

Omniscient Code Generation

A whole-program compilation technology for superior code density
and performance

by Clyde Stubbs
CEO and Founder, HI-TECH Software

Introduction

The C and C++ programming languages are the heart and soul of embedded systems

programming. To a large extent, these high-level languages, and the compilers that

translate them into machine code, free programmers from the tedium of assembly

language programming. They also provide a measure of code portability between

processor architectures. However, while computing hardware has made huge advances

in the last 30 years, compiler technology has basically stood still.

The original C language, and the compilers that support it, were developed in the

1970s, when computers could not run, much less compile, the large programs of today.

Programs were both developed and run on the target platform. Typically computer

memories rarely exceeded 1 MB RAM and a processor clock frequency of 400 kHz was

pushing the envelope.

In order to conform to the limited memories and processing power of the time, programs

were split into multiple small modules, each of which was compiled independently into a

sequence of low-level machine instructions. A linker joined these object modules, along

with code extracted from pre-compiled libraries, to create the final program. This

approach enabled quite large programs to be compiled on machines with limited

memory.

Memory size and processor speed are now no longer constraints.

www.htsoft.com 2 3/9/2007

Today, 8-bit embedded microcontrollers exceed the typical 1970s computer, in terms of

clock frequency ─ 40 MHz-plus ─ and they may integrate a megabyte or more of on-

chip memory. However, MCU architectures have evolved with radically different

memory maps, and register and stack configurations. All too often, conventional C

compilers cannot make good use of these vastly different architectures requiring manual

optimizations that compromise portability.

While processor architectures have evolved to meet the needs of 21st century

applications, compilers have barely changed at all. Embedded programs are still broken

up into smaller modules, each of which is compiled independently, with little regard for

cross-module register optimization, re-entrant code or variable declarations.

There are good reasons to break embedded code into modules. Code is frequently

developed by teams of engineers, each of whom is responsible for one or more

modules. This approach speeds system development and also makes the application

easier to manage. However, there is no reason today to compile each module

independently. There are many reasons not to do so.

Inconsistent Definitions between Modules Conventional compilers that compile

program modules independently can introduce several types of problem into the

Independent Compilation Sequence

.c file

.c file

.c file

Output
file

.lib files

linker

code
generator

code

generator

code

generator

.as files

parser

parser

parser

AS

AS

AS

AS

www.htsoft.com 3 3/9/2007

program because each module is compiled without knowledge of the other modules.

For one, C has always presented difficulties in ensuring that variables and other objects

used in multiple modules have consistent definitions. Although it is possible to have the

linker check for incompatible re-declarations of variables by different modules, this

approach adds complexity and doesn't always solve the problem due to the fact that the

linker may not have enough information to detect the human error.

Sub-optimal register allocation The way in which arguments are passed and values

returned, is another potential drawback in independent module compilation. Each calling

convention contains a set of rules that defines which CPU registers are to be preserved

across calls. All functions must adhere to the same calling conventions. Since it is

impossible to know at the time of compilation which registers will and will not actually be

used by a called function, these rules can result in sub-optimal register allocation. This

is particularly true with small embedded processors.

Non-portable code and subtle bugs Processor memory architectures pose additional

problems. Many embedded processors have a complex and non-linear set of memory

spaces, often with different address widths. Standard C is difficult to map onto these

architectures because it is often impossible to know at compile time in which memory

space a variable will be located, or which spaces a given pointer will be required to

access.

For example, a pointer might need to address memories of different address widths,

such as 8-bit wide RAM and 16-bit, or wider, ROM. The programmer can achieve

efficient pointer usage in these architectures by explicitly declaring the address spaces

that a pointer will access. However, this solution is architecture-specific and results in

non-portable code. It also increases the likelihood of subtle bugs being introduced.

Compiled Stack Limitations Many small embedded processors do not have a fully or

efficiently addressable stack for the storage of local variables. This situation is usually

handled by a compiled stack where local variables are statically allocated in memory,

based on a call graph. Unfortunately independent compilation cannot know the call

www.htsoft.com 4 3/9/2007

graph until link time. Using a compiled stack requires the programmer to nominate any

functions that are called re-entrantly, so that they can be dealt with accordingly. If the

programmer nominates these incorrectly, the error is not revealed until link time, by

which time it is too late to make changes.

A New Approach - OMNISCIENT CODE GENERATION TM

Today the CPU speed and memory size of a typical host desktop or server computer

exceed those of a typical embedded target by several orders of magnitude.

Consequently, it is now quite practicable to generate code for the entire program at

once, allowing all routines, variables, stacks and registers to be optimized based on the

entire program. Although it is theoretically possible to compile a very large program from

a single source, the fact is that most programs are written by teams of engineers, each

of whom is responsible for one or more modules of functionality. As a result, embedded

systems will always be compiled from multiple files.

A new compiler technology, called Omniscient Code Generation (OCG), takes

advantage of the capabilities of today’s host systems to achieve fully optimized object

code that takes into account all the variables, functions, stacks and registers

represented in all program modules. Rather than relying completely on the linker to

uncover errors in independently compiled modules, an OCG compiler completes the

initial stages of compilation for each module separately, but defers object code

generation until the point at which a view of the whole program is available. It uses a

global view of the compiled program, along with various other optimization techniques

made possible by the complete information that is then available to the code generator.

This approach solves most of the problems associated with independent compilation,

described above.

An OCG compiler still compiles each module separately. However, instead of compiling

to machine code instructions in an object file, it compiles each module to an

intermediate code file that represents a more abstract view of each module. It does not

produce actual machine instructions or allocate registers at this time.

www.htsoft.com 5 3/9/2007

Call Graph: A Clearer View

Once all the intermediate code files are available, they are loaded by the code

generator into a call graph structure. The code generator also searches intermediate

code libraries and extracts, as required, any library functions that are referenced by the

program. Once the call graph is complete, functions that are never called may be

removed, thus saving space.

The call graph also allows identification of any functions called recursively (not common

in embedded systems) or re-entrantly, such as those called from both main-line code

and interrupt functions. These functions must either use dynamic stack space for

storage of local variables, or be managed in other ways to ensure that a re-entrant call

of the function does not overwrite existing data. This is achieved in a way that is

completely transparent to the programmer, and without requiring non-standard

extensions to the language.

If a compiled stack is to be used, it can be allocated at this point, before any machine

code has been generated. OCG knows exactly how big the stack is and where it is

located, before the code is generated.

Compilation Sequence with OMNISCIENT CODE GENERATIONTM

.c file

.c file

.c file

Output
file

object
code
libs

linker
OMNISCIENT

CODE
GENERATOR

.as files

parser

parser

parser

AS

AS p-code
lib files

www.htsoft.com 6 3/9/2007

Pointer Reference Graphs

With a complete Call Graph the compiler then builds reference graphs for objects and

pointers in the program. Any conflicting declarations of the same object from different

modules can be detected at this point and an informative error message issued to the

user. Any variables never referenced can be deleted.

Determining the memory space for each pointer is one of the most important features of

OCG. An algorithm uses each instance of a variable having its address taken, plus each

instance of an assignment of a pointer value to a pointer (either directly, via function

return, function parameter passing, or indirectly via another pointer) and builds a data

reference graph (Pointer Reference Graph). The graph is completed and then identifies

all objects that can possibly be referenced by each pointer. This information is used to

determine which memory space each pointer will be required to access.

Once the set of used variables and pointers is complete, OCG allocates memory for the

stack (compiled or dynamic: the call graph is used to determine the stack size) at the

same time as it allocates global and static variables. Where there are multiple memory

spaces (e.g. an architecture with banked RAM), the variables accessed most often in

the program can be allocated to the memory spaces that are cheapest to access. On an

8051, for example, this would be internal, directly addressable RAM, rather than

external RAM which must be accessed via a pointer.

Each pointer variable now has a set of address spaces that it will be required to access,

without any specific directions provided by the user. This allows each pointer to be sized

and encoded in a way which is optimally efficient for the particular architecture, while

still being accurate.

www.htsoft.com 7 3/9/2007

Bottom-up Code Generation

Generation of machine code now begins at the bottom of the call graph, starting with

those functions that do not call any other functions. Automatic in-lining of these

functions may be performed if desired. In any case, the code can be generated without

the constraints of rigid calling conventions. Code generation then proceeds up the call

graph, so that for each function, the code generator knows exactly which functions are

called by the current function, and therefore also knows exactly what registers and other

resources are available at each point. Calling conventions can be tailored to the register

usage and argument type of a function, instead of following a set pattern.

Customized Library Functions

An omniscient code generator has a truly global1 view of the program. Therefore,

complex library functions can be implemented in a way that is specific to each particular

program. A good example of this is the C library functions sprintf() and printf().

These workhorse routines for formatting text strings or output are enormously useful,

but can occupy a large code footprint (5 KBytes or more), if implemented in their

entirety.

The OCG code generator can analyze the format strings supplied to these functions,

and determine exactly the set of format specifiers and modifiers that are used. These

can then be used to create a customized version of either function as required. The

code size saving can be immense. Code for a minimal version of sprintf()

implementing simple string copying can be as little as 20 or 30 bytes, whereas a version

providing real number formats with specific numbers of digits could occupy 5000 bytes

or more. No programmer input, other than writing the program itself, is required to

benefit from this customization and optimization.

1
 In compiler parlance the meaning of the adjective "global" has been diluted by the use of the term global

optimization to refer to optimization within one function - OCG takes a wider view than this,
implementing whole-program optimization.

www.htsoft.com 8 3/9/2007

Unused Return Values

Many library functions return values that are not necessarily checked by the calling

code. A compiler with OCG can establish whether the return value of a function is ever

used. If the code generator determines that the return value for a particular function is

never used, it can remove the code implementing the return value in that function,

saving both code and cycles.

Re-entrancy Without a Conventional Stack

A conventional stack is implemented in the hardware of the target MCU. – However,

not all MCUs have a hardware stack. In these implementations the compiler must

implement a compiled stack built at compile time rather than runtime. Although this is

not a great problem for most embedded applications, it makes writing re-entrant code

difficult ─ a compiled stack cannot implement recursion or re-entrant function calls.

However implementing a compiled stack transparently addresses re-entrant code by

building separate call graphs for both main-line and interrupt code. Any functions that

appear in more than one call graph can be replicated, each with its own local variable

area. Using this technique re-entrancy can be implemented without a conventional

stack.

Customized Runtime Startup Code

Once upon a time, all embedded systems programmers were accustomed to writing

their own runtime startup code (often in assembly language). Startup code is executed

immediately after reset to perform housekeeping, such as clearing the uninitialized RAM

area. The C language requires that uninitialized static and global variables be cleared to

zero on startup. Many newer embedded compilers relieve the engineer of this task by

providing canned startup code. However, canned startup code is often much larger than

necessary for a given program ─ if the program has no uninitialized global variables,

there is no need to include code to clear them. OCG makes this information available to

the code generator, which then creates custom runtime startup code. In a minimal case,

the startup code may be completely empty.

www.htsoft.com 9 3/9/2007

Smaller Code, Better Performance One obvious advantage of OCG is smaller, faster

code. More importantly, OCG allows embedded C programs to be written without the

use of architecture-specific extensions. By performing at compile time an analysis of the

whole program, the code generator can make decisions about memory placement,

pointer scoping etc. that would otherwise be made by the programmer and specified

through special directives or language extensions. Since this analysis is performed

every time the program is recompiled, it is always accurate and up-to-date.

Performance comparisons of OCG to conventional compilation focus on code size ─

typically the most important parameter for embedded systems, but also a valid proxy for

execution speed. A reduction in code size always results in an increase in execution

speed unless specific optimization techniques are used that sacrifice code speed for

size (such as code-threading).

A single C-language source file was compiled for the Microchip’s PIC18 and Cypress’

PSoCTM, using both traditional and OCG compilation technologies. OCG compilation

resulted in 17.2% less code for Microchip’s PIC18 architecture compared to Hi-Tech’s

PICC-18TM STD that shares much of the same compilation technology, except OCG.

OCG-compiled code for Cypress’ PSoC was 41.4% smaller, than that compiled by

ImageCraft.

Comparative code sizes (bytes) for ts057.c

Target Chip Compiler OCG Code Size ÎÎÎÎ%

Microchip PIC18 PICC-18 STD. no 8038

 PICC-18 PRO. yes 6652 -17.2%

Cypress PSoC ImageCraft no 11957

 PSoC PRO Beta

version

yes 7001 -41.4%

www.htsoft.com 10 3/9/2007

Additional tests to evaluate OCG’s library optimization functions on the PIC18C242

target resulted 50% better code density than IAR’s EW18 compiler and 40% better code

density than Microchip’s compiler.

Comparative PIC-18 code sizes (bytes) for ocg-test.c

Compiler Code size with

printf()

Code size without

printf()

IAR EW18 14855 8416

Microchip C18 12620 8873

HI-TECH PICC-18 STD 9775 8377

HI-TECH PICC-18 PRO 7488 6738

Tests conducted on other source files showed similar results..

Conclusion

The somewhat irregular architectures of embedded microcontrollers are often an

awkward fit with the standard C language, frequently requiring substantial architecture-

specific hand crafting to achieve efficient code. Omniscient Code Generation simplifies

and streamlines the programmer's job by abstracting and hiding the underlying

architecture, while simultaneously delivering reduced code size and increased

execution speed.

<ends>

Clyde Stubbs, CEO and Founder of HI-TECH Software.

BA (Hons) majoring in Computer Science - University of Qld, Australia 1982.

www.htsoft.com 11 3/9/2007

About HI-TECH Software

Hi-Tech Software is a world class developer of development tools for embedded

systems, offering compilers, RTOS and an Eclipse based IDE (HI-TIDE) for 8-, 16-, and

32-bit microcontroller and DSP chip architectures. Its products support Microchip

PICmicro® MCUs and DSPs, ARM, 8051, TI MSP430, HOLTEK, ARClite, XA, Z80, and

PSoC architectures, to name a few. Its customers include tens of thousands of

embedded system developers including General Motors, Whirlpool, Qualcomm, and

John Deere.

Founded by Clyde Stubbs, in 1984 in Brisbane, Australia, Hi-Tech Software has an

office in Gilroy, California, and an extensive network of distributors around the Globe.

