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Abstract

This paper describes how Prolog was used for the development of a new concurrent real-
time symbolic programming language called Erlang.

Erlang was developed by �rst building a prototype in Prolog - the prototype was used by
a user group to test their reactions to the language. As time passed many features were added
(and removed) from the interpreter and eventually the language reached a level of maturity
where it was decided to try it out on a signi�cant problem.

About 3 years and some 20,000 lines of Erlang later, performance became an issue - we
wrote Prolog cross compilers from Erlang to various concurrent logic programing languages
followed by a direct implementation of Erlang itself. The direct implementation of Erlang
was loosely based on the WAM and made by writing a Prolog compiler from Erlang to a new
abstract machine and an emulator for the abstract machine in 'C'. The instruction set for
the abstract machine was �rst prototyped in Prolog - �nally the compiler was re-written in
Erlang, thus totally removing any dependency on Prolog.

This paper describes some of the key events which lay between the simple prototype and
the current version of the language.
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1 Introduction

This paper describes the development of the Erlang programming language [AR90].
Although we did not know it at the time, we were unwittingly following the advice of Brooks

[BR86], who argued that software systems should be incrementally grown rather than designed in
a conventional manner, and that rapid prototyping should be used as the design methodology.

It was never our intention to develop a new programming language. Erlang emerged as a
side e�ect of an attempt to �nd an elegant way to program a PABX (Private Automatic Branch
Exchange) for simple telephony applications. The ground work for this is described in [�DA86], and
some of the conclusions of the initial programming experiments in [AR86].

In writing this paper we have followed the advice of Parnas and Clements [PA86], that is, we
present the development of our language as if it had been the result of a rational design process -
whereas in fact the real design process is virtually impossible to describe.

The success of the development is in large measure due to Prolog (indeed had it not been for
Prolog it is doubtful whether a language such as Erlang would have emerged). Prolog provided the
kind of interactive environment which could accommodate the rapid changes in direction which
occurred during the development process. At a �ner level of detail the implementation of Prolog
provided the inspiration necessary to make an e�cient version of Erlang. The errors in Prolog
(things which we would have done di�erently) provided inspiration for how not to do certain
things!

Erlang supports a number of mechanisms not found in Prolog. Erlang is a concurrent, real-
time, distributed, functional language suitable for building large embedded real-time systems. It
has modules to support programming in the large, code can be changed in a running system on

the y and it has sophisticated error trapping mechanisms, which allow the construction of highly
robust software systems. More details are available in [AR89, AR90].

The language started as a simple meta interpreter which added notions of concurrency and
various error handling mechanisms on top of Prolog. It �nished as a programming language in its
own right. The ideas behind the Erlang interpreter are described in section 2.

Having built a simple interpreter for Erlang we were keen to use it on real problems. A group
of application programmers started using it for prototyping real telephony applications. Some of
the results are described in [PE91].

The inuence of the user group on the development of the language is described in section 3.
As the language developed it obtained its own syntax and its relation to Prolog weakened - the

development of the language is described in section 4.
Up to now the development had been highly informal - the interpreter (which was changed

almost daily) was the only de�nition of the language. As the interpreter matured and changes
became less frequent, proper documentation became necessary. This change is described in section
5.

After about 3 years, the user group was satis�ed with the resultant language. A study was
made of approximately 20,000 lines of Erlang which implemented various features in a telecom-
munications switching system. These features had previously been implemented in conventional
languages. Program design using Erlang required between 7 and 22 times less work. Performance
of the language now became the primary concern. While satis�ed with the expressive power of
our language, our users required an implementation which was at least 40 times faster that the
original interpreter.

Section 6 describes our attempts to speed up the implementation of the language. The �rst
attempt was to cross compile Erlang to Prolog or STRAND.

Inspiration for the next stage in development came from the WAM [WA83] - since Erlang had
grown out of Prolog it seemed natural that the techniques used to make fast Prolog systems should
also be applicable to Erlang. We describe how we made a fast implementation of Erlang.
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Section 7 describes the current status of the language.

2 First Interpreter

We start with a discussion of a simple Prolog interpreter for an extremely restricted subset of
Erlang.

The �rst interpreter was a simple Prolog meta interpreter which added the notion of a sus-
pendable process to Prolog. This interpreter was the starting point of a series of experiments to
try to �nd out what features should be included in a language suitable for programming robust
concurrent real-time applications.

The �rst interpreter was rapidly modi�ed (and re-written) to include the functionality identi�ed
in a series of detailed studies performed to establish the desirable characteristics of a language for
programming telephony applications [D�A86].

At this stage the entire interpreter could be rewritten in a matter of days and simple extensions
could be made in hours.

In the following sections we describe the basic techniques used in the �rst interpreter.

2.1 Suspending a computation

The �rst step is to program a suspendable computation. We want to write a meta interpreter
which can be suspended at any point in time - it should be possible to resume the computation
later.

Consider the vanilla interpreter solve/1 which is written as follows:

solve((A,B)) :-

solve(A),solve(B).

solve(A) :-

builtin(A),

call(A).

solve(A) :-

rule(A, B),

solve(B).

The intermediate stages of the computation are inaccessible to the programmer. The goal
solve/1 terminates when a solution has been obtained and it is not possible to suspend the
computation while it is taking place.

The simplest way to provide a suspendable computation is to keep all unsolved goals in a list,
and successively take the goal at the head of the list, solve it, then solve the goals remaining in the
tail of the list, together with any new goals which may have been generated in solving the goal at
the head of the list. This can be achieved as follows:

3



reduce([]).

reduce([{X}|T]) :-

call(X),

!,

reduce(T).

reduce([Lhs|More]) :-

eqn(Lhs, Rhs),

append(Rhs, More, More1),

!,

reduce(More1).

This reduces a list of items [Item1, Item2, ....] where is assumed that items contained in curly
braces "{" and "}" are Prolog goals, and that all other items are user de�ned rules.

As an example we show how the well known n�aive reverse and factorial functions can be written
in terms of eqn/2:

eqn(nrev([H|T], Z), [nrev(T, T1), concat(T1, [H], Z)]).

eqn(nrev([], []), []).

eqn(concat([H|T], T1, [H|T2]), [concat(T, T1, T2)]).

eqn(concat([], T, T), []).

eqn(fact(0, 1), []).

eqn(fact(N, F), [{N1 is N - 1}, fact(N1, F1), {F is N * F1}]).

reduce/1 works as expected:

?- reduce([fact(3,F), {write(result(F)), nl}]).

result(6)

F = 6 ?

..

?- reduce([nrev([a,b,c], R), {write(result(R)), nl}]).

result([c,b,a])

R = [c, b, a] ?

...

If we were to trace successive iterations of reduce/1 for the factorial example, the following
would be obtained:

reduce([fact(3,X1),{write(result(X1)),nl}]).

reduce([{X3 is 3-1},fact(X3,X2),{X1 is 3*X2},{write(result(X1)),nl}]).

reduce([fact(2,X2),{X1 is 3*X2},{write(result(X1)),nl}]).

reduce([{X4 is 2-1},fact(X4,X3),{X2 is 2*X3},{X1 is 3*X2},{write(result(X1)),nl}]).

reduce([fact(1,X3),{X2 is 2*X3},{X1 is 3*X2},{write(result(X1)),nl}]).

reduce([{X5 is 1-1},fact(X5,X4),{X3 is 1*X4},{X2 is 2*X3},{X1 is 3*X2},

{write(result(X1)),nl}]).

reduce([fact(0,X4),{X3 is 1*X4},{X2 is 2*X3},{X1 is 3*X2},{write(result(X1)),nl}]).

reduce([{X3 is 1*1},{X2 is 2*X3},{X1 is 3*X2},{write(result(X1)),nl}]).

reduce([{X2 is 2*1},{X1 is 3*X2},{write(result(X1)),nl}]).

reduce([{X1 is 3*2},{write(result(X1)),nl}]).

reduce([{write(result(6)),nl}]).

reduce([]).
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The list of goals which remains to be reduced at any particular point in the computation is a normal
Prolog data structure which can be manipulated in any way required by the user - in particular
we may decide to suspend the computation after a �xed number of reductions.

2.2 Suspending the computation after a �xed number of reductions

The predicate reduce/3 is similar to reduce/1 with the di�erence that it will always terminate
before a �xed number of reductions has been performed. The goal:

reduce(GoalList, Reductions, Result)

reduces the list of goals in GoalList binding Result to either terminated(N) or
continuation(More_Goals). terminated(N) means that the computation completed with N re-
ductions, continuation(More_Goals) is returned after 20 reductions have been performed if there
are still outstanding goals in the goal list, Reductions is used to count how many reductions have
occurred:

reduce([], N, terminated(N)) :- !.

reduce(Goals, 20, continuation(Goals)) :- !.

reduce([{X}|T], Reds, Result) :-

call(X),!,

Reds1 is Reds + 1,

reduce(T, Reds1, Result).

reduce([Lhs|More], Reds, Result) :-

eqn(Lhs, Rhs),

append(Rhs, More, More1),

Reds1 is Reds + 1,

reduce(More1, Reds1, Result).

So for example:

?- reduce([nrev([a,b,c,d], R), {write(result(R)),nl}], 0,Result),

write(reduce(Result)).

result([d,c,b,a])

reduce(terminated(16))

R = [d,c,b,a],

Result = terminated(16) ?

...

?- reduce([nrev([a,b,c,d,e], R), {write(result(R)),nl}], 0, Result),

write(reduce(Result)).

reduce(continuation([concat([],[a],X1),

{write(result([e,d,c,b|_1225])),nl}

]))

R = [e,d,c,b|X1],

Result = continuation([concat([],[a],X1),

{write(result([e,d,c,b|X1])),nl}]) ?

...
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We can, of course, restart the computation represented by continuation(New_Goals) by solving
reduce(New_Goals, 0, Result1) later.

2.3 A multi task scheduler

The reduction mechanism in the previous section can be used as the basis of a simple "round
robin" scheduler (multi_reduce/1) - this takes a list of tasks of the form job(N, Goals). The
scheduler allows each job to run for at most 20 reductions, it then goes on to the next task etc.
until no more tasks remain. N is the name of the task, Goals is a goal list representing the task.

multi_reduce([]).

multi_reduce([job(N, Goals)|T]) :-

write(starting(N)),nl,

reduce(Goals, 0, Result),

multi_reduce(Result, N, T).

multi_reduce(terminated(_), N, T) :-

write(terminating(N)),nl,

multi_reduce(T).

multi_reduce(continuation(Goals), N, Job_queue) :-

write(suspending(N)),nl,

append(Job_queue, [job(N, Goals)], New_job_queue),

multi_reduce(New_job_queue).

We have added a few write statements so we can observe what happens:

? multi_reduce([

job(1,[nrev([a,b,c,d,e,f,g,h],R), {write(job1(R)),nl}]),

job(2,[nrev([1,2,3,4,5], R1), {write(job2(R1)),nl}]),

job(3,[fact(10, Fact), {write(job3(Fact)),nl}])

]).

starting(1)

suspending(1)

starting(2)

suspending(2)

starting(3)

suspending(3)

starting(1)

suspending(1)

starting(2)

job2([5,4,3,2,1])

terminating(2)

starting(3)

job3(3628800)

terminating(3)

starting(1)

job1([h,g,f,e,d,c,b,a])

terminating(1)

Here we see that the three goals nrev([a,b,c,d,e,f,g,h], R), nrev([1,2,3,4,5], R1) and
fact(10, Fact) were executed concurrently.
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This is a form of pseudo concurrency since we only have one processor. The maximumnumber
of reductions which are allowed before a task is suspended is analogous to a time slice, and the
process of swapping tasks, to a context switch. Each single thread of computation is analogous to
a process.

2.4 An interpreter for a functional style of programming

If we ignore for a moment context switching and return to the basic reduction cycle we can de�ne
reduce1/1 which supports a more functional style of programming:

reduce1([]).

reduce1([Var = Rhs|T]) :- !,

reduce1([Rhs, '$bind'(Var)|T]).

reduce1([return(Value), '$bind'(Var)|T]) :- !,

Var = Value,

reduce1(T).

reduce1([{X}|T]) :-

call(X),!,

reduce1(T).

reduce1([write(X)|T]) :- !,

write(X),

reduce1(T).

reduce1([nl|T]) :- !,

nl,

reduce1(T).

reduce1([Lhs|More]) :-

eqn1(Lhs, Rhs), !,

append(Rhs, More, More1),

reduce1(More1).

Note that in this version of our interpreter write/1 and nl/0 are now primitive functions in
our meta language, i.e. they can be written directly (not enclosed in curly braces) - adding new
primitives to the meta language can be easily achieved as for write/1 and nl/0.

Returning to our factorial and n�aive reverse example these can now be written:

eqn1(fact1(0), [

return(1)

]).

eqn1(fact1(N), [

{N1 is N - 1},

F1 = fact1(N1),

{Result is N * F1},

return(Result)

]).
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and:

eqn1(nrev([H|T]) , [

T1 = nrev(T),

Result = concat(T1, [H]),

return(Result)

]).

eqn1(nrev([]), [

return([])

]).

eqn1(concat([H|T], T1), [

T2 = concat(T, T1),

return([H|T2])

]).

eqn1(concat([], X), [

return(X)

]).

Which behaves as expected:

?- reduce1([ X = fact1(4), write(X), nl]).

24

X = 24 ?

...

?- reduce1([ X = nrev([a,b,c,d]), write(X), nl]).

[d,c,b,a]

X = [d,c,b,a] ?

2.5 A functional language with processes and message passing

In our �nal and most complex example we combine the ideas of the previous two sections to form an
interpreter reduce2/4 which supports a functional style of programming, allows process creation
and simple message passing between processes.

Each process is represented by a data structure of the form: job(Id, Goals, MailBox) where
Id is the name of the process, Goals is a list of unsolved goals representing the computation and
MailBox is a list of messages which have been sent to, but not yet received by the process.

The goal reduce2(Goals, Id, MailBox, Jobs) represents the current state of a simple multi
tasking operating system. Goals, Id and mailBox represents the currently executing process and
Jobs a list of all suspended processes.

The list of such processes we call an environment
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reduce2([], _, _, []) :- !,

write(stopped),nl.

reduce2([], MyId, _, [job(Id, Goals, Msgs)|T]) :- !,

write(terminating(MyId)),nl,

write(resuming(Id)),nl,

reduce2(Goals, Id, Msgs, T).

reduce2([spawn(Id, Goals)|T], MyId, MyMsgs, Env0) :- !,

write(spawning(Id)),nl,

append(Env0, [job(Id, Goals, [])], Env1),

reduce2(T, MyId, MyMsgs, Env1).

reduce2([send(Id, Msg)|T], MyId, MyMsgs, Env0) :-

send(Id, Msg, Env0, Env1),

!,

reduce2(T, MyId, MyMsgs, Env1).

reduce2([receive|T], MyId, [Message|More], Env) :- !,

reduce2([return(Message)|T], MyId, More, Env).

reduce2([receive|T], MyId, [], Env) :- !,

write(suspending(MyId)),nl,

append(Env, [job(MyId, [receive|T], [])], Env1),

reduce2([], none, [], Env1).

reduce2([Var = Rhs|T], MyId, MyMsgs, Env) :-

!,

reduce2([Rhs, '$bind'(Var)|T], MyId, MyMsgs, Env).

reduce2([return(Value), '$bind'(Var)|T], MyId, MyMsgs, Env) :- !,

Var = Value,

reduce2(T, MyId, MyMsgs, Env).

reduce2([{X}|T], MyId, MyMsgs, Env) :-

call(X), !,

reduce2(T, MyId, MyMsgs, Env).

reduce2([Lhs|More], MyId, MyMsgs, Env) :-

eqn4(Lhs, Rhs), !,

append(Rhs, More, More1),

reduce2(More1, MyId, MyMsgs, Env).

send(Id, Msg, [job(Id, Goals, Messages)|T],

[job(Id, Goals, Messages1)|T]) :-

!,

append(Messages, [Msg], Messages1).

send(Id, Msg, [H|T], [H|T1]) :-

send(Id, Msg, T, T1).

The meta language primitive spawn(Id, Goals) schedules a new process with name Id and
goal list Goals. send(Id,Message) sends the message Message to the process Id. receive is a
function which returns the �rst message in the mailbox of the process.

The scheduling algorithm used in the interpreter is extremely simple, all processes proceed until
they either terminate or until they try to receive a message and no messages have been sent to the
process.

In reality we used a more sophisticated scheduling algorithm which combined time slices to-
gether with context switching when a process could no longer proceed.
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The relations eqn2/2 de�ne a new meta language - a simple program in terms of this meta
language could be the following:

eqn2(go,[

spawn(sender,[sender(5)]),

spawn(catcher, [catch])

]).

eqn2(sender(0), [

send(catcher, stop)

]).

eqn2(sender(N), [

{write(sending(pip(N))), nl},

send(catcher, pip(N)),

{N1 is N - 1},

sender(N1)

]).

eqn2(catch,[

X = receive,

{write(received(X)), nl},

catch(X)

]).

eqn2(catch(stop),

[]).

eqn2(catch(_),[

catch

]).

This creates two process called sender and catcher. sender sends �ve messages to catcher

and then terminates. catcher receives these messages and terminates when it receives the termi-
nation message stop:

| ?- reduce2([go], startup, [], []).

spawning(sender)

spawning(catcher)

terminating(startup)

resuming(sender)

sending(pip(5))

sending(pip(4))

sending(pip(3))

sending(pip(2))

sending(pip(1))

terminating(sender)

resuming(catcher)

received(pip(5))

received(pip(4))

received(pip(3))

received(pip(2))

received(pip(1))

received(stop)

stopped
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2.6 Properties of the �rst interpreter

The interpreters of the previous sections show how we can establish a processed based model
of computation in Prolog. There are many things wrong with the above interpreters, the meta
languages are user hostile and any mistakes in the user meta language programs will crash the
interpreters in a number of bizarre ways.

The interpreters are themselves written with appalling lack of concern for e�ciency - our actual
interpreter used di�erence lists to eliminate all appends from the program and was somewhat more
e�cient (though less clear!) than the versions we have presented.

In the early stages, languages features could be implemented in a few hours - invariably all the
discussions preceding any language change took much longer than the time taken to implement
the change. During the development period the language interpreter itself underwent a very large
number of small changes - and several large changes which required total re-writes.

The interpreter itself proved extremely robust and highly portable. The �rst version was a
NU Prolog version running on a VAX 11/750. It was then ported to Quintus Prolog on the same
machine. The user group had access to PC's so it was ported to ALS Prolog Running on PC/AT's.
We then ported it to SICStus Prolog and changed from our VAX to SUN3/60's and then to SICStus
Prolog running on SPARC's.

None of the above changes of Prolog system or computer caused us more than momentary and
easily solved problems. We had far more problems due to the incompatibility of operating systems
(especially between MS-DOS and UNIX) than we ever had between the di�erent Prolog systems
(and this despite the fact the Prolog is still not a standardized language!).

Using the techniques described in sections 2.1 - 2.5 and the syntax described in section 4.1
we wrote the �rst usable interpreter for a concurrent language - this language had the following
characteristics:

� concurrent processes

� selective message passing

� process groups

� error signaling and trapping mechanism based on process groups

� in line prolog code

� time slices

� round robin scheduling

� tracing interprocess messages

� debugging individual processes

� I/O to virtual channels (Ports)

All of which took approximately 1100 lines of Prolog code.
The �rst interpreter was then used to experiment with di�erent language constructs, scheduling

mechanisms, programming styles etc. aimed at �nding a convenient and elegant way of solving
simple telephony programming problems.

For these experiments we used an Ericsson MD110 PABX [MD82] (Private Automatic Branch
Exchange) which we controlled from our Prolog interpreter.
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After a period of experimentation, during which we made rapid, almost daily changes to the
interpreter, meta language and programs in the meta language, a style of programming and version
of the interpreter emerged which we felt was good enough to be used in a wider context.

3 User Group

Once the �rst interpreter had stabilized a user group was formed. This was a group of application
programmers (outside the computer science laboratory - CSL ) who were interested in experiment-
ing with new architectures and ways of programming a small PABX.

The formation of the user group forced a measure of stability on the development process. CSL
members were obliged to deliver their ideas according to a time schedule and produce working and
documented versions of the software.

For over a year CSL and user group members met once or twice a week in an attempt to
understand each other's problems - this process was invaluable, the users with their long experience
of applications programming suggested many valuable changes to the language (which were easily
incorporated in the interpreter) - CSL members were able to convince the applications programmers
why certain imperative styles of programming led to problems and should consequently be avoided.
This process, while at times somewhat frustrating was in retrospect one of the key factors which
lead to the subsequent acceptance of the language.

It is interesting to note that once the user group started using the language the language started
changing again - despite the fact that the language had converged prior to releasing it!.

It appears that the language converged twice, �rstly to ful�ll the internal need of the CSL
developers, secondly as feedback was obtained from the users.

4 Development of the language

4.1 Syntactic development

We take n�aive reverse and factorial as examples. The syntax used in section 2.4 was:

eqn1(fact1(0), [

return(1)

]).

eqn1(fact1(N), [

{N1 is N - 1},

F1 = fact1(N1),

{Result is N * F1},

return(Result)

]).

eqn1(nrev([H|T]) , [

T1 = nrev(T),

Result = concat(T1, [H]),

return(Result)

]).

eqn1(nrev([]), [

return([])

]).
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By de�ning the in�x operator ---> we can write these as valid Prolog data structures and omit
the functor symbol eqn1:

fact1(0) --->

return(1).

fact1(N) --->

{N1 is N - 1},

F1 = fact1(N1),

{Result is N * F1},

return(Result).

nrev([H|T]) --->

T1 = nrev(T),

Result = concat(T1, [H]),

return(Result).

nrev([]) --->

return([]).

The above syntax was the �rst syntax which real users were subject to. The disadvantage of
this syntax is that error messages, run time diagnostics etc. are in terms of Prolog data structures
- not Erlang.

After the language had been in use for about year and reached relative stability we wrote a
parser for Erlang which gave the language a syntax of its own and allowed us to invent syntaxes
and structures which were not valid Prolog.

In the new syntax:

nrev([H|T]) ->

T1 = nrev(T),

concat(T1, [H]).

nrev([]) ->

[].

fact(0) ->

1.

fact(N) ->

N1 = N - 1,

F1 = fact1(N1),

N * F1.

After a short time with the new syntax we adopted a purely functional notation which avoided
the need for superuous temporary variables; in the current syntax we now write:

nrev([H|T]) -> concat(nrev(T), [H]);

nrev([]) -> [].

fact(0) -> 1;

fact(N) when N > 0 -> N * fact(N - 1).
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The e�ort involved for each of these syntaxes can be seen from the following:

� Original Prolog Clauses: 0 lines of prolog code

� In�x operator ---> plus code to read and convert Erlang functions to a normalized form -
91 lines of Prolog code

� Parser in Prolog - 1057 lines of Prolog (629 lines in the parser, 262 in the tokeniser, 166 in
the pretty printer).

The parser was �rst written as a Prolog DCG but the idea of using a DCG was rapidly discarded
due to problems concerned with providing meaningful and precise error diagnostics. The solution to
this was to completely atten the Erlang grammar into an LL(1) grammar and write a conventional
recursive descent parser for the language. At the same time we removed the possibility for users
to de�ne their own in�x operators.

4.2 Language changes suggested by the new syntax

Moving to a fully parsed version of the language suggested the introduction of the following features:

� tuples (written {Item1, Item2, Item3, ...}) for storing �xed numbers of items.

� functions with zero arity are denoted func() whereas atoms with the same name have no
parentheses.

� a module system

� function guards

5 Semantic embedding

Changing from a Prolog to a new syntax had more than a cosmetic e�ect. Because it was no longer
Prolog, we were forced to think more in terms of the meaning of a language construct, rather than
to just rely on the meaning of the statement when it was translated into the equivalent Prolog.

Often the semantics of an Erlang expression were not the result of a conscious design decision
but were the accidental result of the implementation in Prolog - we call this phenomena semantic

embedding - the semantics of Prolog become accidentally embedded in Erlang.
We �rst became aware of this phenomena when we wrote the Erlang parser - at a later stage

when writing the compiler we were forced to completely remove any remaining dependencies upon
Prolog.

As an example, consider the Erlang expression:

f(X, Y) ->

Z = 3 * X + Y + 4 * 6 - X,

...

In the interpreter this was translated to the Prolog:

...

Z is 3 * X + Y + 4 * 6 - X,

...
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So the meaning of an arithmetic expression in Erlang was de�ned to be the meaning of whatever
the corresponding expression was in Prolog.

When we wrote a parser for Erlang we had to de�ne a grammar for arithmetic expressions,
de�ning the grammar forced us to think about if we wanted to follow the Prolog grammar for
arithmetic expressions or use some other grammar.

Another accidental consequence of the interpreter being written in Prolog was that in the
original version of Erlang all variables in Erlang were represented as Prolog logical variables.

Eventually we decided that logical variables as in Prolog had certain undesirable properties in
Erlang. This was because sending a message containing a logical variable between two processes
allows the processes to communicate by an invisible mechanism (binding the variable) and not
by message passing - we wanted all acts of interprocess communication to be explicitly achieved
through message passing.

6 De�ning documents

Erlang �rst appeared as a simple Prolog meta interpreter. At any particular point in time the
interpreter was the language de�nition. The language itself had no de�ning documents and was
de�ned totally in terms of its interpreter.

Eventually we started writing manuals, reference guides etc. which described the language.
Since the language was undergoing rapid change the interpreter and the manuals were often out
of phase. In the early stages of development if the interpreter and the manual di�ered, then the
interpreter was correct and the manual wrong, this allowed us to answer any question about the
language by try it and see.

As the language matured we came to a point where this approach had outlived its usefulness
- we then reversed our policy - if the language and manual di�ered then it was the manual which
was correct and the implementation which was wrong. At this stage we took a lot of care to ensure
that the manual was correct - this is very di�cult, while the Prolog system provided a very careful
proof reading of the interpreter no such help could be found to help get the manual right! - (this
is exactly the opposite of what is supposed to be conventional practice, one is supposed to write
the de�ning documents �rst and then make the implementation - our way is much easier - it is
easier to describe something which exists than to imagine the properties of something which does
not yet exist!).

The shift in emphasis from the interpreter to the manual as the de�ning document reected
the achievement of a new level of maturity in the language.

7 Performance

The decision to concentrate on performance represented a milestone in the development. We had
now entered a period where we were only interested in the performance of the language, we could
leave the semantics unchanged while concentrating on implementation.

Our �rst idea was to cross compile Erlang to a concurrent logic programming language, this
seemed natural since all our e�ort has been directed towards adding a notion of concurrency to
Prolog and in a concurrency logic programming language concurrency is free!
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We then made implementations loosely based on the WAM [WA83] and its descendants.

7.1 Cross compilation to concurrent logic programming languages

Our �rst attempts were to write cross compilers (in Prolog) from Erlang to Parlog [CL84] and
STRAND [FO89] - of these the resulting STRAND based implementation was an order of magni-
tude faster than the Prolog interpreter - but still not fast enough to meet our requirements.

The cross compilation process which is described in detail in chapter 13 of [FO89] turned all
Erlang functions of Arity N into STRAND goals of Arity N + 8. The resulting programs did not,
however, achieve the kind of performance which we required.

We encountered certain problems in compilation to languages like STRAND. Our models of
concurrency were di�erent - Erlang provides concurrency at the process level, STRAND has much
�ner grain concurrency, our strategy for error handling and was di�erent, these and other problems
forced us to think in terms of our own implementation.

7.2 Compiler to a WAM like machine

The next stage of development was concerned with building a high performance Erlang machine.
The STRAND and Parlog implementations neatly side stepped several nasty implementation

issues - bounded time garbage collection - real-time scheduling etc. The �rst compiled version
forced us to think about such issues.

Inspiration for the compiled version of Erlang came from the WAM - since Erlang had grow
out of Prolog it seemed natural that the techniques used to make fast Prolog Systems should also
be applicable to Erlang. Our �rst major di�culty here was in understanding the WAM since at
the time there were no easily understandable descriptions of the WAM (Now things are better, see
[HA91]). The turning point came after having read Chapter 11 of [MA88] whose lucid description
of a WAM like machine gave us enough understanding to make our own machine.

A compiler from Erlang to our own machine (JAM) and an emulator for the JAM machine
were written. Initially both the compiler and the emulator were written in Prolog. The resulting
machine was blindingly slow! (5 Erps (Erlang Reductions Per Second), 0.5 Erps when tracing the
instructions) - but served to debug the instruction set and work out the structure of the call frames
- the primary advantage was that we could use Prolog's underlying memory management to write
the emulator.

Having worked out the instruction set and the architecture of the machine the compiler was
re-written in Erlang itself and the emulator in 'C'. This version after three total re-writes now runs
70 times faster than the original prolog interpreter.

A more detailed description of the implementation of the language can be found in [AR91] where
details of the JAM, the instruction registers used in the virtual machine and the implementation
of concurrency can be found.

8 Current Status

Erlang is now a well established language for writing real-time software. Three complete imple-
mentations exist, one in Prolog, the other two are stand-alone WAM - like implementations.

Art the time of writing Erlang is in use at some 30 sites and is spreading at the rate of about
1-2 sites/month - it has been used for a number of prototypes and a small number of internal
projects.

16



The language is freely available for non commercial use (information requests to
erlang@erix.ericsson.se)
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