Electronic non-adiabatic transitions

Derivation of

 the general adiabatic-diabatic transformation matrixby MICHAEL BAER
Department of Theoretical Physics and Applied Mathematics, Soreq Nuclear Research Centre, Yavne, Israel
and Department of Chemical Physics,
The Weizmann Institute, Rehovot, Israel

(Received 21 February 1980)
In 1969 Smith [1] presented a transformation which enables one to go from the adiabatic to the diabatic framework. We extended this method, which was originally devised for the atom-atom case, to the atom-diatom. case [2-4] and also applied it successfully for the few cases we studied [5]. According to the extended version of Smith's method the transformation matrix is derived as a solution of a first-order vector differential equation

$$
\begin{equation*}
\nabla \cdot \mathbf{A}+\mathbf{t} \mathbf{A}=0 \tag{1}
\end{equation*}
$$

where ∇ is a vectorial operator

$$
\begin{equation*}
\nabla=\left(\frac{\partial}{\partial x_{1}} ; \ldots ; \frac{\partial}{\partial x_{N}}\right) \tag{2}
\end{equation*}
$$

and \mathbf{t} is a vector matrix

$$
\begin{equation*}
\mathbf{t}=\left(\mathbf{t}_{x_{1}} ; \ldots ; \mathbf{t}_{x_{N}}\right) . \tag{3}
\end{equation*}
$$

Here, the order of \mathbf{A} and \mathbf{t} is n where n is the number of states included in the treatment and the $x_{i}, i=1, \ldots, N$, are a set of N independent nuclear coordinates. For instance in the case of three atoms $N=3$ and $x_{i}=R, r, \gamma$ (the translational, vibrational and angular coordinates respectively) so that ∇ becomes

$$
\begin{equation*}
\nabla=\left(\frac{\partial}{\partial R}, \frac{\partial}{\partial r}, \frac{\partial}{\partial \gamma}\right) \tag{4}
\end{equation*}
$$

and the corresponding t matrix is

$$
\begin{equation*}
\mathbf{t}=\left(\mathbf{t}_{R}, \mathbf{t}_{r}, \mathbf{t}_{\gamma}\right) \tag{5}
\end{equation*}
$$

The matrices $\mathbf{t}_{x_{i}}, i=1, \ldots, N$, are antisymmetric with elements

$$
\begin{equation*}
t_{x_{i} k l}=-\left\langle\zeta_{k}\right| \frac{\partial}{\partial x_{i}}\left|\zeta_{l}\right\rangle, \quad i=1, \ldots, N ; \quad k, l=1, \ldots, n \tag{6}
\end{equation*}
$$

where $\zeta_{l e}$ and ζ_{l} are the electronic adiabatic basis functions. Equation (1) has a unique solution when and only when each pair of the component matrices \mathbf{t}_{x} and \mathbf{t}_{y} fulfil the condition [2]

$$
\begin{equation*}
\frac{\partial}{\partial x} \mathbf{t}_{y}-\frac{\partial}{\partial y} \mathbf{t}_{x}=\left[\mathbf{t}_{y}, \mathbf{t}_{x}\right] . \tag{7}
\end{equation*}
$$

The solution was discussed in detail for the two state case ($n=2$) where the number of variables were $N=1[1-6]$ and $N=2,3$ [2-4]. Some attempts to solve this equation were also made for the three state case $(n=3)$ [4]. In this Note we present a general method which yields a solution for any value of n and N. In order to solve equation (1), that is in order to derive \mathbf{A} at a point ($x_{1}{ }^{1}, \ldots, x_{N}{ }^{1}$) once its value is known at ($x_{1}{ }^{0}, \ldots, x_{N}{ }^{0}$), we suggest obtaining the solution in a propagative way. What is meant by that is starting at the point $\left(x_{1}{ }^{0}, \ldots, x_{N}{ }^{0}\right)$ we propagate to the first intermediate point ($x_{1}{ }^{1}, x_{2}{ }^{0}, x_{3}{ }^{0}, \ldots, x_{N}{ }^{0}$) and then to the second point ($x_{1}{ }^{1}, x_{2}{ }^{1}, x_{3}{ }^{0}, \ldots, x_{N}{ }^{0}$) and so on until we reach the final point $\left(x_{1}{ }^{1}, \ldots, x_{N}{ }^{1}\right)$. While in the i th step we consider the i th component of equation (1), that is

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}} \mathbf{A}+\mathbf{t}_{x_{i}} \mathbf{A}=0 \tag{8}
\end{equation*}
$$

and assume that \mathbf{A} is already known at the point $\left(x_{1}{ }^{1}, \ldots, x_{i-1}{ }^{1}, x_{i}{ }^{0}, x_{i+1}{ }^{0}, \ldots, x_{N}{ }^{0}\right)$. To do that we define a matrix \mathbf{A}_{i} as

$$
\begin{equation*}
\mathbf{A}_{i}=\mathbf{A}\left(x_{1}{ }^{1}, \ldots, x_{i-1}{ }^{1}, x_{i}{ }^{1}, x_{i+1}{ }^{0}, \ldots, x_{N}{ }^{0}\right) \tag{9}
\end{equation*}
$$

Then the final solution of equation (8) can be written as

$$
\begin{equation*}
\mathbf{A}_{i}=\mathbf{B}_{i} \mathbf{A}_{i-1}, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{B}_{i}=\exp \left[-\mathbf{T}_{i}\right] \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T}_{i}=\int_{x_{i}}^{x_{1}{ }^{1}} d x_{i} \mathbf{t}_{x_{i}}\left(x_{1}^{1}, \ldots, x_{i-1}^{1}, x_{i}, x_{i+1}^{0}, \ldots, x_{N}^{0}\right) . \tag{12}
\end{equation*}
$$

Repeating the process N times we get

$$
\begin{equation*}
\mathbf{A}\left(x_{1}{ }^{1}, \ldots, x_{N}{ }^{1}\right)=\left(\prod_{i=0}^{N-1} \mathbf{B}_{N-i}\right) \mathbf{A}\left(x_{1}{ }^{0}, \ldots, x_{N}{ }^{0}\right) . \tag{13}
\end{equation*}
$$

To find \mathbf{B}_{i} we have to find the eigenvalues of \mathbf{T}_{i} and the matrix \mathbf{S}_{i} that diagonalizes \mathbf{T}_{i}. Since \mathbf{T}_{i} is antisymmetric it has only imaginary (or zero) eigenvalues and \mathbf{S}_{i} is unitary

$$
\begin{equation*}
\mathbf{T}_{i} \mathbf{S}_{i}=\mathbf{S}_{i} \boldsymbol{\lambda}_{i}, \tag{14}
\end{equation*}
$$

where λ_{i} is a diagonal matrix. If we now define $\mathbf{E}^{(i)}$ as a (diagonal) matrix with the following matrix elements

$$
\begin{equation*}
\mathbf{E}_{k l}{ }^{(i)}=\exp \left(\lambda_{k}{ }^{(i)}\right) \delta_{k l} \tag{15}
\end{equation*}
$$

where $\lambda_{k}{ }^{(i)}$ is the k th eigenvalue of \mathbf{T}_{i}, then the \mathbf{B}_{i} matrix can be written as

$$
\begin{equation*}
\mathbf{B}_{i}=\mathbf{S}_{i} \mathbf{E}^{(i)} \mathbf{S}_{i}^{\dagger} . \tag{16}
\end{equation*}
$$

Substituting equation (16) in equation (13) leads to

$$
\begin{equation*}
\mathbf{A}\left(x_{1}{ }^{1}, \ldots, x_{N}^{1}\right)=\left(\prod_{i=0}^{N-1} \mathbf{S}_{V_{-i}} \mathrm{E}^{(v-i)} \mathbf{S}_{N_{-i}}{ }^{\dagger}\right) \mathbf{A}\left(x_{1}{ }^{0}, \ldots, x_{N^{\prime}}{ }^{0}\right) \tag{17}
\end{equation*}
$$

which is the desired solution.

References

[1] Smith, F. T., 1969, Phys. Rev., 179, 111.
[2] Baer, M., 1975, Chem. Phys. Lett., 35, 112.
[3] Baer, M., 1976, Chem. Phys., 15, 49.
[4] Top, Z. H., and Baer, M., 1971, 7. chem. Phys., 67, 1363.
[5] Top, Z. H., and Baer, M., 1977, Chem. Phys., 25, 1. Baer, M., and Beswick, J. A., 1979, Phys. Rev., 19, 1559.
[6] Levine, R. D., Johnson, B. R., and Bernstein, R. B., 1969, f. chem. Phys., 50, 1694. Heil, T. G., and Dalgarno, A., 1979, 7. Phys. B, 12, L557.

