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Recently, the Legendre pseudospectral (PS) method migrated from theory to flight ap-
plication onboard the International Space Station for performing a finite-horizon, zero-
propellant maneuver. A small technical modification to the Legendre PS method is neces-
sary to manage the limiting conditions at infinity for infinite-horizon optimal control prob-
lems. Motivated by these technicalities, the concept of primal-dual weighted interpolation,
introduced earlier by the authors, is used to articulate a unified theory for all PS methods
for optimal control. This theory illuminates the previously hidden fact of the unit weight
function implicit in the the Legendre PS method based on Legendre-Gauss-Lobatto points.
The unified framework also reveals why this Legendre PS method is the most appropriate
method for solving finite-horizon optimal control problems with arbitrary boundary condi-
tions. This conclusion is borne by a proper definition of orthogonality needed to generate
convergent approximations in Hilbert spaces. Special boundary conditions are needed to
ensure the convergence of the Legendre PS method based on the Legendre-Gauss-Radau
(LGR) and the Legendre-Gauss (LG) points. These facts are illustrated by simple exam-
ples and counter examples which reveal when and why PS methods based on LGR and
LG points fail. A new kind of consistency in the primal-dual weight functions allows us
to generate dual maps (such as Hamiltonians, adjoints etc) without resorting to solving
difficult two-point boundary-value problems. These concepts are encapsulated in a unified
Covector Mapping Theorem.

I. Introduction

In 2007, a front page article in SIAM News1 announced that pseudospectral optimal control was success-
fully used to maneuver the International Space Station. Over the last decade, PS methods has moved rapidly
from theory and computation to ground experiments2,3 ... and now successful flight applications.1,4, 5 The
rapid rise of PS methods is, in part, due to its independently reproducible superior performance when com-
pared to other general purpose techniques.7–10 Furthermore, the versatility of PS methods is evident from
the vast number of diverse optimal control problems that haven solved by various practitioners; examples
include space station attitude control,4,5 ascent guidance,7 interplanetary solar sail mission design,8 su-
personic intercept,9,10 low-thrust Earth-to-Jupiter rendezvous,10 loitering of unmanned aerial vehicles,11,12

lunar guidance,13 libration-point stationkeeping,14 momentum-dumping,15 launch vehicle trajectory opti-
mization,16 impulsive orbit transfer optimization,17 inert and electrodynamic tether control,18,19 magnetic
attitude control20 and many more.21 Solutions to well over a hundred problems are documented in Ref. [21].
Many of the preceding example problems have been solved by OTIS22 and DIDO,23 the FORTRAN and
MATLAB codes respectively for solving optimal control problems.

The most widely used PS method is the Legendre PS method24–26 that is based on the Legendre-Gauss-
Lobatto (LGL) node points. This is simply because a rich number of convergence theorems have been proven
in the literature,28–30 and hence one may use this method with a high degree of confidence in its validity. In
addition, in practical applications, one may treat the outcome of the LGL/PS method in terms of a rigorous
application of the Pontryagin Minimum Principle and accept or reject solutions based on the optimality
conditions.31 This comfort of guarantees is enunciated as the Covector Mapping Principle27,28,32–35 (CMP)
which provides the foundations for generating explicit Covector Mapping Theorems.25,26,28,29 The proof
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of this theorem utilizes specific quadrature formulas36,37 that have thus far shown to be valid only for the
LGL/PS method, and hence the popularity of this approach.

In 2005, we proposed38 a PS method based on Legendre-Gauss-Radau (LGR) points to solve infinite-
horizon optimal control problems. This proposal was motivated by a means to handle the singularity prob-
lems that arise as a result of transforming the infinite-time domain to a finite time-domain. Additional
studies showed39 a number of other advantages of the shifted LGR/PS method, particularly for real-time
applications. This generates a natural question: does the LGR/PS method satisfy CMP-consistency? An
apparently simple way to investigate this issue is to apply the CMP to derive an explicit covector map34 in
a manner similar to that of the LGL/PS approach. While conceptually simple, this task is not altogether
straightforward as a key lemma related to an integration-by-parts formula26 is not readily available for
non-LGL methods. This crucial formula identifies the correct finite-dimensional inner-product space that is
necessary for the construction of the discretized 1-form that defines the sequences of discretized Lagrangians
that converge to the continuous-time Lagrangian.40 In Ref. [41], we showed that a special weight function
met all the appropriate criteria for the CMP leading to a new theorem on dual consistency for the LGR/PS
method.

Motivated by these ideas for the LGR/PS method and their possible connections to the LGL/PS method,
we develop a unified approach to investigate all PS methods. The key idea introduced in this paper is the
notion of weighed interpolants, their duals, and their direct effect on the generation of the correct pre-Hilbert
space where the computed solutions lie. The concept of a pre-Hilbert space is crucial for proofs of convergence
theorems28–30 that rely on the separability of the infinite-dimensional Hilbert spaces used to construct highly-
accurate solutions to practical optimal control problems. We presented some of these ideas in Ref. [21]; here,
we substantially expand and clarify our previous results.21

We begin this paper at the level of first principles by providing a unified set of foundations for all PS
methods for optimal control; i.e. PS methods over an arbitrary grid. In limiting the scope of the discussions,
we focus on three Legendre PS methods: LGL, LGR and Legendre-Gauss (LG). From the perspective of
unification, it is shown that the LGL/PS method is indeed the correct Legendre PS method for solving
boundary value problems (BVPs) with arbitrary boundary conditions and hence all generic finite-horizon
optimal control problems. The unification also illustrates why the LGR/PS method is indeed better than
the LGL/PS method for stabilizing control systems as this problem falls under the realm of a special optimal
control problem, the specialty being the infiniteness of the horizon. We illustrate some key consequences of
our theory by demonstrating how disastrous results are possible when the LGR/PS and LG/PS methods
are artificially forced to solve BVP-type problems over a finite horizon. Furthermore, in practical optimal
control problems, this disaster may be masked for low orders of discretization by giving the appearance of
convergence;however, as the mesh is refined, the LGR and LG PS methods reveal a lack of convergence,
particularly at the boundary points similar to the classic Runge phenomenon.42 Our theory explains this
phenomenon thus suggesting that the weighted-interpolant perspective is indeed the proper perspective for
all PS methods for optimal control.

II. A Distilled Optimal Control Problem

For simplicity in exposition, we will consider the following scalar Bolza problem, with the understanding
that our discretization methods can be easily extended to higher-dimensional cases. For the same reason
we will ignore path constraints as these can also be easily incorporated into our framework by replacing the
control Hamiltonian by the Lagrangian of the Hamiltonian.26 In simplifying such bookkeeping issues, we
consider the problem of finding the optimal state-control function pair t 7→ (x, u) ∈ R × R that solves the
following problem (Problem B):

x ∈ X ⊆ R, u ∈ R

(B)





Minimize J [x(·), u(·)] = E(x(−1), x(1)) +
∫ 1

−1

F (x(t), u(t)) dt

Subject to ẋ(t) = f(x(t), u(t))
e(x(−1), x(1)) = 0

where X is an open set in R and the problem data (i.e. the endpoint cost function, E, the running cost
function, F , the vector field, f and the endpoint constraint function, e) are assumed to be at least C1-smooth.
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An application of Pontryagin’s Minimum Principle (PMP) results in a two-point BVP that we denote as
Problem Bλ. This “dualization” is achieved through the construction of the control Hamiltonian, H, and
endpoint Lagrangian, Ē, defined as

H(λ, x, u) = F (x, u) + λf(x, u) (1)
Ē(ν, x(−1), x(1)) = E(x(−1), x(1)) + νe(x(−1), x(1)) (2)

where λ is the adjoint covector (or costate) and ν is the endpoint covector. Problem Bλ is now posed as
follows:

(Bλ)





Find t 7→ (x, u, λ) and ν

Such that ẋ(t)− f(x(t), u(t)) = 0
e(x(−1), x(1)) = 0

λ̇(t) + ∂xH(λ(t), x(t), u(t)) = 0
∂uH(λ(t), x(t), u(t)) = 0

λ(−1) +
∂Ē

∂x(−1)
(ν, x(−1), x(1)) = 0

λ(1)− ∂Ē

∂x(1)
(ν, x(−1), x(1)) = 0

In using the PMP to solve a trajectory optimization problem, we must solve Problem Bλ which is clearly a
problem of finding the zeros of a map in an appropriate function space.43 This is the so-called indirect method.
From a first-principles perspective,31 the PMP is used as follows: For every optimal solution to Problem
B, there exist an adjoint covector function, t 7→ λ, and an endpoint covector, ν, that satisfy the conditions
set forth by Problem Bλ. Thus, every candidate optimal solution to Problem B must also be a solution
to Problem Bλ under appropriate technical conditions. The LGL/PS method ensures a satisfaction of this
condition through its Covector Mapping Theorem.25,26 A generalized and unified version of this theorem
with respect to PS methods is the main contribution of this paper and is developed in the following sections.
A generalized version of this theorem with respect to the stability and convergence of the approximation is
described by Gong et al.28

III. A Unified Perspective on Pseudospectral Methods

The class of Legendre PS methods are a subset of a larger class of spectral methods which use orthogonal
basis functions in global expansions similar to Fourier and Sinc series expansions.44 What distinguishes PS
methods is that they are based on approximating the unknown functions by interpolants.45 This is one reason
why PS methods are sharply different from other polynomial methods previously considered in the literature.
The interpolating points in a PS method can be any of the three major classes of Gaussian quadrature points
called nodes: Gauss points, Radau points and Lobatto points. Note that Radau and Lobatto points are also
Gaussian quadrature points; this is why specific PS methods are identified by adjectives that describe the
specific choice of nodes. All of these nodes are zeros of the orthogonal polynomials or their derivatives such as
Legendre and Chebyshev or more generally the Jacobi polynomials. Thus, a very large family of PS methods
can be generated to solve optimal control problems. This notion is similar to Runge-Kutta (RK) methods.
For example, Euler, trapezoid, Hermite-Simpson and many other methods are equivalently some form of an
RK method with appropriately chosen coefficients.46 Just as not all RK methods are legitimate, not all PS
methods are legitimate. This is particularly true in solving optimal control problems as has been noted by
Hager.43 For example, an RK method that is legitimate for propagating an ODE may fail gloriously when
applied to an optimal control problem. In other words, it is imperative to carefully select an appropriate
method to solve optimal control problems.

In the absence of special information (such as special boundary conditions), it is customary to select
Chebyshev PS methods in solving PDE problems as they are simple and effective. For optimal control of
ODEs, the LGL/PS method is preferable as it maintains the consistency of dual approximations similar to
the Hager class of RK methods. Recently, we proposed the usage of Radau points38,39,41 as a means to
manage a singularity problem that arises in solving infinite-horizon control problems. The goal of this paper
is to present a more unified view of these methods where we can show the similarities and differences of the
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methods based on the choice of these different nodes and show the effect of these nodes on the discretization
of both the primal and dual problems.

A. Weighted Interpolants and Differentiation Matrices on Arbitrary Grids

We begin with the basic definition of PS methods and the different ingredients required in defining these
methods for various nodes. Inspired by Weideman’s research,45 we select PS methods based on weighted
interpolants of the form,

y(t) ≈ yN (t) =
N∑

j=0

W (t)
W (tj)

φj(t)yj , a ≤ t ≤ b (3)

where y(t) is an arbitrary function. Here the nodes tj , j = 0, ..., N are a set of distinct interpolation nodes
(defined below) in the interval [a, b], the weight function W (t) is a positive function on the interval, and
φj(t) is the Nth− order Lagrange interpolating polynomial that satisfies the relationship φj(tk) = δjk. This
implies that

yj = yN (tj), j = 0, ...N. (4)

An expression for the Lagrange polynomial can be written as44

φj(t) =
gN (t)

g′N (tj)(t− tj)
, gN (t) =

N∏

j=0

(t− tj). (5)

One important tenant of polynomial approximation of functions is that differentiation of the approximated
functions can be performed by differentiation of the interpolating polynomial,

dyN (t)
dt

=
N∑

j=0

yj

W (tj)
[W ′(t)φj(t) + W (t)φ′j ]

Since only the values of the derivative at the nodes ti are required for PS methods, then we have,

dyN (t)
dt

∣∣∣∣
ti

=
N∑

j=0

yj

W (tj)
[W ′(ti)δij + W (ti)Dij ] =

N∑

j=0

Dij [W ]yj (6)

where we use Dij [W ] as a shorthand notation for the W -weighted differentiation matrix,

Dij [W ] :=
[W ′(ti)δij + W (ti)Dij ]

W (tj)
(7)

and Dij is usual unweighted differentiation matrix given by,

Dij :=
dφj(t)

dt

∣∣∣∣
t=ti

(8)

Thus, when W (t) = 1, we have
Dij [1] = Dij (9)

From Eq. (5), the unweighted differentiation matrix, Dij = φ′j(ti), has the form,

Dij =





g′N (ti)
g′N (tj)

1
(ti − tj)

, i 6= j

g′′N (ti)
2g′N (ti)

, i = j

(10)

The above equations are the general representations of the derivative of the Lagrange polynomials evaluated
at arbitrary interpolation nodes. Thanks to Runge, it is well-known that an improper selection of the grid
points can lead to disastrous consequences. In fact, a uniform distribution of grid points is the worst possible
choice for polynomial interpolation and hence differentiation. On the other hand, the best possible choice of
grid points for integration, differentiation and interpolation of functions are Gaussian quadrature points.36

Consequently, all PS methods use Gaussian quadrature points. In order to limit the scope of this paper, we
limit our discussions to Gaussian points based on Legendre polynomials as these polynomials offer elegant
theoretical properties for optimal control applications.
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B. Legendre Nodes

Gaussian quadrature points lie in the interval [−1, 1]. In most problems the physical problem is posed
on some interval [a, b] which can then be easily transformed to the computational domain [−1, 1] via a
linear transformation. The Gauss quadrature points are zeros that are interior to the interval [−1, 1]. The
Gauss-Radau zeros include one of the end points of the interval, usually the left-end point at t = −1.
The Gauss-Lobatto points include both endpoints of the interval at t = −1, and t = 1; see Fig. 1. These

−1 −0.75 −0.5 0 0.5 0.75 1

Gauss

Gauss−Radau

Gauss−Lobatto

Figure 1. Illustrating the various Legendre quadrature nodes: Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR) and
Legendre-Gauss-Lobatto (LGL) grid points.

quadrature nodes are related to the zeros of the Qth-order Jacobi polynomials Pα,β
Q which are orthogonal

on the interval [−1, 1] with respect to the inner product,36,37

∫ 1

−1

(1− t)α(1 + t)βPα,β
Q (t)Pα,β

Q′ (t)dt (11)

Note that the Legendre polynomials are a special case of Jacobi polynomials which correspond to α = β = 0.
Let tα,β

i,Q be the Q zeros of the Qth-order Jacobi polynomial Pα,β
Q such that

Pα,β
Q (tα,β

i,Q ) = 0, i = 0, ..., Q− 1 (12)

Then, we can define zeros and weights that approximate the following integral

∫ 1

−1

u(t)dt =
N∑

i=0

wiu(ti) + R(u) (13)

and find expressions for the unweighted differentiation matrices for these nodes as follows:37

1. Legendre-Gauss (LG)

ti = t0,0
i,N+1, i = 0, . . . , N

w0,0
i =

2
1− (ti)2

[
d

dt
(LN+1(t)|t=ti

]−2

, i = 0, . . . , N,

R(u) = 0 if u(t) ∈ P2N+1([−1, 1]).

Dij =

{
L′N+1(ti)

L′N+1(tj)(ti−tj)
, i 6= j, 0 ≤ i, j ≤ N

ti

1−ti
2 , i = j
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2. Legendre-Gauss-Radau (LGR)

ti =

{
−1, i = 0,

t0,1
i−1,N , i = 0, . . . , N

w0,0
i =

1− ti
(N + 1)2[LN (ti)]2

, i = 0, . . . , N,

R(u) = 0 if u(t) ∈ P2N ([−1, 1]).

Dij =





−N(N+2)
4 , i = j = 0,

LN (ti)
LN (tj)

1−tj

1−ti

1
(ti−tj)

, i 6= j, 0 ≤ i, j ≤ N
1

2(1−ti)
, 1 ≤ i = j ≤ N

3. Legendre-Gauss-Lobatto (LGL)

ti =





−1, i = 0,

t1,1
i−1,N−1, i = 1, . . . , N − 1

1 i = 1

w0,0
i =

2
N(N + 1)[LN (ti)]2

, i = 0, . . . , N,

R(u) = 0 if u(t) ∈ P2N−1([−1, 1]).

Dij =





−N(N+1)
4 , i = j = 0,

LN (ti)
LN (tj)

1
(ti−tj)

, i 6= j, 0 ≤ i, j ≤ N

0, 1 ≤ i = j ≤ N − 1
N(N+1)

4 , i = j = N,

where PN is the set of all algebraic polynomials of degree at most N .

C. Pre-Hilbert Spaces

Given the definitions of the quadrature nodes and weights above, we can proceed with the definitions of
the appropriate discrete inner-product spaces associated with the above nodes and weights. Let [−1, 1] 7→
{y(t), z(t)} be real-valued functions in L2([−1, 1],R). The standard inner product in L2 is given by

〈y, z〉L2 :=
∫ +1

−1

y(t)z(t) dt

For any given m ∈ N, and {wj > 0, j = 0, 1, . . . m}, define the weighted discrete inner product in L2 to be

〈y, z〉m,w :=
m∑

j=0

y(tj)wjz(tj)

For the various Gauss quadrature nodes and the standard inner-product in L2, we have the following result:44

Lemma 1 For all pq ∈ P2N+ζ ,
〈p, q〉L2 = 〈p, q〉N,w

where ζ = 1 for Legendre-Gauss (LG), ζ = 0 Legendre-Gauss-Radau (LGR) and ζ = −1 for Legendre-Gauss-
Lobatto (LGL) integration and weights.
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For any weight function, W (t), the weighted inner product in L2 is given by

〈y, z〉L2
W

:=
∫ +1

−1

y(t)W (t)z(t) dt

Let W (t) be any one of the following weight functions,

W (t) =





Wlgl(t) ⇒ W (t) = 1

Wlgr(t) ⇒ W (t) = 1− t

Wlg(t) ⇒ W (t) = 1− t2

(14)

From Lemma 1, we have the following unified result:

Lemma 2 For all pq ∈ P2N−1,
〈p, q〉L2

W
= 〈p, q〉N,w

Remark 1 Lemma 2 implies that Wlgl is the only weight function that is dual to itself in the standard inner
product space and unweighted interpolation.

This primal-dual symmetry explains why the LGL PS method offers elegant properties.

Lemma 3 For the three Legendre quadrature nodes, LG, LGR and LGL, the following relationships hold:
For i 6= j we have,

Dij = −W (tj)
W (ti)

wj

wi
Dji

Hence, we can write,
Dij [W ] = −wj

wi
Dji, i 6= j

and for i = j the following relationships hold:

For LG Nodes → Dii[Wlg] = −Dii, i = 0, · · · , N (15)

For LGR Nodes →
{

Dii[Wlgr] = −Dii i = 1, · · · , N

D00[Wlgr] = −D00 − 1
w0

(16)

For LGL Nodes →





Dii[Wlgl] = Dii = 0, i = 1, · · · , N − 1
D00[Wlgl] = −D00 − 1/w0

DNN [Wlgl] = −DNN + 1/wN

(17)

IV. Primal-Dual Pseudospectral Discretizations

We can now define LG, LGR and LGL pseudospectral methods based on the choice of interpolation
nodes. For approximating the state and costate variables we use the expansions,

xN (t) =
N∑

j=0

W (t)
W (tj)

xjφj(t), λN (t) =
N∑

j=0

W ∗(t)
W ∗(tj)

λjφj(t) (18)

where W and W ∗ are appropriate choices of weight functions. Lemma 2 suggests that if we take W (t) = 1
and LGL nodes, then we must take W ∗(t) = 1 as well. This is in conformance with the standard theory.26 It
is clear that the use of Lemma 2 in the integration-by-parts argument proposed in Refs. [26,56], generalizes
the standard theory by suggesting that if we take W (t) = 1 and LGR nodes, then W ∗(t) = 1− t; likewise, for
W (t) = 1 and LG nodes, W ∗(t) = 1− t2. Similarly, if we take W (t) = 1− t for LGR nodes, then W ∗(t) = 1
etc.; thus,

(W ∗(t))∗ = W (t) (19)

That is, the dual of the dual is the original function.
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For approximating the control variables, we take

uN (t) =
N∑

j=0

ujψj(t) (20)

where ψj(t) is any interpolant. Note this key point that constitutes part of the unification principles28,30.
That is uN (t) is not necessarily constructed as a Lagrange interpolating polynomial; rather, uN (t) is con-
structed using any type of interpolation such as linear, cubic, spline etc. In previous versions, it was assumed
that uN (t) must be Lagrange interpolants leading to certain convergence questions with increase in N . By
choosing uN (t) to be any interpolant, we retain the key elements of pseudospectral theory while allowing
ψj(t) to be chosen arbitrarily. This arbitrariness can then be exploited to further enhance the spectral
convergence property of PS methods by collecting information in between nodes through an application of
Bellman’s Principle. Thus ψj becomes an abstract interpolant that may be selected based on optimization
principles. These ideas have been fully discussed by Ross et al.47

The preceding points illustrate how PS methods for optimal control have indeed evolved to a separate
and distinct theory from those used to solve problems in fluid dynamics, the original source of ideas for PS
methods for optimal control. It is clear that this paper is part of these new foundations for PS methods for
optimal control.

A. Discretization of the Primal Problem (BN)

Based on these new ideas, we formulate PS methods for optimal control as follows: From Eqs. (6) and (18),
it follows that the state derivative is approximated as,

dxN (t)
dt

∣∣∣∣
ti

=
N∑

j=0

Dij [W ]xj (21)

Suppose we set W (t) ≡ 1 for the state variables for all Legendre PS methods. This automatically defines
dual weight functions for costate interpolation. We may also set W (t) according to the appropriate class of
weighted interpolations in which case we would arrive at the corresponding duals. Choosing W (t) ≡ 1 for the
primal variables implies that the primal differentiation matrix, D[W ], is the standard differentiation matrix
(Cf. Eq. (9)). Applying the quadrature rules for approximating the integral terms and using the appropriate
form of the derivative matrix according to the choice of the nodes, we have the following expressions for
Problem BN which is the discretized form of Problem B:

X ∈ RNn , U ∈ RNn

(BN )





Minimize JN [X, U ] = E(x0, xN ) +
N∑

j=0

wjF (xj , uj)

Subject to
N∑

j=0

Dijxj − f(xi, ui) = 0 i = 0, 1, . . . , N

e(x0, xN ) = 0

where X = [x0, x1, . . . , xNn ] and U = [u0, u1, . . . , uNn ].

B. Selection of a Proper Choice of PS Methods

Lemma 2 suggests the proper choice of an appropriate PS method for Problem BN . In many optimal control
problems the endpoints are not totally free and are frequently constrained; that is, the endpoint function, e,
is typically a function of both x(−1) and x(1). Then, according to Lemma 2, we must choose the LGL/PS
method. Now suppose that we choose an LG or LGR PS method for such a problem. The motivation for
this selection may be based on Lemma 1 which suggests the apparently higher degree of approximation for
LG and LGR nodes when compared to LGL nodes. That this is not true is best illustrated by a simple
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counter example of Gong et al:30

x = (x, v) ∈ R2, u ∈ R

(P1)





Minimize J [x(·), u(·)] =
∫ 1

0

v(t)u(t) dt

Subject to ẋ(t) = v(t)
v̇(t) = −v(t) + u(t)
v(t) ≥ 0

0 ≤ u(t) ≤ 2
(x(0), v(0)) = (0, 1)
(x(1), v(1)) = (1, 1)

This problem describes a particle of unit mass (m = 1) moving in a linear resistive medium (α = −1) where

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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Figure 2. Schematic for Problem P1.

x is the position, v is the velocity and u is the applied force; see Fig. 2. The optimal control problem is
to minimize the total amount of work done. From physical considerations or by a direct application of the
Minimum Principle, it is easy to verify that the optimal control is a constant and is equal to the amount of
force required to maintain the initial speed. Thus, the exact optimal control is given by,

u∗(t) = 1 (22)

Since the optimal control is a polynomial, a correct PS method is expected to achieve exact performance
for sufficiently large N . The solution to this problem based on the standard LGL discretization is shown in
Fig. 3 for 10 nodes. Predictably, the LGL PS method generates the exact solution. On the other hand, the
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Figure 3. Control solution to Problem P1 for N = 10: LGL PS method.

LG and LGR PS methods produce disastrous solutions as shown in Fig. 4. Thus, choosing a PS method for
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Figure 4. Control solutions to Problem P1 for N = 10: LGR and LG PS methods; compare Fig. 3.

optimal control based on Lemma 1 alone is a bad proposition. To illustrate the point that the LG and LGR
PS methods are not just converging at a slower rate than the LGL PS method, their control solutions are
plotted in Fig. 5 for N = 30. It is clear that the LG and LGR PS methods do not converge. What is most
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Figure 5. Control solutions to Problem P1 for N = 30: Illustrating why the LGR and LG PS methods are the wrong PS methods
for this problem.

interesting about the lack of convergence of the LGR and LG PS methods is that their node points converge
to the node points of the LGL PS method as N increases. This point is illustrated in Fig. 6.

C. Discretization of the Dualized Problem (BλN)

Given that dual space considerations are indeed important even when only primal variables are sought,34,43

we now explore the discretization of the dualized problem. From Eqs. (7) and (18), it follows that the costate
derivative is approximated as,

dλN (t)
dt

∣∣∣∣
ti

=
N∑

j=0

D∗
ijλj (23)

with

D∗
ij = Dij [W ] =

[W ′(ti)δij + W (ti)Dij ]
W (tj)
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Figure 6. Illustrating the near absence of differences between the three Legendre quadrature nodes for increasing N .

Thus Problem BλN which is the discretization of Problem Bλ defined in Sec. II, can be constructed as,

(BλN )





N∑

j=0

Dijxj − f(xi, ui) = 0 i = 0, 1, . . . , N

e(x0, xN ) = 0
N∑

j=0

D∗
ijλj + ∂xiH(λi, xi, ui) = 0 i = 0, 1, . . . , N

∂uiH(λi, xi, ui) = 0 i = 0, 1, . . . , N

λ0 +
∂Ē

∂x0
(ν, x0, xN ) = 0

λN − ∂Ē

∂xN
(ν, x0, xN ) = 0

Thus, in the unified PS method, we use the matrices D and D∗ as primal and dual differentiation matrices
arising from the primal and dual weighted interpolation with weight functions, W (t) and W ∗(t), respectively.
Furthermore, from Eq. (19), it follows that we may choose W (t) for discretizing the dual, in which case we
need to use W ∗(t) for discretizing the primals.

V. A Unified Covector Mapping Theorem

Based on the preceding discussions it is now abundantly clear that the correct inner product space for
all three PS discretizations is given by RNn

w , the finite-dimensional Hilbert space RNn equipped with the
weighted inner product,

〈a, b〉RNn
w

:=
N∑

i=0

aiwibi a, b ∈ RNn

Thus, the Lagrangian in RNn
w is given by,40

JN [λ̃, ν̃, x, u] =
N∑

j=0

wjF (xj , uj) +
N∑

i=0

wiλ̃if(xi, ui)−
N∑

i=0

wiλ̃i

N∑

j=0

Dijxj + ν̃e(x0, xN ) + E(x0, xN )

=
N∑

i=0

wiH(λ̃i, xi, ui)−
N∑

i=0

wiλ̃i

N∑

j=0

Dijxj + Ē(ν̃, x0, xN )
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where λ̃ and ν̃ are the Karush-Kuhn-Tucker (KKT) multipliers in RNn
w . From the KKT theorem we have,

∂xk
JN [λ̃, ν̃, x, u] = wk∂xk

H(λ̃k, xk, uk)−
N∑

i=0

wiλ̃i

N∑

j=0

Dijδjk k = 1, . . . , N − 1

= wk∂xk
H(λ̃k, xk, uk)−

N∑

i=0

wiλ̃iDik

From Lemma 3 we have,

D∗
ki := −wi

wk
Dik for k = 1, . . . , N − 1, i = 0, . . . , N (24)

Hence,

∂xk
JN [λ̃, ν̃, X, U ] = wk

(
∂xk

H(λ̃k, xk, uk) +
N∑

i=0

D∗
kiλ̃i

)
= 0

Similarly,

∂xk
JN [λ̃, ν̃, X, U ] = wk∂xk

H(λ̃k, xk, uk)−
N∑

i=0

wiλ̃i

N∑

j=0

Dijδjk + ν̃∂xk
e(x0, xN ) k = 0, N

= wk∂xk
H(λ̃k, xk, uk)−

N∑

i=0

wiλ̃iDik + ν̃∂xk
e(x0, xN )

From Lemma 3, this implies,

∂xk
JN [λ̃, ν̃, X, U ] = wk

(
∂xk

H(λ̃k, xk, uk) +
N∑

i=0

D∗
kiλ̃i

)
+ λ̃

∗
k + ν̃∂xk

e(x0, xN ) = 0, k = 0

∂xk
JN [λ̃, ν̃, X, U ] = wk

(
∂xk

H(λ̃k, xk, uk) +
N∑

i=0

D∗
kiλ̃i

)
+ λ̃

∗
k − ν̃∂xk

e(x0, xN ) = 0, k = N

where λ̃
∗
k is given by:

1. Legendre-Gauss

λ̃
∗
k = 0 for k = 0 and N

2. Legendre-Gauss-Radau

λ̃
∗
k = λ̃k for k = 0 and λ̃

∗
k = 0 for k = N

3. Legendre-Gauss-Lobatto

λ̃
∗
k = λ̃k for k = 0 and N
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Thus Problem BNλ can be written as,

(BNλ)





N∑

j=0

Dijxj − f(xi, ui) = 0 i = 0, 1, . . . , N

e(x0, xN ) = 0
N∑

j=0

D∗
ij λ̃j + ∂xi

H(λ̃i, xi, ui) = 0 i = 1, . . . , N − 1

∂uiH(λ̃i, xi, ui) = 0 i = 0, 1, . . . , N
N∑

j=0

D∗
ij λ̃j + ∂xi

H(λ̃i, xi, ui) = −c∗0 i = 0

N∑

j=0

D∗
ij λ̃j + ∂xiH(λ̃i, xi, ui) = −c∗N i = N

λ̃
∗
0 +

∂Ē

∂x0
(ν̃, x0, xN ) = w0c

∗
0

λ̃
∗
N − ∂Ē

∂xN
(ν̃, x0, xN ) = wNc∗N

where c∗0 and c∗N are arbitrary real numbers.
Now suppose that a solution to Problem BλN exists. That is, we suppose that a (discretized) solution to

the two-point BVP exists. Then the covectors of Problem BλN provide an existence theorem for the solution
of Problem BNλ; that is, for all k = 0, . . . , N , λ̃k = λk and ν̃ = ν under the following conditions, a solution
to Problem BNλ exists:

Condition A:

Legendre-Gauss

x0 and xN are free; i.e. unspecified.

Legendre-Gauss-Radau

x0 may be arbitrarily specified but xN must be free, or vice versa.

Legendre-Gauss-Lobatto

Both x0 and xN may be arbitrarily specified.

The dual to Condition A is given by,

Condition A∗:

Legendre-Gauss

x0 = 0 = xN .

Legendre-Gauss-Radau

x0 may be arbitrarily specified but xN = 0, or vice versa.

Legendre-Gauss-Lobatto

Both x0 and xN may be arbitrarily specified.

Thus, any solution to Problem BλN is also a solution to Problem BNλ; in this case, we have,

c∗0 = 0 = c∗N (25)
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That is, Eq. (25) is a matching condition that matches Problem BNλ to Problem BλN . Matching condi-
tions48,49 are part of the totality of closure conditions required to complete the circuit (arrows) indicated in
Fig. 7.

Note that Problems BN and BλN are generated from Problems B and Bλ respectively without introducing
any additional continuous-time primal conditions to carry over to the discrete-time problems. This notion is
implicit in Fig. 7. Fig. 7 is a commutative diagram promulgated in Ref. [27] that forms part of the broader

Problem B

Problem B λ Problem B λN

Problem B N

d
u

a
liz

a
ti
o

n

d
u

a
liz

a
ti
o

n

approximation
(direct method)

approximation
(indirect method)

convergence

convergence

Covector
Mapping
Theorem

Problem B Nλ

shortest path
for solving
Problem B

Figure 7. Illustrating the Covector Mapping Principle and the unification of direct and indirect methods in
optimal control as first described by Ross and Fahroo.25–27

notion of the Covector Mapping Principle in optimal control. A historical account of the origins of this
diagram and the ideas embedded in it are documented in Ref. [33]. The concepts embedded in Fig. 7 form
yet another unification principle in PS methods and optimal control at large.

A. A Unified Pseudospectral Covector Mapping Theorem

In completing the steps suggested in Fig. 7 towards the development of a Unified Covector Mapping Theorem,
we identify the following multiplier sets analogous to those introduced in Ref. [50]: Let χ := {[xk], [uk]} and
Λ := {ν0, [µk], [λk]}. We denote by MλN (χ) the multiplier set corresponding to χ,

MλN (χ) :=
{
Λ : Λ satisfies conditions of Problem BλN

}
(26)

Similarly, we define, Λ̃ :=
{

ν̃0, [µ̃k], [λ̃k]
}

and MNλ(χ) the multiplier set,

MNλ(χ) :=
{

Λ̃ : Λ̃ satisfies conditions of Problem BNλ
}

(27)

Clearly, MλN (χ) ⊆MNλ(χ). We now define a new multiplier set,

M̂Nλ(χ) :=
{

Λ̃ ∈MNλ(χ) : Λ̃ satisfies Eq. (25)
}

(28)

Thus, M̂Nλ(χ) ∼MλN (χ). That is, under a matching (closure) condition, every solution of Problem BNλ is
also a solution to Problem BλN . This statement is encapsulated as the Covector Mapping Theorem:

Theorem 1 (Unified Covector Mapping Theorem) Let MλN (χ) 6= ∅ and
{

ν̂0, [µ̂k], [λ̂k]
}
∈ M̂Nλ(χ);

then, the bijection, M̂Nλ(χ) ∼MλN (χ), is given by,

λN (tk) = λ̂k µN (tk) = µ̂k, ν0 = ν̂0 (29)

Remark 2 The statement of Theorem 1 is identical to that of Ref. [50] and is made possible through the
construction of weighted interpolation. The weighted interpolants lead to a consistent pair of differentiation
matrices, D and D∗, that are dual to each other. In this context, the LGL case turns out to be the special
situation where the formal adjoint of D is the same as −D.
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Remark 3 Note that Theorem 1 neither states λN (tk) = λ̃k, µN (tk) = µ̃k, ν0 = ν̃0 nor does it imply
λN (tk) ≈ λ̃k, µN (tk) ≈ µ̃k, ν0 ≈ ν̃0 as is sometimes erroneously interpreted. Furthermore, note that
Eq. (29) is an exact relationship.

Remark 4 A simple counter example is constructed in Ref. [33] to show that a solution to Problem BλN

may not exist for Euler discretization no matter how small the mesh. This well-known phenomenon requires
a proper technical modification to Theorem 1 similar to Polak’s theory of consistent approximations. This
aspect of Theorem 1 is rigorously proved in Refs. [30] and [28] for unit weight functions. The extension of
this rigor to non-unit weight function is straightforward but lengthy. Thus, the main assumption in Theorem
1 that the multiplier set, MλN (χ), is non empty can be eliminated. In other words, Theorem 1 remains valid
under much weaker assumptions.

Remark 5 Because the set MNλ(χ) is “larger” (i.e. has more elements) than MλN (χ), it de-sensitizes the
sensitivities associated with solving Problem BN . This fact is exploited in Ref. [52] to design a “guess-free”
algorithm for solving Problem B.

B. Some Remarks on the Covector Mapping Principle

The Covector Mapping Theorem was generated by an application of the Covector Mapping Principle (see
Fig. 7). Since the introduction of Pontryagin’s Principle, it has been known that the Minimum Principle
may fail in the discrete-time domain if it is applied in exactly the same manner as in the continuous-time
domain. For the Minimum Principle to hold exactly in the discrete-time domain, additional assumptions of
convexity are required whereas no such assumptions are necessary for the continuous-time versions. This is
because the continuous-time problem has a hidden convexity49 that is implicitly used in proving theorems.
Thus, when a continuous-time optimal control problem is discretized, this hidden convexity is not carried
over to the discrete time domain resulting in a loss of information. If this information loss is not restored, the
discrete-time solution may be spurious, not converge to the correct solution, or may even provide completely
false results. A historical account of these issues, along with a simple counter example, is described in
Ref. [33]. Further details are provided in the references contained in Ref. [33]. A thorough discussion of
these issues and their relationship to advance concepts in optimal control theory has been developed by
Mordukhovich.48,49

The closure conditions introduced by Ross and Fahroo26 are a form of matching conditions that are
similar in spirit to Mordukhovich’s matching conditions for Euler approximations. These conditions can be
in primal space alone,48,51 or in primal-dual space.34 Note however that the primal space conditions48,51

are obtained through dual space considerations. These new ideas reveal that dual space issues cannot be
ignored even in the so-called “direct methods,” for optimal control.

C. Software

A proper implementation of a PS method requires addressing all the numerical stability and accuracy issues
and a case-by case approach to problem solving using PS approximations is inadvisable as it is tantamount
to using first principles in every situation. Consequently, it is preferable for all the intricacies of a PS
method to be implemented just once for a general problem in a form of a reusable software package. This
exercise has been carried out in both OTIS and DIDO.23 OTIS is in FORTRAN while DIDO is in MATLAB.
While OTIS uses PS techniques an one of its many option, DIDO is exclusively based on PS methods alone.
In addition, DIDO implements the spectral algorithm53 to complete the “circuit” shown in Fig. 7. The
generalized approach is implemented in an α-version of the software package. This software was used in the
following sections that illustrate the principles and practice.

VI. Illustrative Some Key Points of the Main Theorem

In this section we will illustrate the many elements of our unified theory. From the statements of Theorem
1, it is clear that the LGL PS method is the most general of the Legendre PS methods and is hence applicable
to all finite-horizon optimal control problems. Furthermore, note that although the Covector Mapping
Theorem is meaningful only under convergence of the discretization, convergence issues are separate and
distinct concepts. The apparently many nuances of the Unified Covector Mapping Theorem can be best
illustrated by examples and counter examples.
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A. Convergence of the Costates Does Not Imply Convergence of the Control

Obviously, the key variable in an optimal control problem is the control variable. Thus, convergence of the
control variable implies convergence of the states and costates under fairly mild conditions; however, the
opposite is not true.54 To illustrate this point we once again consider Problem P1. By a direct application
of the Minimum Principle, it can be shown that the exact values of the costates are given by,

λx(t) = −2 (30)
λv(t) = −1 (31)

Figure 3 shows that the LGL controls have converged; thus, as expected, the LGL costates converge as
illustrated in Fig. 8. On the other hand, the controls for the LG and LGR PS methods do not converge (see
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Figure 8. Exact and LGL PS costates for Problem P1.

Fig. 5) despite that the costates do indeed converge as illustrated in Fig. 9.
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Figure 9. Exact and PS costates for Problem P1: LG and LGR PS methods; compare Fig. 5.

B. Illustrating the Utility of the Covector Mapping Theorem

The premise of computational methods is that, unlike Problem P1 most optimal control problems do not
have analytical solutions. Consequently, any computational solution requires theoretical justification along
with multiple and independent means to verify feasibility and optimality of the solution. The Covector
Mapping Theorem, when applied correctly, provides one such test. To illustrate this point, we consider the
much-studied orbit transfer problem of Moyer and Pinkham.55 This widely-studied31,51,56 classical problem,
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has no analytical solution, and is given by,

x = (r, θ, vr, vt) ∈ R4, u = β ∈ R

(P2)





Minimize J [x(·),u(·)] = −r(tf )
Subject to ṙ(t) = vr(t)

θ̇(t) = vθ

r

v̇r(t) = v2
θ

r − 1
r2(t) + A(t) sin β(t)

v̇θ(t) = −vr(t)vθ(t)
r(t) + A(t) cos β(t)

tf = 3.32
(r(0), θ(0)) = (1, 0)

(vr(0), vθ(0)) = (0, 1)
(vr(tf ), vθ(tf )) = (0,

√
1/r(tf ))

where the state variables are the radial distance r, the angular distance θ, the radial velocity component vr,
and the transverse velocity component vθ. The control variable is the thrust steering angle measured from
the local horizontal β, and A(t) is the continuous acceleration parameterized by,

A(t) =
T

(m0 − |ṁ|t) (32)

where T = 0.1405, is the continuous thrust, m0 = 1.0 is the initial mass, and |ṁ| = 0.0749 is the constant
fuel consumption rate.

The state and control solution to this problem using the LGL PS method is shown in Fig. 10. Although,
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Figure 10. State and control trajectories for the LGL PS method.

this solution is identical to the validated one we obtained in Ref. [57] nearly a decade ago, one of the
advantages of the Covector Mapping Theorem is that it provides an independent means to test the optimality
of the solution by an application of Pontrygain’s Principle. To demonstrate this point, we begin by developing
the necessary conditions for Problem P2. It is straightforward to show that the adjoint equation for λθ along
with the transversality condition indicates that,

λθ(t) = 0 (33)

The costates obtained by an application of the Covector Mapping Theorem are shown in Fig. 11. Clearly,
Fig. 11 shows that λθ(t) = 0 to within numerical errors. Thus, it is clear that the Covector Mapping
Theorem is extremely useful in verifying the optimality of the candidate solution by a direct application of
Pontryagin’s Principle.
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Figure 11. The costate, t 7→ λθ, obtained from the Covector Mapping Theorem.

C. Illustrating The Multiplier Sets of Theorem 1

The concept of multiplier sets used in the statement of Theorem 1 is based on our prior work presented in
Ref. [50]. At this point it is useful to illustrate how our multiplier sets can be used while drawing attention
to their possible misuse as well.

It can be shown29 that for Problem P2, the map, χ ⇒ MNλ(χ), is indeed multivalued, and hence the
notation, ⇒. Let Λ̃ ∈ MNλ(χ). Fig. 12 shows the multiplier trajectories obtained by one selection of the
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Figure 12. KKT multiplier trajectories, t 7→ eλ, in the wrong Hilbert space and wrong selection.

set-valued map, MNλ(χ). This selection is based on a least-squares solution (LSQ) of minimizing
∥∥∥Λ̃

∥∥∥
2
,

(LSQ)





Minimize
∥∥∥Λ̃

∥∥∥
2

2

Subject to Λ̃ ∈MNλ(χ)

Comparing Figs. 11 and 12, it is clear that the multiplier trajectories of Fig. 12 are not the discrete costates;
they are not even approximations as noted in Remark 3. Because the dual space is a weighted Hilbert space,
one could credibly argue that the multiplier trajectories of Fig. 12 are in the wrong space. By selecting the
multipliers in the correct Hilbert space but still based on the selection given by Problem LSQ, we get the
multiplier trajectories shown in Fig. 13. Clearly, none of the KKT multipliers can be construed as discrete
costate trajectories. The correct selection of multiplier trajectories are indeed obtained from Eq. (28). Not
surprisingly, a proper use of the theory generates the right answer!
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Figure 13. KKT multiplier trajectories, t 7→ eλ, in the correct Hilbert space but wrong selection.

As a final point of contention we note that it is incorrect to interpret any of the KKT multiplier trajectories
as “wiggles” about the correct answer. The appearance of the wiggles is simply a result of existence of a
primal solution in the absence of satisfying the KKT constraint qualifications. A proof of this assertion is
beyond the scope of this paper but may be found in Refs. [25, 26, 28, 32–35, 40, 58] with various levels of
sophistication and rigor.

Based on the primal space arguments put forth in Sec V.B, it is clear that the LGR and LG PS methods
are inappropriate for Problem P2 as well. Nonetheless, it is instructive to explore the consequences of
selecting the wrong PS method, and examine its dual space consequences.

D. Illustrating the Consequences of an Improper Choice of a PS Method

From Theorem 1, it is clear that we should not use the LGR or LG PS methods for this problem. Regardless,
it is instructive to examine their numerical performance in order to determine the practical consequences of
choosing the wrong PS method. As already noted previously, what matters in optimal control problems is
the convergence of the control variables; hence, we focus our attention on the convergence of the control.

The optimal controls for the LGR PS method is shown in Fig. 14. From this figure it is apparent
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Figure 14. LGR controls for N=32 and n=64.

that the LGR PS method indicates convergence but at a slower rate than the LGL PS method. On the
other hand, it is clear from Fig. 15. that the LG controls perform disastrously as the number of nodes are
increased indicating the absence of convergence. As neither the LG nor the LGR PS methods are the correct
PS methods for this problem, the numerical experimentation reveals that the wrong PS method does not
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Figure 15. LG controls for N=32 and n=64. Note the divergence of the controls.

necessarily generate the wrong answer, but that it is impossible to provide assurances on the validity of a
solution obtained by the wrong method.

E. Some Remarks on the Completeness of Our Framework

Because the intent of this paper is on generalizing and unifying PS methods, we have chosen to describe our
core ideas in terms of certain simplifications. For instance, we have chosen a distilled optimal control Problem
B to describe the unified principles. Our choice of the distilled Problem B is not to be confused with the
limitation of the ideas; rather, with additional bookkeeping all our ideas transfer trivially to substantially
more complex problems than the one posed as Problem B. In the same spirit, we have restricted the
discussions in this paper to Legendre-based PS methods. Our ideas apply equally to other PS methods as well.
The key new concept we have proposed in this paper is contained in Eq. (18). This is the notion of consistency
in primal and dual functions for interpolation. That is, the weight functions for primal interpolation is not
necessarily the same as the weight function for dual interpolation. This notion of consistency is different from
Polak’s theory of consistent approximations. Thus PS methods for optimal control are now firmly established
as being distinct from PS methods in other applications. Roughly speaking, PS methods for optimal control
can be described as follows: For any chosen primal interpolant with primal weight function, W (t), it is
necessary to choose a consistent dual interpolant with weight function, W ∗(t). The weight function pair,
{W (t),W ∗(t)}, must be selected in a manner that generates the correct Hilbert space for the approximation
of functions. Under the assumption of existence of a continuous-time solution in an appropriate Sobolev
space, global convergence of the solution based on the consistency of the approximation can then be rigorously
proved under mild and checkable conditions. Refs. [28, 30] present some of the foundations for such results.
These theoretical developments explain the widely-demonstrated superior performance of PS methods for
optimal control. A generalized presentation of these ideas is beyond the scope of this paper, but it is now
clear why the Lobatto family of Legendre PS methods have a weight function of unity. For non-unit weight
functions, the starting point for designing PS methods is Eq. (18).

VII. Conclusions

According to the data from Elissar, LLC, DIDO is used in over 25 countries around the world. This makes
pseudospectral (PS) methods the most popular class of methods for trajectory optimization. In recent years,
PS methods have been used in ground experiments as well as flight implementation. The high reliance on PS
methods by industry demands that sound practices in computational verification and validation (V&V) be
adopted. In sharp contrast to its theory in fluid dynamics, the proper framework for PS methods for optimal
control is a weighted pre-Hilbert space. This unification of the apparently disparate PS methods reveals
two major conclusions: (i) for finite-horizon optimal control problems, the correct PS methods are based on
Gauss-Lobatto points while, (ii) for infinite-horizon optimal control problems, Gauss-Radau points form the
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right choice for discretization. The choice of Gauss points alone leads to information loss, particularly at the
critical initial point because pure Gauss points are all interior to the interval. Nonetheless, Gauss points may
be chosen for special finite-horizon problems such as when the boundary conditions are homogenous. If the
wrong PS method is chosen to solve the problem, numerical experiments show that it is possible to obtain
seemingly valid results for many problems, particularly for low orders of discretization. Because numerical
solutions to optimal control problems are sought when no analytic solutions are available, suspicion may be
cast on the validity of the solutions obtained by the wrong PS method. Industrial-strength finite-horizon
optimal control problems have complex boundary conditions; consequently, the proper choice of PS methods
for such problems are selectable from the Lobatto family. Because the Lobatto-based Legendre PS method is
consistent with a unit weight function, the discovery of primal-dual weighted polynomials remained shielded
until recently.
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