codes for Nets 2, 3, and 4. Kautz showed that a 
sufficient condition to detect any pair of short-circuited nets 
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was that the “horizontal” codes must be unique for each 
net1. This means that the total number of bits in each code 
(the number of tests) is given by ceil [log2(N)], where N is 
the number of nets and ceil means ceiling (the upper integer 
value of the logarithm). This is illustrated in Figure 25. 
 

Open

Short

Assume wired-AND

Assume stuck-at-0

101

011

001

110

001

001

001

000

?

Net 1

Net 2

Net 3

Net 4

Chip 1 Chip 2

 
Figure 25:  Detecting the Fault 

In Figure 25, each horizontal stimulus code constructed 
from the three vertical tests is different. The response codes 
on nets 1 and 2 are incorrect because of the short circuit 
between these two nets. 
 
At this point, we can ask, why use a three-bit code? With 
four nets, ceil [log2 (N)] is 2 and each net could be assigned 
a unique two-bit code. This is true, but the additional 
requirement to cover single stuck-at-1 and stuck-at-0 faults 
precludes the all-1 and all-0 codes. A stuck-at-1 fault would 
never be detected if the input code is all 1s: similarly for the 
stuck-at-0 fault and the all-0 code. In effect, the all-1s and 
all-0s become forbidden codes. 
                                                
1 If each net has a unique code, at some point any two nets have complementary 

stimulus values assigned.  This  is a necessary and sufficient condition to detect 
a short circuit of type wired-AND or wired-OR.  
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This means that the total number of bits in each code to 
satisfy the uniqueness property and to exclude the two 
forbidden codes is given by ceil [log2 (N+2)] where the “+2” 
represents the two “virtual” nets with the all-0 and all-1 code 
assignments. This results in a three-bit code for the four 
nets in Figure 25. 
 
Now consider the effect of applying these codes to the four-
net infrastructure. The response codes on Nets 1 and 2 are 
different to their respective input stimulus codes, but they 
are both the same code (001). From this information, we 
deduce: 
 
1. there is a short-circuit fault between Nets 1 and 2 
2. the short-circuit is a “wired-AND” type 
 
Unfortunately, this diagnosis may not be fully correct. Net 3, 
which is not short-circuited, was tested by the code 001. 
This code is the same as the faulty response code, and 
although net 3 response is correct in terms of being the 
same as the stimulus code, it could be 001 because net 3 is 
also part of the short circuit problem (i.e., nets 1, 2 and 3 
could all be shorted together). 
 
This diagnostic ambiguity is an example of the aliasing 
syndrome of short-circuit faults. There are ways of 
overcoming this syndrome (and other syndromes), but the 
solutions are beyond the scope of this tutorial. One 
additional test to reduce the ambiguity is 0011 (see Figure 
26). Basically, the fourth test splits the known short circuit 
pair (net 1, net 2) from the possible short-circuit candidate 
(net 3). 
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Figure 26:  Locating the Fault 

To conclude this example, notice that the s-a-0 open circuit 
on net 4 is detected and located cleanly by the all-0 
response code. This code is one of the two forbidden codes 
and cannot be aliased to any other code associated with a 
defect-free interconnect. 
 

Practical Aspects of Using Boundary-Scan 
Technology 

Handling Non-Boundary-Scan Clusters 
In reality, boards are populated with both boundary-scan 
(BScan) and non-boundary-scan (non-BScan) devices. The 
question arises, “what can we do to test the presence, 
orientation and bonding of the non-boundary-scan devices?” 
The answer to the question depends, in part, on the degree 
of controllability and observability afforded to the non-BScan 
devices through the boundary-scan registers of the BScan 
devices.  
 
Figure 27 shows a “cluster” of three non-BScan devices 
surrounded by three BScan devices. The boundary-scan 
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registers in U1, U2, U3 can be used to drive test-pattern 
stimuli into the non-BScan cluster, and to observe the 
cluster responses but the difficulty will be to control and 
observe the truly buried nets inside the cluster (e.g., 
between U4 and U5).  
 

U1

U3

U2

U4

U5
U6

Real Nail

 
Figure 27.  Handling Non-BScan Clusters 

 
Given that we are not testing the full functionality of the non-
BScan devices — only their presence, orientation and 
bonding — one solution is to develop a suitable set of tests 
for the non-BScan cluster that are applied from the 
boundary-scan driver cells and which drive signal values 
along the buried nets, targeted on opens and shorts. The 
responses are propagated out to the boundary-scan 
receiver cells.  
 
For clusters of relatively simple non-BScan devices, 
generating these tests may not be too difficult. For clusters 
of complex non-BScan devices, generating the tests may 
become very difficult and there are no automatic pattern- 
generator tools to help the board test programmer.    



Boundary-Scan Tutorial 

 39 

Consequently, an alternative solution is to make use of real 
nails to access the buried nets, as shown in the diagram. 
Clearly, these nets have to be brought to the surface of the 
board (to allow physical probing) and the cost of test will 
increase (because of the extra cost of the bed-of-nails 
fixture), but this may be the only way to solve the problem. A 
solution that combines the virtual access of boundary scan 
and the real access of a bed-of-nails system is generally 
known as a Limited Access solution.  

Access to RAM Arrays 
Many boards contain arrays of Random Access Memory 
(RAM) devices (see Figure 28). RAMs are not usually 
equipped with boundary scan and so they too present 
manufacturing-defect testing challenges. In a way, an array 
of RAMs is a special case of a cluster of non-BScan 
devices. 
 

Core Logic

Core LogicCore Logic

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

 
Figure 28.  Testing a RAM Array Via Boundary Scan 

 
Boards that contain RAMs typically also contain a 
programmable device, such as a microprocessor. The usual 
practice is to use the microprocessor to test the presence, 
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orientation and bonding of the RAM devices (i.e., the 
microprocessor becomes an on-board tester). This is OK as 
long as the microprocessor exists on the board. If there is 
no such device, then the RAMs can be tested for 
manufacturing defects through the boundary-scan registers 
of BScan devices as long as the BScan devices have 
boundary-scan register access to the control, data and 
address ports of the RAMs. Test times will be slow but the 
number of tests are not that great given that the purpose of 
the tests is to identify any opens or shorts on the RAM pins. 
Suitable tests can be derived from the classical walking-
1/walking-0 patterns or from the ceil [log2 (N+2)] patterns 
described earlier. 

Other Issues of BScan-to-Non-BScan Interfacing 
Figure 29 illustrates some of the other issues of interfacing 
between BScan and non-BScan devices. 
 

IOZ IOZIOZ

O_Enab

Bus
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U1 U2 U3

U4

n1 n2 n3 n4 n5 n6

n7
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n10

n11 n12

n13

n14

 
Figure 29.  BScan-to-non-BScan Interface 

Consider what happens when we try to set up interconnect 
tests between U1’s bidirectional pins (marked IOZ on nets 
n1, n2) and U3’s bidirectional pins (marked IOZ on nets n5, 
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n6) via the bus. First, we have to determine the exact nature 
of the boundary-scan cells on U1 and U3 IOZ pins. One set 
has to be set up as drivers and the other set as receivers. 
Assume we specify U1’s pins to be the drivers and U3’s pins 
to be the receivers. The interconnect test-pattern generator 
will compute tests from U1 to U3 based on the standard 
algorithm. 
 
To set U1’s pins into driver mode, we need to control net n7 
(U1 O_Enab) to the appropriate value. n7 is directly 
controllable so this will not be a problem. Now consider the 
O_Enab pin of U3. The value on this pin needs to be set to 
the appropriate level to make U3’s bidirectional pins behave 
as receivers. The control for U3 O_Enab comes from the 
non-BScan device U2, along net n9. n9 is not directly 
controllable so we have a problem of trying to find out what 
to do on the input side of U2 to set U3’s O_Enab to the 
correct value. If the inputs to U2 can be controlled by a 
BScan device (e.g., by the boundary-scan register of U1), 
then we can set fixed values in U1’s output scan cells to 
hold U2 inputs to set U2’s output values to the values 
required by U3’s O_Enab input. The values held in U1’s 
output scan cells are known as constraints, overriding any 
other values that might be generated by the interconnect 
test-pattern generator. Basically, the requirement for a 
constraint generates a mask that ensures that a particular 
output driver scan cell is always updated with the same 
constraint value. 
 
Now return to the U1-to-U3 interconnect tests. The board-
level netlist will identify U2 as another device with access to 
the bus. Before tests can be applied between U1 and U3, 
we first have to know the nature of the pins of U2 that are 
connected to the bus. Are they inputs only (I), outputs only 
(O), outputs with a high-Z state OZ), or full bidirectionals 
(IOZ)? Eventually, we might need to know the input-output 
nature of every pin on this non-BScan device. This data, 
sometimes called characteristic data, is easily created but 
absolutely necessary if we are to avoid potentially 
dangerous situations during interconnect test. For example, 
if U2’s pins are IOZ and they are in their output-drive state, 
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then tests between U1 and U3 can cause damage to U2 
through back-driving (bus contention). As a result, we need 
to set yet another constraint value into the boundary-scan 
cell in U1 that controls the value on U2’s O_Enab pin, along 
net n8.  
 
Now consider net n10. This net connects between the two 
BScan devices, U1 and U3, and so is a candidate for 
interconnect testing. Note however that the net also 
connects to the non-BScan device, U2. Again, we need to 
know the nature of the U2 pin: is it an input or an output? If 
it is an input, then there is no problem with driving between 
U1 and U3. If it is an OZ pin, then, again, we would need to 
set it into its high-Z safe state before applying the 
interconnect test on n10. 
 
Finally, consider the connections n11 and n12 between U1 
and U3 via U4. This appears to be a BScan-to-non-BScan-
to-BScan series of connections and so is not amenable to 
interconnect testing between U1 and U3. But, we note that 
U4 has a very special logical property: it is transparent to 
digital signals. If we knew about this property, we could 
basically ignore its presence and treat n11 and n12 as a 
single connection between U1 and U3, thereby increasing 
defect coverage. In general, identifying transparent devices 
(e.g., series resistors, non-inverting line drivers) or devices 
with simple transparent modes (e.g., multiplexers), will 
enhance the defect coverage. In the case of a multiplexer, 
we need to control the control signals to select a particular 
input to pass through to the output. Constraint values can 
be used to achieve this. 
 
The bottom line on all this is that most of the time spent in 
preparing a board-level test program is spent on the BScan-
to-non-BScan interface: identifying and solving potential 
problems, as discussed above. The more boundary-scan 
devices there are on the board, as a percentage of all the 
digital devices on the board, the easier it becomes. 
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Assembling the Final Test Program 
Figure 30 summarizes the major stages of assembling a 
final test program. 
 

Create and verify hierarchical database
(device, module, board, system)

Create and verify hierarchical database
(device, module, board, system)

BSDL Files
Board Netlist

BSDL Files
Board Netlist

Cluster Tests
Binary
Macro Language

Cluster Tests
Binary
Macro Language

Fault Coverage
Report
Final Tests

Fault Coverage
Report
Final Tests

Results: Display 
and Debug Tools

Results: Display 
and Debug Tools

Non-BS  Device
Characteristic
Data; I, O, OZ, IOZ
Trans, Constraints

Non-BS  Device
Characteristic
Data; I, O, OZ, IOZ
Trans, Constraints

Assemble Test Program:
Integrity: Power-On Scan_DR, IR, BS Reg
Interconnect: Enhanced Binary Count
Cluster: Simulation Patterns, Manual
RAM Array: Slow-Speed, At-Speed
Diagnostics: BIST, Scan-Thru-TAP, Intest

Assemble Test Program:
Integrity: Power-On Scan_DR, IR, BS Reg
Interconnect: Enhanced Binary Count
Cluster: Simulation Patterns, Manual
RAM Array: Slow-Speed, At-Speed
Diagnostics: BIST, Scan-Thru-TAP, Intest

Verify/Apply to Board
Detect: Go/No Go
Locate:Miscompare Data, Net, Pin

Verify/Apply to Board
Detect: Go/No Go
Locate:Miscompare Data, Net, Pin

 
Figure 30.  Assembling a Test Program: Tool Flow 

First, the device BSDL files (see later) and board netlist data 
is used to compile a database. non-BScan characteristic 
data is also assembled ready to be used by the various 
pattern generators. The test program itself is composed of 
several segments: 
 
�� Board-level test infrastructure integrity test: device TDO-

to-TDI interconnects, distribution of TMS, TCK and 
TRST*, if present. Typically, these tests use both a DR-
Scan cycle and an IR-Scan cycle. The former is an 
application of the blind interrogation test whereas the 
latter uses the 01 captured into the Instruction Register, 
as described earlier. 

�� Full Enhanced Binary Count tests between all boundary-
scan interconnects, setting non-BScan devices into safe 
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states and/or using non-BScan outputs to assert control 
over BScan devices where necessary. 

�� Tests to be applied to non-BScan clusters via a 
combination of BScan devices, real nails (if available), 
and the normal board edge-connector signals. These 
tests may be input in a simple one/zero format, or by 
using a higher-level test language, such as a macro 
language or C++. 

�� Tests to be applied to on-board RAM devices, either via 
an on-board microprocessor or via the boundary-scan 
registers of the BScan devices. 

 
Diagnostics applied to production boards may then make 
use of internal design-for-test structures such as internal 
scan (often called Scan-Thru-TAP), Built-In Self Test or 
simply through the InTest Instruction, if available. The final 
test results are displayed to the user through an interface 
which allows line-by-line real-time debug, or by means of a 
graphical display of applied stimulus and captured test 
waveforms. 

Tester Hardware 
Modern low-cost board testers for boards populated with 
boundary-scan devices are based on a Personal Computer 
(see Figure 31). The drive/sense capability of the PC is 
enhanced through a controller card fitted either into an 
expansion slot (PC-AT, PCI or VXI) or into a PC Card slot, 
connecting to the board-under-test via a signal interface 
pod. TCK speeds are generally in the region of 10 MHz to 
25 MHz, but can be higher. Additional driver/sensors are 
often available to provide direct control and observe on 
selected edge-connector positions (e.g., control a board 
Master Reset signal). The stimulus/response patterns 
themselves, along with the correct value-changes on TMS, 
are stored in RAM devices mounted on the controller card. 
These devices form a hardware buffer to hold applied 
stimulus values and collect actual response values for 
comparison with the expected values. Overall, the test-
preparation and test-application software in the PC is 
controlled under Windows 98/2000 or Windows NT. 
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PC: Windows 98/2000 or NT

Internal controller card
or PCMCIA card

Interface pod
(TAP interface + PIO)

Board-Under-Test

 
Figure 31.  Tester Hardware 

 
Such board testers are low-cost, compared to traditional in-
circuit testers, and very portable, opening up the possibility 
to make use of the test program in other test requirements 
on the boards (e.g., in multi-board system integration and 
debug, and in field service). 
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Chapter 5: Related Standards 
Several data formats have emerged to make IEEE 1149.1 
successful and well-supported by tools. This chapter 
discusses the most widely accepted data formats that 
support IEEE 1149.1 — BSDL, HSDL, and SVF. 
 

Boundary-Scan Description Language (BSDL) 
This section discusses the most popular data format for 
describing how IEEE 1149.1 was implemented in a device 
— BSDL, or Boundary-Scan Description Language. 

What Is BSDL? 
Since 1990 when the IEEE 1149.1 standard was approved, 
implementation of the standard has accelerated. As more 
people became aware of and used the standard, the need 
for a standard method for describing IEEE 1149.1-
compatible devices was recognized. The IEEE 1149.1 
working group established a subcommittee to develop a 
device description language to address this need. 
 
The subcommittee has since developed and approved an 
industry standard language called Boundary-Scan 
Description Language (BSDL). BSDL is a subset of VHDL 
(VHSIC Hardware Description Language) that describes 
how IEEE 1149.1 is implemented in a device and how it 
operates. BSDL captures the essential features of any IEEE 
1149.1 implementation. BSDL was approved in 1994 as 
IEEE Std.1149.1b. 
 
One of the major uses of BSDL is as an enabler for the 
development of tools to automate the testing process based 
on IEEE 1149.1. Tools developed to support the standard 
can control the TAP (Test Access Port) if they know how the 
boundary-scan architecture was implemented in the device. 
Tools can also control the I/O pins of the device. BSDL 
provides a standard machine and human-readable data 
format for describing how IEEE 1149.1 is implemented in a 
device. 
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How BSDL is Used 
Many IEEE 1149.1 tools on the market support BSDL as a 
data input format. These tools offer different capabilities to 
persons implementing IEEE 1149.1 into their designs 
including board interconnect Automatic Test Pattern 
Generation (ATPG) and Automatic Test Equipment (ATE). 
 
When you use tools that support BSDL, you can often 
obtain BSDL from your semiconductor vendor. This can 
result in significant time and cost savings. 
 
Teradyne estimates that to create in-circuit test patterns for 
a leading microprocessor normally can require as much as 
seven weeks time: 
 
�� One week to study the device 
�� Four weeks to develop in-circuit test patterns 
�� Two weeks to verify the patterns on ATE 
 
If the microprocessor supports IEEE 1149.1, and the BSDL 
is supplied by the vendor, the time to develop in-circuit test 
patterns is less than two hours using today's tools. 

Elements of BSDL 
A BSDL description for a device consists of the following 
elements: 
 
�� Entity descriptions 
�� Generic parameter 
�� Logical port description 
�� Use statements 
�� Pin mapping(s) 
�� Scan port identification 
�� Instruction Register description 
�� Register access description 
�� Boundary Register description 
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Entity Descriptions — The entity statement names the 
entity, such as the device name (e.g., SN74ABT8245). An 
entity description begins with an entity statement and 
terminates with an end statement. 
 
entity XYZ is
{statements to describe the entity go here}
end XYZ

 
Generic Parameter — A generic parameter is a parameter 
that may come from outside the entity, or it may be 
defaulted, such as a package type (e.g., “DW”). 
 
generic (PHYSICAL_PIN_MAP : string := “DW”);

 
Logical Port Description — The port description gives logical 
names to the I/O pins (system and TAP pins), and denotes 
their nature such as input, output, bidirectional, and so on. 
 
port (OE:in bit;

Y:out bit_vector(1 to 3);
A:in bit_vector(1 to 3);
GND, VCC, NC:linkage bit;
TDO:out bit;
TMS, TDI, TCK:in bit);

Use Statements — The use statement refers to external 
definitions found in packages and package bodies. 
 
use STD_1149_1_1994.all;

Pin Mapping(s) — The pin mapping provides a mapping of 
logical signals onto the physical pins of a particular device 
package. 
 
attribute PIN_MAP of XYZ : entity is
PHYSICAL_PIN_MAP;
constant DW:PIN_MAP_STRING:=
“OE:1, Y:(2,3,4), A:(5,6,7), GND:8, VCC:9, “&

“TDO:10, TDI:11, TMS:12, TCK:13, NC:14”;
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Scan Port Identification — The scan port identification 
statements define the device's TAP. 
 
attribute TAP_SCAN_IN of TDI : signal is TRUE;
attribute TAP_SCAN_OUT of TDO : signal is TRUE;
attribute TAP_SCAN_MODE of TMS : signal is TRUE;
attribute TAP_SCAN_CLOCK of TCK : signal is (50.0e6,

BOTH);

 
Instruction Register Description — The Instruction Register 
description identifies the device-dependent characteristics of 
the Instruction Register. 
 
attribute INSTRUCTION_LENGTH of XYZ : entity is 2;
attribute INSTRUCTION_OPCODE of XYZ : entity is
“BYPASS (11), “&
“EXTEST (00), “&
“SAMPLE (10) “;
attribute INSTRUCTION_CAPTURE of XYZ : entity is

“01”;

 
Register Access Description — The register access defines 
which register is placed between TDI and TDO for each 
instruction. 
 
attribute REGISTER_ACCESS of XYZ : entity is
“BOUNDARY (EXTEST, SAMPLE), “&
“BYPASS (BYPASS) “;

 
Boundary Register Description — The Boundary Register 
description contains a list of boundary-scan cells, along with 
information regarding the cell type and associated control. 
 
attribute BOUNDARY_LENGTH of XYZ : entity is 7;
attribute BOUNDARY_REGISTER of XYZ : entity is
“0 (BC_1, Y(1), output3, X, 6, 0, Z), “&
“1 (BC_1, Y(2), output3, X, 6, 0, Z), “&
“2 (BC_1, Y(3), output3, X, 6, 0, Z), “&
“3 (BC_1, A(1), input, X), “&
“4 (BC_1, A(2), input, X), “&
“5 (BC_1, A(3), input, X), “&
“6 (BC_1, OE, input, X), “&
“6 (BC_1, *, control, 0)”;
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Hierarchical Scan Description Language (HSDL) 
This section discusses a data format for describing how 
IEEE 1149.1 was implemented at the board or system level 
— HSDL, or Hierarchical Scan Description Language. 

What Is HSDL? 
Texas Instruments developed the Hierarchical Scan 
Description Language (HSDL) to complement BSDL, using 
the same subset of VHDL statements as BSDL. ASSET 
InterTech, Inc. is the contact point for maintaining the HSDL 
standard and is directly responsible for additions or changes 
to the standard.  
 
HSDL picks up where BSDL stops to describe additional 
attributes of IEEE 1149.1 devices and how IEEE 1149.1 
devices are connected at the board and system level. 
 
HSDL uses the BSDL entity and package in new ways. 
Entities in HSDL are used to describe modules as well as 
devices. A module is any level of architecture above the 
device level, including boards, multichip modules, 
backplanes, subsystems, and systems. In addition, HSDL 
provides two new packages used to indicate that an entity is 
an HSDL device or module. 
 
BSDL is well suited for describing how IEEE 1149.1 is 
implemented in a device, but stops there. HSDL provides a 
method for describing how IEEE 1149.1 devices are 
connected at the board, module, and system levels. HSDL 
serves three needs not addressed by BSDL. 
 
�� Description of the test bus interconnections of IEEE 

1149.1 at the board or module level 
�� Description of boards with dynamic and reconfigurable 

architectures 
�� Ease-of-use and risk reduction improvement during 

interactive design debug and verification 
 



Boundary-Scan Tutorial 

 51 

In this way, BSDL and HSDL can be used together to obtain 
a full description of the unit under test (UUT). In addition, a 
basic device-level BSDL file can be augmented with 
appropriate HSDL statements to ease its use for interactive 
design debug of the UUT. 

HSDL Module Statements 
HSDL module statements use much of the same syntax as 
BSDL. New statements have been added to describe the 
members and scan paths of the module and to simplify 
interactive use. 

�� Entity descriptions 
�� Generic parameter 
�� Logical port description 
�� Use statements 
�� [Optional module descriptions] 
�� [Optional port description(s)] 
�� Pin mapping(s) 
�� Scan port identification 
�� [Optional member description(s)] 
�� [Optional bus description(s)] 
�� Path description 
�� [Optional member connections] 
�� [Optional constraint description(s)] 
�� [Optional design warning] 

Entity Descriptions — The entity statement names the 
entity, such as the module name (e.g., BOARD). An entity 
description begins with an entity statement and terminates 
with an end statement. 
 
entity BOARD is
{statements to describe the entity go here}
end BOARD;

 
Generic Parameter — A generic parameter may come from 
outside the entity or it may be defaulted, such as a package 
type (e.g., “UNDEFINED”). 
 
generic (PHYSICAL_PIN_MAP : string := (“UNDEFINED”)
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Logical Port Description — The port description gives logical 
names to the I/O pins (system and TAP pins), and denotes 
their nature such as input, output, bidirectional, and so on. 
 
port (TDI:in bit;

TDO:out bit;
TMS:in bit;
TCK:in bit);

 
Use Statements — The use statement refers to external 
definitions found in packages and package bodies. 
 
use STD_1149_1_1994.all;
use HSDL_module.all;

 
Pin Mapping(s) — The pin mapping provides a mapping of 
logical signals onto the physical pins of a particular entity. 
 
attribute PIN_MAP of BOARD : entity is
PHYSICAL_PIN_MAP;
constant PINOUT1 : PIN_MAP_STRING :=
“TDI:1, TDO:2, TMS:3, TCK:4, GND:5”;

 
Scan Port Identification — The scan port identification 
statements define the entity's TAP. 
 
attribute TAP_SCAN_IN of TDI : signal is TRUE;
attribute TAP_SCAN_OUT of TDO : signal is TRUE;
attribute TAP_SCAN_MODE of TMS : signal is TRUE;
attribute TAP_SCAN_CLOCK of TCK : signal is (5.0e6,

LOW);

Members Description (Optional) — Members represent 
devices or other modules that are on the module. Usually 
members represent components, but some boards may 
contain scannable daughtercards, card slots, or other sub-
assemblies that require modules to describe them. 
attribute MEMBERS of BOARD : entity is
“U1 (XYZ1, DW),”&
“U2 (XYZ2, DW), “;
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Bus Composition (Optional) — Buses in an HSDL module 
can be built of module buses, member module buses, 
member device buses, and member device test registers. 
 
attribute BUS_COMPOSITION of BOARD : entity is
“bus1[4] (U1.Boundary[3,0]), “&
“bus2[4] (U2.Boundary[3,0]), “;

  
Path Description — Module paths are intended to describe 
the netlist of TAP signals (scan paths) on the board. 
 

constant boardpath1 : STATIC_PATH :=
“U1, U2”;
end BOARD;

 
For a complete specification of the HSDL language contact 
ASSET InterTech or your local ASSET representative. 
 

Serial Vector Format (SVF) 

What Is SVF? 
Serial Vector Format, commonly referred to as SVF, was 
jointly developed by Texas Instruments and Teradyne in 
1991. ASSET InterTech, Inc. is the contact point for 
maintaining the SVF standard and is directly responsible for 
additions or changes to the standard.  
 
SVF is a standard ASCII format for expressing test patterns 
that represent the stimulus, expected response, and mask 
data for IEEE 1149.1-based tests. The need for SVF arose 
from the desire to have vendor-independent IEEE 1149.1 
test patterns that are transportable across a wide selection 
of simulation software and test equipment — from design 
verification through field diagnostics. 
 
Boundary-scan test execution is controlled by the 
sequencing of TAP signals on the pins of the devices. Each 
device's behavior is determined solely by the states of its 
TAP pins. Boundary-scan tools must maintain knowledge of 
the sequences required to exert certain behaviors within a 
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device and where that device is located down the serial 
scan path. 
 
SVF controls the IEEE 1149.1 test bus using commands 
that transition the TAP from one steady state to another. 
Rather than describe the explicit state of the IEEE 1149.1 
bus on every TCK cycle, SVF describes it in terms of 
transactions conducted between stable states. For instance, 
the process of scanning in an instruction is described 
merely in terms of the data involved and the desired stable 
state to enter after the scan has been completed.  
 
The states such as Capture, Shift, and Update are inferred 
rather than explicitly represented. The data to be scanned 
in, expected data out, and compare mask are all grouped in 
an easily understandable manner. A command is provided 
to support deterministic navigation of TAP states where 
required. 

In addition to supporting a higher-level depiction of scan 
operations, SVF also supports combined serial and parallel 
operations. This allows SVF to accommodate ATE 
environments where some stimulus/response is handled via 
parallel I/O, and serial signals are accessed via an IEEE 
1149.1-control environment. 

SVF also supports the concept of scan offsets. Offsets allow 
a test to be applied to a component or cluster of logic 
embedded in the middle of a scan path. For example, 
assume a device exists in multiple instances on a board. 
Serially applied tests were generated by the designer and 
are available in SVF format. To reuse this test, it is 
necessary to put all other devices on the scan path into 
bypass mode. The IEEE 1149.1 test controller must 
therefore comprehend the number of Instruction Register 
bits before and after the target device. Once in bypass, the 
devices introduce Data Register bits before and after the 
target device. 

SVF allows a header and trailer to be defined once, which 
maintains the Instruction Register and Data Registers of the 
non-targeted devices in the desired bypass state. No 
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modifications are required to the SVF for the device. If the 
same test was targeted towards another device downstream 
in the scan path, this would be accommodated by changing 
the headers and trailers. 

The offset approach is capable of installing any Instruction 
and Data Register stimulus, provided these values are 
constant for the entire process of applying the SVF device 
sequence. 

SVF Structure 
The SVF file is defined as an ASCII file that consists of a set 
of SVF statements. Statements are terminated by a 
semicolon (;) and may continue for more than one line. The 
maximum number of ASCII characters per line is 256. SVF 
is not case sensitive, and comments can be inserted into an 
SVF file after an exclamation point (!) or a pair of slashes 
(//). 

Each statement consists of a command and parameters 
associated with that specific command. Commands can be 
grouped into three types: state commands, offset 
commands, and parallel commands. 

State Commands 
State commands are used to specify how the test 
sequences traverse the IEEE 1149.1 TAP state machine. 
The following state commands are supported: 

�� SDR — Scan Data Register 
�� SIR — Scan Instruction Register 
�� ENDDR — Define end state of DR scan 
�� ENDIR — Define end state of IR scan 
�� RUNTEST — Enter Run-Test/Idle state 
�� STATE — Go to specified stable state 
�� TRST — Drive TRST line to the designated level 

SDR performs an IEEE 1149.1 Data Register scan. SIR 
performs an IEEE 1149.1 Instruction Register scan. ENDDR 
and ENDIR establish a default state for the bus following 
any Data Register scan or Instruction Register scan, 
respectively. RUNTEST goes to Run-Test/Idle state for a 
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specific number of TCKs. For each of the above commands, 
a default path through the state machine is used. Each of 
these commands also terminates in a stable, nonscannable 
state. 

STATE places the bus in a designated IEEE 1149.1 stable 
state. TRST activates or deactivates the optional test reset 
signal of the IEEE 1149.1 bus. 

Offset Commands 
Offset commands allow a series of SVF commands to be 
targeted towards a contiguous series of points in the scan 
path. Examples would be a sequence for executing self-test 
on a device, or a cluster test where all devices involved in 
the cluster test are grouped together. The following offset 
commands are supported: 

�� HDR  — Header data for data bits 
�� HIR  — Header data for instruction bits 
�� TDR  — Trailer data for data bits 
�� TIR  — Trailer data for instruction bits 

HDR specifies a particular pattern of data bits to be padded 
onto the front of every data scan. HIR specifies the same for 
the front of every Instruction Register scan. These patterns 
need only be specified once and are included on each scan 
unless changed by a subsequent HDR, HIR, TDR, or TIR 
command. 

Parallel Commands 
Parallel commands are used to map and apply the following 
commands: 

�� PIO — Specifies a parallel test pattern 
�� PIOMAP — Designates the mapping of bits in the PIO 

           command to logical pin names 

Parallel commands allow SVF to combine serial and parallel 
sequences. PIOMAP commands are used by parallel I/O 
controllers to map data bits in the command into parallel I/O 
channels using the ASCII logical pin name as a reference. 
The PIO command specifies the execution of a parallel 
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pattern application/sample. SVF does not specify any other 
properties of parallel I/O such as drive, levels, or skew. 

Default State Transitions 
SVF uses names for the TAP states that are similar to the 
IEEE 1149.1 TAP state names. Following is a list of SVF 
equivalent names for the TAP states. 
 
IEEE 1149.1 TAP State Name [SVF TAP State Name] 
 
�� Test-Logic-Reset  [RESET] 
�� Run-Test/Idle  [IDLE] 
�� Select-DR-Scan  [DRSELECT] 
�� Capture-DR  [DRCAPTURE] 
�� Shift-DR   [DRSHIFT] 
�� Pause-DR  [DRPAUSE] 
�� Exit1-DR   [DREXIT1] 
�� Exit2-DR   [DREXIT2] 
�� Update-DR  [DRUPDATE] 
�� Select-IR-Scan  [IRSELECT] 
�� Capture-IR  [IRCAPTURE] 
�� Shift-IR   [IRSHIFT] 
�� Pause-IR   [IRPAUSE] 
�� Exit1-IR   [IREXIT1] 
�� Exit2-IR   [IREXIT2] 
�� Update-IR  [IRUPDATE] 
 
The following list identifies sample default paths taken when 
transitioning from one state to a specified new state. For 
example, if the current state is RESET and you select 
DRPAUSE as the end state, the TAP moves from RESET 
through IDLE, DRSELECT, DRCAPTURE, DREXIT1 to 
DRPAUSE. You only have to specify the current and end 
states and not each intermediate step. 
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Stable State Path Examples 
Current State End State State Path 
RESET RESET RESET 
RESET  IDLE  RESET 
  IDLE   
RESET  DRPAUSE  RESET 
  IDLE  
   DRSELECT  
   DRCAPTURE 
   DREXIT1 
   DRPAUSE 
RESET  IRPAUSE  RESET 
  IDLE  
  DRSELECT 
   IRSELECT 
   IRCAPTURE 
   IREXIT1 
   IRPAUSE 

SVF Example 
The following is an example SVF file: 
! Begin Test Program
! Disable Test Reset line

TRST OFF;
! Initialize UUT

STATE RESET;
! End IR scans in DRPAUSE

ENDIR DRPAUSE;
! 24 bit IR header

HIR 24 TDI (FFFFFF);
! 3 bit DR header

HDR 3 TDI (7) TDO (7) MASK (0);
! 16 bit IR trailer

TIR 16 TDI (FFFF);
! 2 bit DR trailer

TDR 2 TDI (3);
! 8 bit IR scan, load BIST seed

SDR 16 TDI (ABCD);
! RUNBIST for 95 TCK Clocks

RUNTEST 95 TCK ENDSTATE IRPAUSE
! 16 bit DR scan, check BIST status

SDR 16 TDI (0000) TDO (1234) MASK (FFFF);
! Enter Test-Logic-Reset

STATE RESET;
! End Test Program
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The test begins by deasserting TRST. The DRPAUSE state 
is established as the default end state for instruction scans 
and data scans. Twenty-four bits of header and sixteen bits 
of trailer data are specified for Instruction Register scans. 
No status bits are checked. Three bits of header data and 
two bits of trailer data are specified for Data Register scans. 

In this example, a single device in the middle of the scan is 
targeted. Notice from the 24-bit IR header (3x8-bit IR) and 
the 3-bit DR header (3x1-bit DR) that the targeted device 
has three devices before it in the scan path. From the 16-bit 
IR trailer (2x8-bit IR) and the 2-bit DR trailer (2x2-bit DR), 
the targeted device has two devices following it in the scan 
path. After the header and trailer offsets are established, all 
subsequent scans are the concatenation of the header, 
scan data, and trailer bits. The targeted device supports 
BIST, which is initialized by scanning a hex ABCD into the 
selected Data Register. The BIST in the targeted device is 
executed by entering the Run-Test/Idle state for 95-clock 
cycles. Next, the BIST result is scanned out and the status 
bits compared against a deterministic value to determine 
pass/fail. 
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Chapter 6: Boundary-Scan Tools 
To complete this tutorial, we will turn our attention to what 
software tools are required in order to use boundary-scan 
technology for interconnect testing and other design debug 
and diagnostic operations on devices, boards, and systems. 
 

Product Life Cycle Issues 
Reaping the full value from your boundary-scan investment 
requires the use of a toolset that meets your testing and 
debug needs during the entire product life cycle. Because of 
the common and simple fixturing requirements of boundary-
scan designs, you can now use a common toolset during all 
phases of the product life cycle. However, the toolset should 
also offer features to meet your specific needs for each 
phase of the product life cycle. 

The toolset you choose should meet the needs for major 
phases of the product life cycle, including design debug, 
manufacturing test, and field test and repair. In addition, 
tools used during the manufacturing test process should 
also meet the needs for its four subprocesses: vector 
creation, test program creation, test program execution, and 
diagnosis. A discussion of the objectives of each process 
follows.  

Design Debug 
Design Debug is the process of taking an unknown product 
and ensuring that it is functioning properly. Often, the 
product in question is one of a limited number of products 
built in order to prove out the functional design of the 
system; these are called prototype products or 
prototypes. Even though the goal of this process is to 
determine if the prototype system functions as expected, the 
design engineer must first identify and repair any structural 
problems caused by incorrect physical construction of the 
product, e.g., solder globs that short two adjacent pins on a 
device. In this sense, the design engineer must first perform 
the manufacturing test process in order to complete the 
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debugging process. Completion of the structural and 
functional testing involves performing the test creation 
process.  

Manufacturing Test 
The goals of this process are to determine if any errors were 
made in the manufacturing process of the UUT and if the 
unit being tested functions as specified and verified during 
the design debug process. 

Vector Creation 
The focus of this subprocess is the creation and verification 
of the test vectors required to meet the test objectives for 
the current project. The tests that can be developed fall into 
two major categories: structural or functional. The goal of 
structural tests is identifying structural problems caused by 
incorrect physical construction of the product, e.g., solder 
globs that short two adjacent pins on a device. Functional 
tests attempt to verify that the product functions as expected 
under specified stimulus. In order to do functional tests, the 
product must usually be free from any structural defects. 
During the test vector verification stage of this subprocess, 
a known product should be used in order to detect any 
issues with the test vectors themselves. 

Test Program Development 
The goal of this subprocess is to provide an executable 
software program, including test vectors, to apply the 
appropriate boundary-scan tests and, in the case of a test 
failure, determine what action should be taken with respect 
to the failed product. This software program is called a test 
program. Once available, the test program is installed on 
the test machines on the manufacturing floor and executed 
by the test operator on products as they pass through the 
manufacturing line. 
 
There is a wide range of capabilities that might be placed 
into a test program. At one end of the scale, the test 
program may simply be a batch file that sequentially 
executes the same test on each product without requiring 
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any interaction with the operator. In this case, the test 
program may only provide textual information to the 
operator on the results of the test application as a 
PASS/FAIL message with instructions to remove the bad 
product from the manufacturing line. At the other end of the 
scale, the test program may involve a sophisticated 
graphical user interface, which requires significant decision 
making on the test operator’s part to complete the test and 
provide significant diagnostic information to the test operator 
as to what is wrong with the product being tested. 
 
Another consideration in this subprocess is the need to have 
structural and functional tests to complete testing of the unit. 
A concern arises because sometimes the test operator must 
use multiple test tools each tuned for a particular test type. 

Test Program Execution 
This subprocess involves the actual execution of the 
appropriate test vectors on products as they move through 
the manufacturing line. This subprocess also involves 
determining what action to take when a product fails a 
specific test. This test execution and diagnosis is controlled 
by the test program. The person who executes this 
subprocess is called the test operator. 
 
Since the goal of the manufacturing line is to keep products 
moving at a specified pace, full analysis or repair of failed 
products is not done at this time. Most often failed products 
are removed from the line, tagged as being defective, and 
attached with some type of information, that can be used to 
further diagnosis and repair of the product at a later time. 

Diagnosis 
This subprocess has two goals: 1) determine why a specific 
product failed a specific test and, 2) if possible, effect the 
necessary repairs to that product. During the normal 
manufacturing process failed units are diagnosed in order to 
effect sufficient repairs to allow the units to become part of 
manufacturing output. 
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In the preferred case, the diagnostic engineer first examines 
the test results from the test failure that occurred to 
determine that the product is faulty. After this examination, if 
the defect cannot be determined, the diagnostic engineer 
would like to rerun the same test to determine if the failure is 
repeatable in the current environment. If the defect is still 
not determinable, the diagnostic engineer will want to 
execute additional tests, either ones previously created or 
others created during diagnosis to try and debug the 
product. 
 
In many ways, this process is similar to the design debug 
process, except that the diagnostic engineer knows that the 
board has at least one defect and can have some 
information to pinpoint where that defect is. 
 
Different from the design debug process, this diagnostic 
engineer almost certainly does not have any depth of 
knowledge of the product at hand and does not have access 
to the type of computer-aided design information or other 
data available in earlier processes. 

Field Test and Repair 
The goal of this process is to, as quickly as possible, 
determine what product or part of a product in end-customer 
use is faulty and replace the faulty unit. In this way, this 
process is similar to the first part of the diagnosis process, 
except here the engineer may be dealing with the test and 
diagnosis of a much more complicated system involving 
many individual boards or subsystems. 
 
As in the diagnosis process, the field test engineer will want 
to run the test program for a product to determine what is 
wrong. And, may want to run additional tests or interactive 
applications in order to further isolate the defective unit. 
Also, there is a desire for this testing to be done without any 
or minimal human intervention. In this case, the product’s 
operating system automatically, or under human direction, 
runs the required tests and reports back appropriate 
diagnostic information. 
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A key point about this process is that it always occurs in an 
environment that is not directly under the control of the 
company that produced the product. This means that the 
people and tools used during this process must be flexible 
and must be available at the end-customer’s site. 
 

Boundary-Scan Tools Requirements 
A well-developed implementation of boundary-scan 
architecture in combination with the right boundary-scan 
software tools can provide major benefits over more 
traditional methods such as logic analyzers, oscilloscopes, 
and in-circuit testers for many test and design debug tasks.  
 
These benefits include: 

�� Easily handle complex system configurations which 
include daughtercards, multichip modules (MCMs), 
single inline memory modules (SIMMs), or other 
modules that are added to the main board 

�� Test systems which are configurable where the system 
composition changes based on end-customer demands 

�� Access and control device registers, buses, and pins 
�� Easily access Built-In Self-Test (BIST) capabilities 

present in devices in the system 
�� Integrate testing of non-scannable devices and 

memories 
�� Integrate a boundary-scan test suite with other test tools 

and test executives through industry-standard 
programming interfaces 

�� Better match price and performance by providing the 
toolset running on multiple platforms 

�� Reuse test suites at higher levels of integration and 
through different phases of the product life-cycle 

�� Embed tests into the system for on-line testing and 
diagnostics while in the field 

�� Complete the required manufacturing defect detection 
and diagnosis 
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In the following discussion, we will examine each process of 
the product life-cycle and what boundary-scan tools are 
required to gain the most from your boundary-scan 
investment. 

Design Debug 
With the inclusion of boundary-scan architecture into a 
design, the design team has a real opportunity (for the first 
time) to perform deterministic structural defect analysis on 
their prototype boards and systems as done in the 
manufacturing environment. To support this type of 
analysis, the boundary-scan tools must present the same 
kinds of tools as traditionally found in the manufacturing test 
environment. A more complete description of these 
capabilities is included in the Manufacturing Test section, 
but in general these are the capabilities required are: 
 
�� Vector creation tools for: 

�� scan path and interconnect testing 
�� non-scan clusters of logic surrounded by boundary-

scan devices 
�� memory testing 
�� conversion of chip-level parallel tests for application 

in a serial environment 
�� easily creating other custom tests for the UUT 

 
�� Diagnostics capabilities for interconnect testing with 

resolution to at least the net-level and preferably to the 
pin-level and other diagnostics for analyzing results from 
serial vector application 

 
In addition to assisting with manufacturing defect analysis of 
prototypes, boundary-scan tools can provide the design 
engineer with many capabilities to assist functional debug of 
the prototype design. Boundary-scan based interactive 
design tools allow the design engineer to access and control 
boundary-scan device registers and pins as an adjunct to 
other functional tester access. With this ability, the designer 
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can ensure that correct values are driven to critical 
components, drive specific values onto a device, or gain 
access to internal device registers that might provide clues 
to functional errors. These design debug tools fall into two 
general capabilities: scan analysis and debugging.  
 
Scan analysis tools allow you to apply test vectors to the 
unit under test, capture responses, and view those 
responses in state table or digital waveform displays. These 
tools also support concepts common to logic analyzers such 
as triggering and sequences that allow you to control when 
and how much response data to collect for analysis. With 
these tools, you can view a large number of vectors and 
analyze the hardware’s response. Comparisons can be 
made between expected and actual values automatically 
speeding debug time. 
 
Debugging tools provide an interactive interface for control 
and observation of the IEEE 1149.1 architecture. Features 
includes: 
 
�� Graphical view of the design hierarchy 
�� Ability to edit scan data at the register and pin level 
�� Data manipulation via user-defined symbolics or via 

binary, decimal, or hexadecimal data input 
�� Register grouping based on a design’s functionality 
�� One-button interface to apply changes made to the 

instructions and data values 
�� Single-step application of pre-existing tests or serial 

vectors 
�� Interactive recording to create a test from an interactive 

sequence of debug steps 

Manufacturing Test 

Vector Creation 
Vector creation tools provide a means to create and verify 
five basic types of tests: scan path integrity, interconnect, 
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cluster, memory, and custom. A brief discussion of each of 
these types of vector creation follows. 
 
Scan path integrity tests involve verifying that the four-wire 
connection for the boundary-scan test bus does not have 
faults on it. The tool should provide an automated means of 
creating the vector sequence required to verify this. 
Diagnostics will pinpoint the device and signal which is 
faulty. 
 
Interconnect tests are the same as in the traditional 
manufacturing test environment and provide the ability to 
detect and isolate common stuck-at and open/shorts on 
device interconnect. The tool should provide an automated 
means of creating these vectors taking as input your device-
level boundary-scan descriptions, a description of how the 
boundary-scan devices are arranged in the scan chain, and 
CAE netlist information in common formats for the non-test 
device interconnections. The tools also should provide a 
means to easily ignore series devices in the design as a 
means of improving diagnostics later and provide an easy 
means of setting control values on certain pins that may not 
be changed during the test, e.g., a program pin on an FPGA 
or PLD. Textual outputs of fault coverage and vector 
responses are also required. 
 
Cluster tests are generated to test either a single device or 
cluster of non-boundary-scan devices surrounded by 
boundary-scan devices. This capability allows you to extend 
vectors created in the CAE environment into your boundary-
scan testing. The cluster test tool provides a means of 
translating those parallel CAE vectors into a serial format for 
easy application in your boundary-scan system. This tool 
should provide a means of automatically setting the values 
for boundary-scan control cells to control the operation of 
bidirectional and tristate pins during vector application and 
response acquisition. 
 
Memory test creation involves the automatic generation of 
the vectors required to test address, data, and control lines 
for memory devices adjacent to boundary-scan devices. 
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This tool should use the boundary-scan description of the 
system, and specific information on the type and size of the 
memory device to create vectors for application. 
 
Custom tests involve those tests you might want to create 
which are particular to your design. For this type of test 
creation the vector creation tool needs to provide an easy-
to-use and simple programming language that allows full 
access and control to the registers and pins of boundary-
scan devices. Using this programming language you should 
be able to easily tailor vectors to verify an array of static 
functional or structural problems with your design, including 
execution of BIST capabilities of a device. 

Test Program Creation 
Once the vectors required for the scan-based 
manufacturing test have been created, they must be 
assembled into a test program for delivery to the 
manufacturing floor. 
 
Test program creation takes into account all of the varying 
needs you have in the manufacturing environment to 
provide you the functions necessary to develop custom test 
suites, integrate test suites with other test tools and 
executives, or build an entire manufacturing test capability. 
The environment should include a simple means of creating 
a test program based on industry standard test executives 
and provide industry-standard programming environments 
such as C and C++ for more complex test program creation. 
 
The programming environment should provide access to the 
boundary-scan-accessible registers and pins through 
natural programming methods for custom-test suite 
development. It also should allow reuse of previously 
created test programs and vectors to speed the test 
development process.  
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Finally, with a high-level language basis, the programming 
environment enables you to: 
 
�� Reuse diagnostic reporting or other error routines that 

have been developed previously 
�� Share data with other test instruments 
�� Integrate boundary-scan-based tests into commercial 

test executives 
�� Quickly produce a customized user-interface for your 

test program based on Windows® technology 

Test Program Execution 
Once test programs are complete, you will need an effective 
means of deploying your boundary-scan based tests in a 
manufacturing environment. For this task, boundary-scan 
solutions should include PC- and VXI- based test application 
systems and the ability to integrate boundary-scan 
controlled parallel I/O modules. These solutions provide 
help in creating a manufacturing test environment to fully 
use boundary-scan testing. 

Diagnosis 
When failures are discovered in the manufacturing line, the 
boundary-scan tools provide several levels of diagnostics. 
These include text-based analysis of serial vectors results, 
net-level diagnostics for interconnect and cluster tests, and 
pin-level diagnostics for interconnect tests. 
 
The net-level diagnostics must provide isolation down to the 
failing net, but may not detect the actual pin with the fault. 
This is often sufficient for many faults and provides 
sufficient data for fixing or proceeding with other tests. 
 
Pin-level diagnostics must provide detailed fault diagnostics 
for various stuck-at conditions, bridging faults, open and bad 
bidirectional cells, and other opens and shorts. With this 
detailed information, you can find and fix the faulty 
component. 
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Field Test and Repair 
For field test and repair, boundary-scan tools allow the 
extension of debug and diagnostics capabilities through 
employment of portable computing solutions such as access 
through a parallel printer port or PCMCIA card. In addition, 
tests can be embedded into the unit under test for self-test 
purposes. This involves the inclusion in the design of a test 
bus controller device and use of controller-specific “C” code 
to direct the application of vectors, acquisition of responses, 
and diagnostics. Although diagnostics are often limited to 
go/no-go, this provides a powerful alternative to lower the 
cost of testing by eliminating the expense of on-site visits for 
determining which unit must be replaced or repaired. 
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Chapter 7: Conclusion 
Widespread adoption of IEEE 1149.1 Standard for 
boundary-scan architecture reflects an industry-wide need 
to simplify the complex problem of testing boards and 
systems for a range of manufacturing defects and 
performing other design debug tasks. This standard 
provides a unique opportunity to simplify the design debug 
and test processes by enabling a simple and standard 
means of automatically creating and applying tests at the 
device, board, and system levels. Several companies have 
responded with boundary-scan-based software tools that 
take advantage of the access and control provided by 
boundary-scan architecture to ease the testing process. 
 
In this tutorial, we have discussed the motivation for the 
standard, the architecture of an IEEE 1149.1-compliant 
device, and presented a simple introduction to the use of 
the IEEE 1149.1 features at the board level — both to 
detect and locate manufacturing defects. We have reviewed 
applicable data standards and discussed the issues 
associated with choosing boundary-scan tools. For further 
details on boundary-scan — at the device level, board level, 
or system level — see the references listed in the 
Bibliography. 
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