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In 1969 Smith [1] presented a transformation which enables one to go from 
the adiabatic to the diabatic framework. We extended this method, which was 
originally devised for the atom-atom case, to the atom-diatom, case [2-4] and 
also applied it successfully for the few cases we studied [5]. According to the 
extended version of Smith's method the transformation matrix is derived as a 
solution of a first-order vector differential equation 

V.  A + t A = 0 ,  (1) 

where V is a vectorial operator 

, . . . ,  ~ (2) 

and t is a vector matrix 
t---(tx, ; ... ; txN ). (3) 

Here, the order of A and t is n where n is the number of states included in the 
treatment and the xi, i =  1, ..., N, are a set of N independent nuclear coordinates. 
For instance in the case of three atoms N =  3 and x i = R, r, y (the translational, 
vibrational and angular coordinates respeotively) so that V becomes 

V = . ~ ,  ~r' (4) 

and the corresponding t matrix is 

t = (tR, tr, tr). (5) 

The matrices tx, , i =  1, .. . ,  N ,  are antisymmetric with elements 

t~,k,=--(Kkl~-~x I~,), i = I , . . . , N ;  k, l =  l ,  . . . ,  n, (6) 

where ~k and ~t are the electronic adiabatic basis functions. Equation (1) has 
a unique solution when and only when each pair of the component matrices t x 
and ty fulfil the condition [2] 

~ t ~ -  ~y tx = Etv, tz]. (7) 
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The solution was discussed in detail for the two state case ( n = 2 )  where the 
number  of variables were N =  1 [1-6] and N = 2 ,  3 [2-4]. Some attempts to 
solve this equation were also made for the three state case ( n = 3 )  [4]. In this 
Note we present a general method which yields a solution for any value of n 
and N. In order to solve equation (1), that is in order to derive A at a point 
(X11:I . . . ,  $N 1) once its value is known at (xl ~ ..., xN~ we suggest obtaining the 
solution in a propagative way. What  is meant by that is starting at the point 
(Xl ~ ..., XN ~ we propagate to the first intermediate point (xl x, x2 ~ x3 ~ ..., XN ~ 
and then to the second point (Xl 1, x21, x3 ~ ..., xN ~ and so on until we reach the 
final point (Xl 1, ..., XN1). While in the ith step we consider the ith component 
of equation (1), that is 

~x--~. A + t / ,A = 0 (8) 

and assume that A is already known at the point (xl  1, ..., Xi_l 1, xi ~ xi+l ~ ..., Xi~ 
To do that we define a matrix Ai as 

Ai = A(xl 1, ..., Xi_l 1, Xi 1, Xi+l  0, . . . ,  XNO). (9) 

Then  the final solution of equation (8) can be written as 

A i = BiAi_l, (1 O) 
where 

Bi=  exp [ - T i ]  (11) 
and 

T i = ~ dxi tx,(xl 1, ..., Xi_l 1, $i, Xi+l~ ..., XN0). (12) 
~o 

Repeating the process N times we get 

A(x11, ..., XN1)= BN_i A(xl0, ..., xNO). (13) 
i = 0  

To find B i we have to find the eigenvalues of T~ and the matrix Si that diagonalizes 
T i. Since T i is antisymmetric it has only imaginary (or zero) eigenvalues and 
S i is unitary 

TiS  i = SiXi, (14) 

where X i is a diagonal matrix. If we now define E (i) as a (diagonal) matrix 
with the following matrix elements 

E~z (/) = exp (Ak(i))3kt (15) 

where Ak(1) is the kth eigenvalue of Ti, then the B i matrix can be written as 

Bi = SiE(i)Si t. (16) 

Substituting equation (16) in equation (13) leads to 

(" ) A(Xl 1' " ' "  XN 1) = H S-v-~E(X-i)S-v-,: * A( x~~ . . . .  , X v 0) (17) 
i=0  

which is the desired solution. 
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