INTERNATIONAL CIVIL AVIATION ORGANIZATION

EUR SIGMET AND AIRMET GUIDE

SECOND EDITION 2010

PREPARED BY THE EUROPEAN AND NORTH ATLANTIC OFFICE OF ICAO

The designations and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of ICAO concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers or boundaries.

RECORD OF AMENDMENTS AND CORRIGENDA

-

	Amendments				
No.	Date of issue	Date entered	Entered by		
1	5 July 2011	5 July 2011	RO MET		
2	24 Nov 2011	24 Nov 2011	RO MET		
3	15 Feb 2013	15 Feb 2013	RO MET		
4	3 Jan 2014	3 Jan 2014	RO MET (align w/ Am76 to Annex 3)		
5	11 Feb 2014	11 Feb 2014	MET – Update App. B entries Norway		
6	3 Nov 2014	3 Nov 2014	Update wmo ahl russe and ad-hoc METG changes (align w/ global template)		

	Corrigenda				
No.	Date of issue	Date entered	Entered by		
	l	l	1		

TABLE OF CONTENTS

PART 1. INTRODUCTION	1
PART 2. RESPONSIBILITIES AND COORDINATION	3
2.1 General	
2.2 Meteorological Watch Office - responsibilities and procedures related to SIGMET and	
2.3 Responsibilities of ATS units	
2.4 Responsibilities of pilots	5
2.5 Coordination between MWOs and the VAACs	6
PART 3. RULES FOR PREPARATION OF SIGMET INFORMATION	7
3.1 General	
3.2 Types of SIGMET	
3.3 Structure of the SIGMET message	
3.4 Format of SIGMET	8
PART 4. RULES FOR PREPARATION OF AIRMET INFORMATION	23
4.1 General	
4.2 Structure of the AIRMET message	
4.3 Format of AIRMET	
APPENDIX A	
List of the abbreviations and decode used in SIGMET and AIRMET	33
APPENDIX B	35
List of EUR SIGMET (WS, WV) and AIRMET (WA) headers	35
APPENDIX C	41
Meteorological phenomena to be reported by SIGMET	41
APPENDIX D	
Meteorological phenomena to be reported by AIRMET	
APPENDIX E	
Guidelines for reporting geographical coordinates in SIGMET and AIRMET	44
APPENDIX F	45
EUR/NAT SIGMET test focal points	45
APPENDIX G	
SIGMET examples	53
APPENDIX H.	
SIGMET Guidance Table: Simplified from Annex 3 Table A6-1	79

PART 1. INTRODUCTION

1.1 The main purpose of this document is to provide guidance for standardization and harmonization of the procedures and formats related to the occurrence or expected occurrence of specified hazardous en-route weather conditions which may affect the safety of aircraft and low-level aircraft operations, known as SIGMET and AIRMET information. The guidance is complementary to the Annex 3 standards and recommended practices (SARPS) regarding SIGMET and AIRMET, and to the SIGMET and AIRMET related provisions of the EUR ANP/FASID (ICAO Doc 7754).

1.2 In respect of SIGMET messages, this document only includes guidance concerning SIGMET messages for significant en-route weather phenomena and volcanic ash SIGMET messages. The third type, tropical cyclone SIGMET messages, are excluded as this phenomenon does not occur in the EUR Region.

1.3 ICAO provisions concerning the issuance and dissemination of SIGMET information are contained in:

- Annex 3 *Meteorological Service for International Air Navigation*, Part I, Chapter 3, paragraphs 3.4 3.7, Chapter 7, paragraphs 7.1 7.2, and Part II, Appendix 6.
- EUR Basic ANP, Part VI and FASID Table MET 1B, MET 2B and MET 3B.
- Annex 11 *Air Traffic Services*, Chapter 4, paragraph 4.2.1 and Chapter 7, paragraph 7.1.
- PANS Air Traffic Management, Doc 4444, Chapter 9, paragraph 9.1.3.2.
- EUR Regional Supplementary Procedures, Doc 7030, Part 1, paragraph 2.2.

Additional guidance on the SIGMET procedures is contained in the Manual of Aeronautical Meteorological Practice, Doc 8896, and Manual on Coordination between Air Traffic Services, Aeronautical Information Services and Aeronautical Meteorological Services, Doc 9377.

1.4 AIRMET information is issued by a meteorological watch office (MWO) concerning the occurrence or expected occurrence of specified en-route weather phenomena which may affect the safety of low-level aircraft operations and which was not already included in the forecast issued for low-level flights in the flight information region concerned or sub-area thereof.

1.5 ICAO provisions concerning the issuance and dissemination of AIRMET information are contained in:

- Annex 3 *Meteorological Service for International Air Navigation*, Part I, Chapter 3 paragraph 3.4, Chapter 6 paragraph 6.5, Chapter 7 paragraphs 7.2, and Part II, Appendix 6.
- EUR Basic ANP, Part VI and FASID Table MET 1B, MET 2B and MET 3B.
- Annex 11 *Air Traffic Services*, Chapter 4 paragraph 4.2.1.
- PANS *Air Traffic Management*, Doc 4444, Chapter 9 paragraph 9.1.3.2.

Additional guidance on the AIRMET procedures is contained in the Manual of Aeronautical Meteorological Practice, Doc 8896, and Manual on Coordination between Air Traffic Services, Aeronautical Information Services and Aeronautical Meteorological Services, Doc 9377.

1.6 The SIGMET and AIRMET Guide is intended mainly to assist the meteorological watch offices (MWOs) in the EUR Region in preparing and disseminating SIGMET and AIRMET information. It provides

detailed information on the format of SIGMET and AIRMET messages as specified by Annex 3. The explanations of the format are accompanied by a number of examples based on region-specific meteorological phenomena. The guide also provides information regarding the necessary coordination between the MWOs, the ATS units and the pilots, and their respective responsibilities.

1.7 This document is prepared by the ICAO EUR/NAT Regional Office and is published on the website at URL: <u>http://www.paris.icao.int/documents_open/subcategory.php?id=48</u>. It should be reviewed and updated regularly in order to be kept in line with the ICAO SARPs and regional procedures. This Second Edition to EUR Doc 014 takes into account changes to SIGMET and AIRMET provisions resulting from the applicability of Amendment 76 to Annex 3 on 14 November 2013. This amendment dated 3 November 2014 contains changes with reference to the regional SIGMET guide template developed by the Meteorological Warnings Study Group (reference METWSG/5, Action Agreed 5/4).

PART 2. RESPONSIBILITIES AND COORDINATION

2.1 General

2.1.1 SIGMET and AIRMET are of highest priority among other types of OPMET information provided to aviation users. The primary purpose of SIGMET and AIRMET is for in-flight service, which requires timely transmission of the SIGMET and, where available, AIRMET messages to pilots by the ATS units and/or through VOLMET and D-VOLMET.

2.1.2 Airlines are the main users of the SIGMET and AIRMET information. Pilots contribute to the effectiveness of the SIGMET and AIRMET service through issuance of (routine and special) air-reports to the ATS units. Such air-reports are among the most valuable sources of information for the Meteorological Watch Offices (MWO) in the preparation of SIGMET and AIRMET. The ATS units receiving special air-reports should forward them to the associated MWOs without delay as well as to WAFCs if received by data-link communications. In addition, special air-reports of pre-eruption volcanic activity, a volcanic eruption, volcanic ash cloud or aircraft encounter with volcanic ash received by MWOs should be transmitted to their associated VAACs at the address specified in Table 4-2 of Doc 9766, to the WAFC London SADIS at the address specified in Appendix B of ICAO Doc 9766, according to the region containing the area affected, and the WAFC Washington at KWBCYMYX (reference ICAO Doc 9766). The ATS units receiving routine air-reports by data link communication should forward them to the associated MWOs and WAFCs without delay.

2.1.3 As seen from the above, the SIGMET and AIRMET service involves MET, ATS and pilots. In order for the SIGMET and AIRMET service to be effective, close coordination between these parties, as well as mutual understanding of the needs and responsibilities, should be maintained.

2.1.4 For the special case of SIGMET for volcanic ash, the MWOs are provided with advisories from the volcanic ash advisory centres (VAAC) designated in the Regional ANP.

2.1.5 SIGMET and AIRMET is also used for the flight planning and in-flight monitoring. This requires global dissemination of SIGMET and AIRMET through the EUR Regional OPMET Centres (ROCs) that will forward the information to the international OPMET data banks and World Area Forecast Centres (WAFC) London and Washington for global distribution (WIFS and SADIS/Secure SADIS FTP noting WIFS does not distribute AIRMET and special air-reports) and for use in the preparation of the significant weather (SIGWX) forecasts.

2.1.6 In the next paragraphs, the main responsibilities and coordination links between MET, ATS and pilots are described.

2.2 Meteorological Watch Office - responsibilities and procedures related to SIGMET and AIRMET

2.2.1 SIGMET and AIRMET information is issued by the MWO in order to provide timely warning for the occurrence or expected occurrence of specified en-route weather phenomena, affecting the safety of the flight operations in the MWO's area of responsibility (AOR). SIGMET and AIRMET provide information concerning the location, extent, intensity and expected evolution of the specified phenomena.

2.2.2 Information about the provision of SIGMET and AIRMET service, including details on the designated MWO(s), should be included in the State's Aeronautical Information Publication (AIP) as specified in Annex 15, Aeronautical Information Service, Appendix 1, GEN 3.5.8.

2.2.3 All designated MWOs in the EUR Region are listed in the FASID Table MET 1B of the EUR FASID.

Second Edition 3 November 2014 2.2.4 If, for some reason, a MWO is not able to meet its obligations, including the provision of SIGMET and AIRMET, arrangements have to be made by the meteorological authority concerned, that another MWO takes over these responsibilities for a certain period of time. Such delegation of responsibilities has to be notified by a NOTAM and a letter to the ICAO Regional Office.

2.2.5 Since the MWO is normally not a separate administrative unit, but part of the functions of an aerodrome meteorological office or another meteorological office, the meteorological authority concerned should ensure that the MWO obligations and responsibilities are clearly defined and assigned to the unit designated to serve as MWO. The corresponding operational procedures have to be established and the meteorological staff should be trained accordingly.

2.2.6 In preparing SIGMET and AIRMET information, the MWOs have to strictly follow the format determined in Annex 3 (detailed format description is provided in Appendix 6, Table A6-1 of Annex 3). For more assistance, reference **Appendix H** to this guide - SIGMET Guidance Table: Simplified from Annex 3 Table A6-1. SIGMET and AIRMET should be issued only for those weather phenomena listed in Annex 3 and only when specified criteria for intensity and spatial extent are met.

Note: MWOs should not issue SIGMET and AIRMET for weather phenomena of lower intensity or of such transient nature or smaller scale, which do not affect significantly the flight safety, and their transmission to users may lead to unnecessary precautionary measures.

2.2.7 The MWOs should be adequately equipped in order to identify, analyse and forecast (to the extent required) those phenomena for which SIGMET and AIRMET is required. The MWO should make use of all available sources of information, such as special air-reports, information from meteorological satellites and weather radars, numerical predictions, etc.

2.2.8 On receipt of a special air-report from the associated ACC or FIC, the MWO should:

- a) issue the corresponding SIGMET and AIRMET information; or
- b) send the special air-report for on-ward transmission in case that the issuance of SIGMET information is not warranted (e.g., the phenomenon reported is of transient nature). *Note that a list of special air-report headers for the EUR Region is provided at the following website:* <u>http://www.paris.icao.int</u>.

2.2.9 Appropriate telecommunication means have to be available at the MWO in order to ensure timely dissemination of SIGMET and AIRMET (as per EUR FASID Table MET 1B) according to a dissemination scheme, which includes transmission to:

- local ATS users;
- aerodrome MET offices within the AOR;
- other MWOs concerned (it should be ensured that SIGMET and AIRMET is sent to all MWOs whose AORs are, at least partly, within the 925 km (500 NM) range from the reported phenomenon);
- centres designated for transmission of VOLMET or D-VOLMET where SIGMET and AIRMET is required for transmission;
- the responsible Regional OPMET Centres (ROC) and international EUR OPMET data banks (it should be arranged through the EUR RODEX scheme, that SIGMET and AIRMET are sent to the designated OPMET data banks in other ICAO Regions, to the WAFCs and to the uplink stations of SADIS and WIFS noting WIFS does not distribute AIRMET and special air-reports);

- responsible VAAC (if applicable); and

Note that SIGMET, AIRMET and special air-reports priority indicator is **FF** for flight safety messages (Annex 10, Volume II, 4.4.1.1.3 refers)

2.2.10 In issuing SIGMET for volcanic ash, the MWOs should take into consideration the advisory information received from the responsible VAAC. In addition to the information received from the VAAC, the MWOs may use available complementary information from other reliable sources. In such a case the responsibility for this additional information would lie completely on the MWO concerned.

2.3 **Responsibilities of ATS units**

2.3.1 Close coordination should be established between the MWO and the corresponding ATS unit (ACC or FIC), including arrangements in order to ensure:

- receipt without delay and display at the relevant ATS units of SIGMET and AIRMET issued by the associated MWO;
- receipt and display at the ATS unit of SIGMET and AIRMET issued by MWOs responsible for the neighbouring FIRs /ACCs if these SIGMET and AIRMET are required according to paragraph 2.3.4 below ; and
- transmission without delay of special air-reports received through voice communication to the associated MWO.

2.3.2 SIGMET and AIRMET information should be transmitted to aircraft with the least possible delay on the initiative of the responsible ATS unit, by the preferred method of direct transmission followed by acknowledgement or by a general call when the number of aircraft would render the preferred method impracticable.

2.3.3 SIGMET and AIRMET information passed to aircraft should cover a portion of the route up to a flying time of two hours ahead of the aircraft.

2.3.4 Air traffic controllers should ascertain whether any of the currently valid SIGMETs may affect any of the aircraft they are controlling, either within or outside their AOR up to a flying time of two hours ahead of the current position of the aircraft. If this is the case, the controllers should transmit the SIGMET promptly to the aircraft-in-flight likely to be affected.

2.3.5 The ATS units have to transmit to the concerned aircraft-in-flight the special air reports received, for which SIGMET has not been issued. Once a SIGMET for the weather phenomenon reported in the special air report is made available, this obligation of the ATS unit expires.

2.4 **Responsibilities of pilots**

2.4.1 Timely issuance of SIGMET and AIRMET information is largely dependent on the prompt receipt by MWOs of special air reports. That is why, it is essential that pilots prepare and transmit such reports to the ATS units whenever any of the specified en-route conditions are encountered or observed.

2.4.2 It should be emphasized that, even when automatic dependent surveillance (ADS) is being used for routine air reports, pilots should continue to make special air reports.

2.5 Coordination between MWOs and the VAACs

2.5.1 Amongst the phenomena for which SIGMET information is required, the volcanic ash clouds are of particular importance for the planning of long-haul flights.

2.5.2 Since the identification, analysis and forecasting of volcanic ash require considerable technical and human resources, normally not available at each MWO, a number of Volcanic Ash Advisory Centres (VAACs) have been designated to provided VA advisories to the users and assist MWOs in the preparation of the SIGMET for volcanic ash. Close coordination should be established between the MWO and the responsible VAAC.

2.5.3 Information regarding the VAACs serving the EUR Region with their corresponding areas of responsibility and lists of MWOs to which advisories are to be sent is provided in the EUR FASID Table MET 3B.

PART 3. RULES FOR PREPARATION OF SIGMET INFORMATION

3.1 General

3.1.1 SIGMET information is prepared in abbreviated plain language using approved ICAO abbreviations, a limited number of non-abbreviated words, and numerical values of self-explanatory nature. All abbreviations and words to be used in SIGMET are given in **Appendix A**.

3.1.2 The increasing use of automated systems for handling MET information by the MET offices and the aviation users makes it essential that all types of OPMET information, including SIGMET, are prepared and transmitted in the prescribed standardized formats. Therefore, the structure and format of the SIGMET message, as specified in Annex 3, Part II, Appendix 6, should be followed strictly by the MWOs. Annex 3, Appendix 6, Table A6-1 provides detailed information regarding the content and order of elements in the SIGMET message.

3.1.3 SIGMET is intended for transmission to aircraft in flight either by ATC or by VOLMET or D-VOLMET or the aircraft operators. Therefore, SIGMET messages should be kept short and clear, without additional descriptive text other than that prescribed in Annex 3.

3.1.4 After issuing a SIGMET, the MWO maintain watch over the evolution of the phenomenon for which the SIGMET has been issued and issue a new updated SIGMET when necessary. VA SIGMETs have to be updated at least every 6 hours.

3.1.5 SIGMETs should be promptly cancelled when the phenomenon is no longer occurring or no longer expected to occur in the MWO's area of responsibility. The SIGMET is understood to cancel itself automatically at the end of its validity period. If the phenomenon persists a new SIGMET message for a further period of validity has to be issued.

3.1.6 Some SIGMET are generated using information from special air-reports (received by voice communications or data link (downlink)). The reporting of turbulence and icing used in special air-reports includes both moderate and severe categories (as per Doc 4444, Appendix 1). Some pilots report turbulence as "moderate to severe". A MWO is then faced with determining which category to use in a special air-report (uplink) or in a SIGMET message for severe turbulence. It is recommended to treat such "moderate to severe" observations as 'severe' in the context of using the report to prompt the issuance of a SIGMET message or a special air-report (uplink).

3.2 Types of SIGMET

3.2.1 Although Annex 3 provides one general SIGMET format, which encompasses all weather phenomena, it is convenient when describing the structure and format of the messages to distinguish between three types of SIGMET, as follows:

- SIGMET for en-route weather phenomena other than volcanic ash or tropical cyclones (this includes: TS, TURB, ICE, MTW, DS, SS, and RDOACT CLD); this SIGMET is referred as WS SIGMET;
- SIGMET for volcanic ash is referred as WV SIGMET
- SIGMET for tropical cyclones is referred as WC SIGMET and not described in this document (only WC SIGMET examples and code elements are represented in Appendix G and Appendix H to this Guide).

3.2.2 The type of SIGMET can be identified through the data type designator included in the WMO abbreviated heading of the SIGMET message, as explained in the following paragraphs.

3.3 Structure of the SIGMET message

- 3.3.1 A SIGMET message consists of:
 - *WMO heading* all SIGMETs are preceded by an appropriate WMO heading;
 - *First line*, containing location indicators of the relevant ATS unit and MWO, sequential number and period of validity;
 - *Meteorological part*, containing meteorological information concerning the phenomenon for which the SIGMET is issued;

3.3.2 The first two parts of the SIGMET message are common for all types of SIGMETs. The content and format of the meteorological part is different depending on the type of SIGMET. Therefore, in the following paragraphs, the meteorological part of the WS and WV types of SIGMET is described separately.

3.4 Format of SIGMET

Note: In the following text, square brackets - [] - are used to indicate a conditional element, and angled brackets - $\langle \rangle$ - for symbolic representation of a variable element, which in the real SIGMETs accepts explicit numerical values.

3.4.1 <u>WMO Header</u>

T₁T₂A₁A₂ii CCCC YYGGgg

3.4.1.1 The group $T_1T_2A_1A_2ii$ is the bulletin identification for the SIGMET message. It is constructed in the following way:

T_1T_2	Data type designator	WS – for SIGMET
		WC – for SIGMET for tropical cyclone (not required in the EUR
		Region)
		WV – for SIGMET for volcanic ash
A_1A_2	Country or territory	Assigned according to Table C1, Part II of Manual on the Global
	designators	Telecommunication System, Vol I – Global Aspects (WMO - No.
		386)
ii	Bulletin number	Assigned on national level according to paragraph 2.3.2.2, Part II
		of Manual on the Global Telecommunication System, Vol I -
		Global Aspects (WMO - No. 386)

3.4.1.2 **CCCC** is the ICAO location indicator of the communication centre disseminating the message (could be the same as the MWO).

3.4.1.3 **YYGGgg** is the date/time group, where YY is the date and GGgg is the time in hours and minutes UTC, of the transmission of the SIGMET (normally this is the time assigned by the AFTN centre which disseminates the message).

3.4.1.4 It is recommended to assign a unique WMO header for each SIGMET bulletin per FIR, CTA or UIR. The distinction between different SIGMET bulletins issued by the State's MWOs should be through the respective data type designator (T_1T_2) and bulletin number (ii), as for example in Germany:

"WSDL31 EDZF" and "WVDL31 EDZF" for EDGG LANGEN FIR "WSDL31 EDZH" and "WVDL31 EDZH" for EDWW BREMEN FIR "WSDL31 EDZM" and "WVDL31 EDZM" for EDMM MUNCHEN FIR "WSDL32 EDZF" and "WVDL32 EDZF" for EDUU RHEIN UIR

Second Edition 3 November 2014 "WSDL32 EDZH" and "WVDL32 EDZH" for EDYY HANNOVER UIR

Examples:

WSDL32 EDZF 121200 WVJP01 RJTD 010230 WCNG21 AYPY 100600

Note: A table with WMO SIGMET headers used by the EUR Meteorological Watch Offices is included in Appendix B

3.4.2 First line of SIGMET

CCCC SIGMET [nn]n VALID YYGGgg/YYGGgg CCCC-

3.4.2.1 The meaning of the groups in the first line of the SIGMET is as follows:

CCCC	ICAO location indicator of the ATS unit serving the FIR or CTA to which the SIGMET refers
SIGMET	Message identifier
[nn]n	Daily sequence number (see paragraph 3.4.2.2)
VALID	Period of validity indicator
YYGGgg/YYGGgg	Validity period of the SIGMET given by date/time group of the beginning and
	date/time group of the end of the period (see paragraph 3.4.2.3)
CCCC-	ICAO location indicator of the MWO originating the message and – (hyphen,
	without space, to separate the preamble from the text)

3.4.2.2 The numbering of SIGMETs should start every day at 0001 UTC. The sequence number should consist of up to three symbols and may be a combination of letters and numbers, such as:

- 1, 2, ...
- 01, 02, ...
- A01, A02, ...

Examples:

EDWW SIGMET 3 VALID 121100/121500 EDZH-VHHK SIGMET A04 VALID 202230/210230 VHHH-

Note 1: No other combinations should be used, like "CHARLIE 05" or "NR7".

Note 2: Correct numbering of SIGMET is very important since the number is used for reference in the communication between ATC and pilots and in VOLMET and D-VOLMET.

3.4.2.3 The following has to be considered when determining the validity period:

- the period of validity of WS SIGMET should not exceed 4 hours;
- the period of validity of WV SIGMET should be up to 6 hours;
- in case of a SIGMET for an observed phenomenon the filing time (date/time group in the WMO heading) should be same or close to the date/time group indicating the start of the SIGMET validity period;
- when the SIGMET is issued for an expected phenomenon:

- the beginning of validity period should be the time of expected commencement (occurrence) of the phenomenon;
- the lead time (the time of issuance of the SIGMET) should be not more than 4 hours before the start of validity period (i.e., expected time of occurrence of the phenomenon); and
- o for WV SIGMETs the lead time may be up to 12 hours.

3.4.2.4 The period of validity is the period during which the SIGMET is valid for transmission to aircraft in flight.

Examples:

1. SIGMET for an observed phenomenon:

WSIE31 EIDB 241120 EIDB SIGMET 3 VALID 241120/241500 EINN-

2. SIGMET for a forecast phenomenon (expected time of occurrence 1530)

WSSG31 WSSC 251130 WSSA SIGMET 1 VALID 251530/251930 WSSM-

3.4.3 Format of the meteorological part of SIGMET messages for weather phenomena other than VA

3.4.3.1 The meteorological part of a SIGMET consists of nine elements as shown in the table below.

Start of the second line of the message

1	2	3	4	5	6
Location indicator of the FIR/UIR or CTA	Name of the FIR or UIR or FIR/UIR or CTA	Description of the phenomenon	Observed or forecast	Location of the phenomenon*	Flight level or altitude and extent*
<cccc></cccc>	<name> FIR [UIR, FIR/UIR, CTA]</name>	<phenomenon></phenomenon>	OBS [AT <ggggz>] or FCST [AT <ggggz>]</ggggz></ggggz>	Geographical location of the phenomenon given by coordinates	FL <nnn nnn=""> or [SFC/]FL<nnn> or [SFC/]<nnnn>M or [SFC/]<nnnn>FT or TOP FL<nnn> or [TOP] ABV FL<nnn></nnn></nnn></nnnn></nnnn></nnn></nnn>

7	8	9	
Movement or expected movement*	Changes in intensity*	Forecast position validity p	
MOV <direction, speed=""> KMH[KT], or STNR</direction,>	INTSF or WKN or NC	[FCST <ggggz>]</ggggz>	[location of the phenomenon given by coordinates]

Second Edition 3 November 2014 *In the case of the same phenomenon covering more than one area within the FIR, these elements can be repeated, as necessary.

3.4.3.1.1 Location indicator and <u>name of the FIR, UIR, FIR/UIR or CTA</u>

location indicator <name> FIR or location indicator <name> UIR or location indictor <name> FIR/UIR or location indicator <name> CTA

Example:

EDBB BERLIN FIR

3.4.3.1.2 Phenomenon

The description of the phenomenon consists of a qualifier and a phenomenon abbreviation. SIGMET shall be issued only for the following phenomena (with only one phenomenon in each SIGMET):

at cruising levels (irrespective of altitude):

- thunderstorms if they are OBSC, EMBD, FRQ or SQL with or without hail;
- turbulence only SEV
- icing only SEV with or without FZRA
- mountain waves only SEV
- dust storm only HVY
- sand storm only HVY
- radioactive cloud RDOACT CLD

The appropriate abbreviations and combinations thereof, and their meaning are given in Appendix C.

3.4.3.1.3 Indication if the phenomenon is observed or forecast

OBS [AT <GGggZ>] or FCST [AT <GGggZ>]

The indication whether the information is observed or forecast is given by the abbreviations OBS and FCST. OBS and FCST may be followed by a time group in the form AT GGggZ, where GGgg is the time of the observation or forecast in hours and minutes UTC. If the exact time of the observation or forecast is not known the time is not included. When the phenomenon is based on a forecast without a reported observation, the time given for GGggZ represents the time of commencement of the phenomenon.

Examples:

OBS OBS AT 0140Z FCST FCST AT 0200Z

3.4.3.1.4 Location of the phenomenon

Second Edition 3 November 2014 The location of the phenomenon is given with reference to geographical coordinates (latitude and longitude in degrees, or in degrees and minutes). The MWOs should try to be as specific as possible in reporting the location of the phenomenon and, at the same time, to avoid overwhelming geographical information, which may be difficult to process or perceive. The number of points given with their coordinates should be no less than 4 and normally no greater than 7 noting the first point is repeated (the end point should be a repeat of the start point). The recommended best practice is to list the coordinates in a clockwise order as this is an XML/GML convention.

The following is the most preferred way to describe the location of the phenomenon for ingestion into automated systems used by the airlines for flight planning and in-flight decision making:

- Indication of a part of the FIR with reference to longitude and latitude as a closed line:

```
WI<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>-
<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>-
<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>-
<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>-
<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>-
<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>-
<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>-
```

For example:

WI N6030 E02550 - N6055 E02500 - N6050 E02630 - N6030 E02550

WI N60 E025 - N62 E27 - N58 E030 - N59 E26 - N60 E025

Use of polygons with complex FIR boundaries

Annex 3 (18^{th} Edition, July 2013) specifies that the points of a polygon '... should be kept to a minimum and should not normally exceed seven'. However, some FIR boundaries are complex, and it would be unrealistic to expect that a polygon would be defined that followed such boundaries exactly. As such, some States have determined that the polygon points be chosen in relation to the complex boundary such that the FIR boundary approximates, but is wholly encompassed by, the polygon, and that any additional area beyond the FIR boundary be the minimum that can be reasonably and practically described. Caution should however be exercised in those instances where international aerodromes are located in close proximity to such a complex FIR boundary. **Appendix G** provides examples and advice with regard to describing such areas.

The following are additional ways to describe the location of the phenomenon:

- Indication of a part of the FIR with reference to latitude:

N OF or S OF <Nnn[nn]> or <Snn[nn]>

For example:

N OF S2230

Indication of a part of the FIR with reference to a longitude:

E OF or W OF <Ennn[nn]> or <Wnnn[nn]>

For example:

W OF E080

Indication of a part of the FIR with reference to a latitude and longitude:

any combination of the above two cases; with the conjunction 'AND'

N OF or S OF <Nnn[nn]> or <Snn[nn]> AND E OF or W OF <Ennn[nn]> or <Wnnn[nn]>

For example:

N OF N1200 AND E OF W02530

S OF N60

- with reference to a LINE, described with lat/long of two points

N OF, NE OF, E OF, SE OF, S OF, SW OF, W OF, NW OF [LINE] <Nnn[nn]> or <Snn[nn]> <Wnnn[nn]> or <Ennn[nn]> - <Nnn[nn]> or <Snn[nn]> <Wnnn[nn]> or <Ennn[nn]>

For example:

NE OF LINE N2500 W08700 - N2000 W08300

W OF LINE N20 E042 - N35 E045

- At a specific point within the FIR, indicated by a single coordinate of latitude and longitude

<Nnn[nn]> or <Snn[nn]> <Wnnn[nn]> or <Ennn[nn]> -<Nnn[nn]> or <Snn[nn]><Wnnn[nn]> or <Ennn[nn]>

For example:

N5530 W02230

S23 E107

More details on reporting of the location of the phenomenon are given in Appendix 6 to Annex 3 and in **Appendix E and G** to this Guide.

3.4.3.1.5 Flight level or altitude and extent

[SFC/]FL<nnn> or FL<nnn/nnn> or [SFC/]<nnnn>M or [SFC/]<nnnn>FT or TOP FL<nnn> or [TOP] ABV FL<nnn>

The location or extent of the phenomenon in the vertical is given by one or more of the above abbreviations, as follows:

Second Edition 3 November 2014 - reporting of single level – **FL**<**nnn**>;

For example: FL320

- reporting of a layer – SFC/FL<nnn>, SFC/<nnn>M, or SFC/<nnn>FT, where the lower level is the surface and the upper level is a flight level, an altitude in metres or an altitude in feet respectively;

For example: SFC/FL320, SFC/3000M, SFC/9900FT

- reporting a layer using flight levels – **FL**<**nnn/nnn**>, where the lower flight level is reported first; this is used particularly in reporting turbulence and icing;

For example: FL250/290

 reporting the top of a phenomenon with reference to one flight level (base is unknown but top is known) – TOP FL<nnn>

For example: **TOP FL350**

reporting a phenomenon with reference to one flight level and the abbreviation ABV (top is unknown, but base is known) – ABV FL<nnn>

For example: ABV FL350

- reporting the top of a phenomenon with reference to one flight level and the abbreviation ABV – **TOP ABV FL<nnn>**

Additional examples:

EMBD TS ... TOP ABV FL340 SEV TURB ... FL180/210 SEV ICE ... SFC/FL150 SEV MTW ... FL090/180

3.4.3.1.6 <u>Movement</u>

MOV <direction> <speed> KMH[KT] or STNR

Direction of movement is given with reference to one of the sixteen points of compass (N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, NNW). Speed is given in KMH or KT. The abbreviation STNR is used if no significant movement is expected.

Examples:

MOV NW 30KMH MOV NNW 30KMH MOV E 25KT STNR

Note. – When also including a forecast position, care should be taken to ensure that the rate of movement and forecast position are consistent.

Second Edition 3 November 2014

EUR SIGMET and AIRM	MET Guide
---------------------	-----------

3.4.3.1.7 Expected changes in intensity

The expected evolution of the phenomenon's intensity is indicated by one of the following abbreviations:

INTSF – intensifying WKN – weakening NC – no change

3.4.3.1.8 Forecast position at the end of the SIGMET validity period

Note. – Annex 3 (18^{th} Edition, July 2013) enables SIGMET to contain explicit forecast position information relating to hazardous phenomena other than volcanic ash or tropical cyclone.

[FCST<GGggZ><location of phenomenon given by coordinates>]

Forecast position of the phenomenon at the end of the validity period of the SIGMET message is conditional, included wherever applicable, in addition to movement/expected movement. GGgg is the time in hours and minutes (UTC) and should indicate the end of validity period as given in the first line of the SIGMET message. The location of the phenomenon is indicated by one of the ways described in 3.4.3.1.4 above. The levels of the phenomenon remain fixed throughout the SIGMET validity period because there is currently no provision for indicating changes to the levels affected by phenomena between the initial position and the forecast position. As such, and as per footnote 31 to Table A6-1 of Annex 3 (18th Edition, July 2013), it should be assumed that the levels affected remain the same for both initial and forecast positions. Note that when movement/expected movement is given as STNR the 'forecast position' section can be omitted from the SIGMET.

Example:

FCST 1630Z WI N4519 E02849 – N4400 E02750 – N4338 E02533 – N4351 E02250 – N4519 E02849

More details on reporting the location of the phenomenon are given in the examples in Appendix 6 to Annex 3 and Appendix E and G to this Guide.

3.4.4 Structure of the meteorological part of WV SIGMET

3.4.4.1 The general structure of the meteorological part of the SIGMET message is given in the table below:

Start of the second line of the message

					· · · · · · · · · · · · · · · · · · ·
1	2	3			4
Location Name of the FIR or			Volcano		
indicator of the FIR/UIR or CTA	UIR or FIR/UIR or CTA	Name	Position	Phenomenon	Observed or forecast volcanic ash cloud
<cccc></cccc>	<name> FIR [UIR, FIR/UIR, CTA]</name>	[VA ERUPTION] [MT <name>]</name>	[PSN <position>]</position>	VA CLD	OBS [AT <ggggz>] or FCST [AT <ggggz>]</ggggz></ggggz>

	6		
	Movement or expected		
Location*	Level (Flight level and exte	ent)*	movement*
Location (referring to latitude and longitude in	FL <nnn nnn=""> <i>or</i> SFC/FL<nnn></nnn></nnn>	FLnnn/nnn [APRX nnnKM BY nnnKM (APRX nnnNM BY	MOV <direction> <speed> KMH[KT] or STNR</speed></direction>
degrees and minutes)		nnnNM)]	

note that this column is	InnVM WID I INE DTN (nnNM	
	[nnKM WID LINE BTN (nnNM	
used with the previous	WID LINE BTN)]	
location column-	[Nnn[nn] or Snn[nn] Wnnn[nn] or	
	Ennn[nn]	
if this column and the	-Nnn[nn] or Snn[nn] Wnnn[nn] or	
previous column are	Ennn[nn]	
selected, do not use the	[-Nnn[nn] or Snn[nn] Wnnn[nn] or	
next column	Ennn[nn]]	
	[-Nnn[nn] or Snn[nn] Wnnn[nn] or	
	Ennn[nn]]]	
	Expansion of above provided in	
	3.4.4.4	
	5.4.4.4	
	note that if this column is used, the	
	previous two columns are not used	
	previous two corunnis are not used	

7		8
Changes in intensity*	Volcanic	ash cloud forecast at the end of the period of validity*
	FCST time	Position
INTSF	FCST <ggggz></ggggz>	VA CLD APRX [nnKM WID LINE BTN (nnNM WID LINE
or		BTN)] <lat,lon> - <lat,lon></lat,lon></lat,lon>
WKN		[AND]**
or		or
NC		ENTIRE FIR
		or
		ENTIRE CTA
		or
		NO VA EXP

*In the case of the same phenomenon covering more than one area within the FIR, these elements can be repeated, as necessary.

**To be used for two volcanic ash clouds simultaneously affecting the FIR concerned.

3.4.4.2 Name and location of the volcano and/or indicator for VA cloud

[VA ERUPTION] [MT <name>] [PSN <lat,lon>] VA CLD or VA CLD

3.4.4.2.1 The description of the volcano injecting volcanic ash consists of the following elements:

- the term **VA ERUPTION** is used when the SIGMET is issued for a known volcanic eruption;
- geographical/location information:
 - i. if the name of the volcano is known, it is given by the abbreviation **MT** mountain, followed by the name, e.g. **MT RABAUL**
 - ii. the position of the volcano is given by the abbreviation **PSN**, followed by the latitude and longitude in degrees and minutes, e.g. **PSN N3520 E09040**
- this section of the message ends with the abbreviation VA CLD volcanic ash cloud.

For example:

VA ERUPTION PSN N27 W017 VA CLD

VA ERUPTION MT ASHVAL PSN S1530 E07315 VA CLD

3.4.4.2.2 If the FIR is affected by a VA cloud with no information about the volcanic eruption which generated the cloud, only the abbreviation **VA CLD** shall be included in the SIGMET.

3.4.4.3 Time of VA CLD observation or forecast

OBS [AT <GGgg>Z] or FCST [AT <GGgg>Z]

The time of observation is taken from the source of the observation – satellite image, special air- report, report from a ground volcano logical station, etc. If the VA cloud is not yet observed over the FIR but the volcanic ash advisory received from the responsible VAAC indicates that the cloud is affecting the FIR in the next 12 hours, SIGMET shall be issued, and the abbreviation FCST [AT <GGgg>Z] shall be used. The time given for GGggZ represents the time of commencement of the phenomenon. If the exact time of the observation or forecast is not known, the time is not included.

Examples:

OBS OBS AT 0100Z FCST FCST AT 1200Z

3.4.4.4 Location and level or level and extent of the volcanic ash cloud

<u>Option 1 – location and level</u> WI <P1(lat,lon) - P2(lat,lon) - ... > SFC/FL<nnn> or FL<nnn/nnn> or ENTIRE FIR[CTA] SFC/FL<nnn> or FL<nnn/nnn>

For example:

WI N6030 E02550 - N6055 E02500 - N6050 E02630 - N6030 E02550 SFC/FL300

WI N60 E025 - N62 E027 - N58 E030 - N59 E026 - N60 E025 SFC/FL300

ENTIRE FIR SFC/FL300

ENTIRE CTA FL100/320

Note. – The points of a polygon should be provided in a clockwise order, and the end point should be a repeat of the start point.

Use of polygons with complex FIR boundaries.

Annex 3 (18th Edition, July 2013) specifies that the points of a polygon '...should be kept to a minimum and should not normally exceed seven'. However, some FIR boundaries are complex and it would be unrealistic to expect that a polygon would be defined that followed such boundaries exactly. As such, some States have determined that the polygon points be chosen in relation to the complex boundary such that the FIR boundary approximates, but is wholly encompassed by, the polygon, and that any additional area beyond the FIR boundary be the minimum that can be reasonably and practically described. Caution should however be exercised in those instances where international aerodromes are located in close

proximity to such a complex FIR boundary. Appendix G provides examples and advice with regard to describing such areas.

Option 2 – level and extent

FL <nnn nnn=""> APRX nnnKM BY nnnKM <p1(lat,lon) p2(lat,lon)="" –=""></p1(lat,lon)></nnn>
or
FL <nnn nnn=""> APRX nnnNM BY nnnNM <p1(lat,lon) p2(lat,lon)="" –=""></p1(lat,lon)></nnn>
or
FL <nnn nnn=""> nnKM WID LINE BTN <p1(lat,lon) p2(lat,lon)="" –=""></p1(lat,lon)></nnn>
or
FL <nnn nnn=""> nnNM WID LINE BTN <p1(lat,lon) p2(lat,lon)="" –=""></p1(lat,lon)></nnn>

noting that two points would suffice in using APRX and two or more points used for WID LINE BTN

WI < P1 (lat,lon) – P2 (lat,lon) >	Approximate description of the VA cloud by a number of
	points given with their geographical coordinates ¹ ; the points
	shall be separated by hyphen
ENTIRE FIR	Indicating the VA cloud is forecast to be or present in the
ENTIRE CTA	horizontal limits of the entire FIR or CTA
SFC/FL <nnn> or FL<nnn nnn=""></nnn></nnn>	The layer of the atmosphere where the VA cloud is situated,
	given by two levels from the lower to the upper boundary of
	the cloud
APRX nnnKM BY nnnKM <p1(lat,lon) –<br="">P2(lat,lon) > or APRX nnnNM BY nnnNM <p1(lat,lon) –<br="">P2(lat,lon) > or</p1(lat,lon)></p1(lat,lon)>	Approximate horizontal extent of the VA cloud that may be expressed as an area KM by KM or NM by NM centred on a line described by two points <p1(lat,lon) p2(lat,lon)="" –=""></p1(lat,lon)>
or nnKM WID LINE BTN <p1(lat,lon) –<br="">P2(lat,lon)> or nnNM WID LINE BTN <p1(lat,lon) –<br="">P2(lat,lon)></p1(lat,lon)></p1(lat,lon)>	Approximate horizontal extent of the VA cloud that may be described as a zone of specified width in KM or NM, centred on a line described by two or more points <p1(lat,lon) p2(lat,lon)="" –=""></p1(lat,lon)>

If the VA cloud spreads over more than one FIR, separate SIGMETs shall be issued by all MWOs whose FIRs are affected. In such a case, the description of the volcanic ash cloud by each MWO should encompass the part of the cloud, which lies over the MWO's area of responsibility. The MWOs should try to keep the description of the volcanic ash clouds consistent by checking the SIGMET messages received from the neighbouring MWOs.

Examples:

FL100/180 APRX 200KM BY 50KM N0100 E09500 - N0200 E09600

FL150/210 50KM WID LINE BTN S0530 E09300 - N0100 E09530 - N1215 E11045 - N1530 E01330

¹ The format of geographical coordinates reporting in SIGMET is given in **Appendix E** and examples given in **Appendix G**.

3.4.4.5 <u>Movement or expected movement of the VA cloud</u>

MOV <direction> <speed>KMH[KT]

STNR

or

The direction of movement is given by the abbreviation MOV – moving, followed by one of the sixteen points of compass: N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, NNW. The speed of movement is given in KMH or KT.

Examples:

MOV E 35 KMH MOV SSW 20 KT STNR

Note. – When also including a forecast position, care should be taken to ensure that the rate of movement and forecast position are consistent.

3.4.4.6 Expected changes in intensity

The expected evolution of the phenomenon's intensity is indicated by one of the following abbreviations:

INTSF or WKN or NC

3.4.4.7 Forecast position of the VA cloud at the end of the validity period of the SIGMET message

3.4.4.7.1 The description of the expected position of the volcanic ash cloud is described as a polygon or an area centred on a line.

As a polygon, using the following format: FCST <GGggZ> VA CLD APRX<P1(lat,lon) – P2(lat,lon) - ...>

Example :

FCST 1800Z VA CLD APRX N6300 W02000 – N6030 W01700 – N5815 W02230 – N6100 W02400 – N6300 W02000...

Or as an area centred on a line (of specified width in KM), using the following format: FCST <GGggZ> VA CLD APRX nnKM WID LINE BTN<P1(lat,lon) – P2(lat,lon) - ...>

Example:

FCST 1800Z VA CLD APRX 90KM WID LINE BTN S4000 W09000 – S4300 W08500 – S3800 W07500 – S4500 W06000...

Or as an area centred on a line (of specified width in NM), using the following format:

FCST<GGggZ> VA CLD APRX nnNM WID LINE BTN <P1(lat,lon) - P2(lat,lon) - ...>

Example:

FCST 1800Z VA CLD APRX 55NM WID LINE BTN S4000 W09000 - S4300 W08500 - S3800 W07500 - S4500 W06000...

3.4.4.7.2 The **GGggZ** group should indicate the end of the validity period given in the first line of the SIGMET message.

3.4.4.7.3 The description of the expected position of the volcanic ash cloud when the volcanic ash cloud is expected to extend over the entire FIR or CTA is given as:

FCST <GGggZ> ENTIRE FIR or FCST <GGggZ> ENTIRE CTA

3.4.4.7.4 The description of the expected position of the volcanic ash cloud when the volcanic ash cloud is expected to be completely out of the FIR or CTA is given as:

FCST<GGggZ> NO VA EXP

3.4.4.7.5 Inclusion of the forecast position of the volcanic ash cloud at the end of the validity period of the SIGMET message is conditional, wherever applicable, in addition to movement or expected movement (Key 'C' in Table A6-1 of Annex 3). The forecast position is not included in the SIGMET when movement or expected movement is given as STNR (a forecast position = an initial position) or when WV SIGMETs (a 'start of eruption SIGMET', an 'interim SIGMET') are being issued by MWO immediately after the outbreak of the volcanic eruption and entrance of volcanic ash into the atmosphere (forecast position is not yet available).

Note. – Currently, there is no provision for indicating changes to the levels affected by volcanic ash between the initial position and the forecast position. As such, as per footnote 31 to Table A6-1 of Annex 3 (18^{th} Edition, July 2013), it should be assumed that the levels affected remain the same for both initial and forecast positions.

3.4.4.8 <u>Use of multiple layers</u>

3.4.4.8.1 The use of more than one layer is necessary when the wind direction changes with height which causes the VA cloud to spread into different directions at different heights. In describing the VA cloud, up to two different layers can be used in a single SIGMET message when 'forecast position' is also used since it is assumed that the levels affected remain the same for both initial and forecast positions. The repeated elements include location, level (or level and horizontal extent) movement or expected movement, changes in intensity, and forecast position (at the end of the validity period of the SIGMET message). Note 21 of Table A6-1 in Appendix 6 of Annex 3 apply to these elements.

Example:

...WI N5650 E02540 – N5745 E02540 – N5745 E02445 – N5650 E0245 – N5650 E02540 SFC/FL200 MOV N 25KT NC FCST 1200Z VA CLD APRX N5840 E02540 – N5935 E02540 – N5935 E02445 – N5840 E02445 – N5840 E02540 AND WI N5650 E02200 – N5745 E02200 – N5745 E02105 – N5650 E02105 – N5650 E02200 FL200/350 MOV N 25KT NC FCST 1200Z VA CLD APRX N5840 E02200 – N5935 E02200 – N5935 E02105 – N5840 E02105 – N5840 E02200 With regard to the portrayal of complex volcanic ash events (which implies multiple areas of volcanic ash at multiple levels) basic guidance in this regard is provided in **Appendix G**.

Footnote 26 of Table A6-1 permits the word 'AND' in the 'Forecast position' section "To be used for [describing] two volcanic ash clouds or two centres of tropical cyclones simultaneously affecting the FIR concerned".

Note: Graphical SIGMET for complex volcanic ash events (Model SVA) and the assessment of volcanic ash advisory replacing the SIGMET for volcanic ash is being examined by an ad-hoc group of the International Airways Volcano Watch Operations Group (IAVWOPSG/6 Conclusion 6/21 refers). Therefore, the EUR METG should monitor global developments on the provision of providing volcanic ash information for international civil aviation as they relate to possible changes to EUR Doc 014 in the future.

3.4.5 *Cancellation of SIGMET*

3.4.5.1 If, during the validity period of a SIGMET, the phenomenon for which the SIGMET had been issued is no longer occurring or no longer expected, this SIGMET should be cancelled by the issuing MWO. This is in support to Annex 3, 7.1.2 which requires "*SIGMET information shall be cancelled when the phenomena are no longer occurring or are no longer expected to occur in the area*".

The cancellation is done by issuing the same type of SIGMET with the following structure:

- WMO heading with the same data type designator;
- first line, including the next sequence number followed by a new validity period that represents the remaining time of the original period of validity, and
- second line, which contains the location indicator and name of the FIR, UIR or CTA, the combination CNL SIGMET, followed by the sequential number of the original SIGMET and its original validity period.

Examples:

1. Cancellation of a WS SIGMET with the following first line

WSXY31 YUSO 101200 YUDD SIGMET 5 VALID 101200/101600 YUSO-YUDD SHANLON FIR ...

Cancellation SIGMET:

WSXY31 YUSO 101430 YUDD SIGMET 6 VALID 101430/101600 YUSO-YUDD SHANLON FIR CNL SIGMET 5 101200/101600=

2. Cancellation of a WV SIGMET

WVXY31 YUSO 131518 YUDD SIGMET 03 VALID 131515/132115 YUSO-YUDD SHANLON FIR ...

Cancellation SIGMET:

WVXY31 YUSO 132000 YUDD SIGMET 04 VALID 132000/132115 YUSO-

YUDD SHANLON FIR CNL SIGMET 03 131515/132115 VA MOV TO YUDO FIR=

Note. – For SIGMET for volcanic ash only, the FIR (YUDO in the example) where the volcanic ash has moved into is permitted to be indicated.

3.4.5.2 If it is known that an existing SIGMET no longer accurately describes the existing or expected future evolution of the phenomena a new SIGMET, correctly describing the hazard should be issued, followed immediately by a cancellation of the original, erroneous SIGMET. The new SIGMET should be issued before the cancellation in order to ensure there is always a SIGMET in force and that the cancellation is not mistakenly understood to mean the hazard has completely dissipated.

Originally issued SIGMET, later determined to no longer be accurate (bold text identifies points that will be changed):

WSAU21 ADRM 201855 YBBB SIGMET E01 VALID 202000/210000 YPDM-YBBB BRISBANE FIR SEV TURB FCST WI S1530 E13700 – **S1900 E13730 – S2000 E13130** – S1600 E13500 – S1530 E13700 SFC/FL120 MOV SE 12KT WKN=

Updated SIGMET (bold text identifies points that have been changed):

WSAU21 ADRM 202155 YBBB SIGMET E02 VALID 202200/210000 YPDM-YBBB BRISBANE FIR SEV TURB FCST WI S1530 E13700 – **S2000 E13750 – S2045 E13245** – S1600 E13500 – S1530 E13700 SFC/FL120 MOV SE 12KT WKN=

Cancellation SIGMET (this cancels the original SIGMET):

WSAU21 ADRM 202155 YBBB SIGMET E03 VALID 202155/210000 YPDM-YBBB BRISBANE FIR CNL SIGMET E01 202000/210000=

PART 4. RULES FOR PREPARATION OF AIRMET INFORMATION

Note: This guidance is developed as a follow-up of EANPG Conclusion 49/42.

4.1 General

4.1.1 AIRMET should be issued by MWOs in accordance with the regional air navigation agreement. According to the EUR Air Navigation Plan, Volume I, Basic ANP (Doc 7754), AIRMET information should be issued by a MWO if agreed on between the users and the meteorological authority concerned. The requirement for the issuance of AIRMET should be reflected in FASID Table MET 1B. The decision of a meteorological authority for issuance of AIRMET should also be based on an assessment of the density of air traffic operating below flight level 100 (or flight level 150 or higher in mountainous areas).

4.1.2 AIRMET is issued for a flight information region (FIR); where necessary, the FIR should be divided in sub-areas and separate AIRMET issued for each sub-area.

When issuing AIRMET information, MWOs should pay attention on the related products, such as, 4.1.3 GAMET and SIGMET, in order to avoid duplication. An inventory on regional exchange of GAMET and graphical products low-level flights provided to support is at the following link: http://www.paris.icao.int/Met/index.htm.

4.1.4 AIRMET information is prepared in abbreviated plain language using approved ICAO abbreviations, a limited number of non-abbreviated words, and numerical values of self-explanatory nature. All abbreviations and words to be used in AIRMET are given in **Appendix A**.

4.1.5 The increasing use of automated systems for handling MET information by the MET offices and the aviation users makes it essential that all types of OPMET information, including AIRMET, are prepared and transmitted in the prescribed standardized formats. Therefore, the structure and format of the AIRMET message, as specified in Annex 3, Part II, Appendix 6, should be followed strictly by the MWOs. Annex 3 Appendix 6 Table A6-1 provides detailed information regarding the content and order of elements in the AIRMET message.

4.1.6 AIRMET messages should be kept short and clear, without additional descriptive text other than that prescribed in Annex 3.

4.1.7 After issuing an AIRMET, the MWO should maintain watch over the evolution of the phenomenon for which the AIRMET has been issued and issue a new updated AIRMET when necessary.

4.1.8 AIRMETs should be cancelled promptly when the phenomenon is no longer occurring or no longer expected to occur in the MWO's area of responsibility. The AIRMET is understood to cancel itself automatically at the end of its validity period. If the phenomenon persists a new AIRMET message for a further period of validity has to be issued.

4.2 Structure of the AIRMET message

4.2.1 An AIRMET message consists of:

- *WMO heading* all AIRMETs are preceded by an appropriate WMO heading;
- *First line*, containing location indicators of the relevant ATS unit and MWO, sequential number and period of validity;
- *Meteorological part*, containing meteorological information concerning the phenomenon for which the AIRMET is issued.

4.3 Format of AIRMET

Note: In the following text, square brackets - [] - are used to indicate an optional or conditional element, and angled brackets - $\langle \rangle$ - for symbolic representation of a variable element, which in the real AIRMETs accepts concrete numerical values.

4.3.1 WMO Header

T₁T₂A₁A₂ii CCCC YYGGgg

4.3.1.1 The group $T_1T_2A_1A_2ii$ is the bulletin identification for the AIRMET message. It is constructed in the following way:

T_1T_2	Data type designator	WA
A_1A_2	Country or territory	Assigned according to Table C1, Part II of Manual on the Global
	designators	Telecommunication System, Vol I – Global Aspects (WMO - No.
		386)
ii	Bulletin number	Assigned on national level according to paragraph 2.3.2.2, Part II of Manual on the Global Telecommunication System, Vol I –
		Global Aspects (WMO - No. 386)

4.3.1.2 **CCCC** is the ICAO location indicator of the communication centre disseminating the message (could be the same as the MWO).

4.3.1.3 **YYGGgg** is the date/time group, where YY is the date and GGgg is the time in hours and minutes UTC, of the transmission of the AIRMET (normally this is the time assigned by the AFTN centre which disseminates the message).

4.3.1.4 A unique WMO header should be assigned for each AIRMET bulletin issued for an FIR, or part of an FIR. The distinction between different AIRMET bulletins issued by the State's MWOs should be through the bulletin number (ii) as, for example:

WAPL31 EPWA 061534

[Example from Poland]

Note: A table with WMO SIGMET and AIRMET headers used by the EUR Meteorological Watch Offices is included in **Appendix B**

4.3.2 First line of AIRMET

CCCC AIRMET [nn]n VALID YYGGgg/YYGGgg CCCC-

4.3.2.1 The meaning of the groups in the first line of the AIRMET is as follows:

CCCC	ICAO location indicator of the ATS unit serving the FIR to which the AIRMET	
	refers	
AIRMET	Message identifier	
[nn]n	Daily sequence number (see paragraph 3.4.2.2)	
VALID	Period of validity indicator	
YYGGgg/YYGGgg	Validity period of the AIRMET given by date/time group of the beginning and	
	date/time group of the end of the period (see paragraph 3.4.2.3)	
CCCC-	ICAO location indicator of the MWO originating the message and – (hyphen,	
	without space, to separate the preamble from the text)	

4.3.2.2 The numbering of the AIRMETs should start every day at 0001 UTC. The sequence number should consist of up to three symbols and may be a combination of letters and numbers, such as:

- 1, 2, ... - 01, 02, ...

- A01, A02, ...

Examples:

EDWW AIRMET 3 VALID 121100/121500 EDZH-

EPWW AIRMET 5 VALID 061535/061935 EPWA-

4.3.2.3 The following has to be considered when determining the validity period:

- the period of validity of AIRMET shall not exceed 4 hours;
- in case of a AIRMET for an observed phenomenon the filing time (date/time group in the WMO heading) should be same or close to the date/time group indicating the start of the AIRMET validity period;
- when the AIRMET is issued for an expected phenomenon:
 - the beginning of validity period should be the time of expected commencement (occurrence) of the phenomenon;
 - the lead time (the time of issuance of the AIRMET) should be not more than 4 hours before the start of validity period (i.e., expected time of occurrence of the phenomenon); and

4.3.2.4 The period of validity is the period during which the AIRMET is valid for transmission to aircraft in flight.

Examples:

1. AIRMET for an observed phenomenon:

WADL41 EDZF 070015 EDGG AIRMET 01 VALID 070015/070300 EDZF-EDGG LANGEN FIR ISOL TS OBS N OF N49 TOP FL330 MOV E WKN=

2. AIRMET for a forecast phenomenon:

WASW41 LSSW 061758 LSAS AIRMET 5 VALID 061800/062100 LSZH-LSAS SWITZERLAND FIR MOD TURB FCST ALPS SFC/FL160 STNR NC=

4.3.3 *Format of the meteorological part of AIRMET messages*

4.3.3.1 The meteorological part of an AIRMET consists of eight elements as shown in the table below.

Start of the second line of the message

1	2	3	4	5	6
Location indicator of the FIR or CTA	Location indicator and name of the FIR/CTA, or part thereof for which the AIRMET is issued^	Description of the phenomenon	Observed or forecast	Location (referring to latitude and longitude (in degrees and minutes))*	Level*
<cccc></cccc>	<name> FIR[/n]</name>	<phenomenon></phenomenon>	OBS [AT <ggggz>] or FCST [AT <ggggz>]</ggggz></ggggz>	Geographical location of the phenomenon given by coordinates	FL <nnn> or FL<nnn nnn=""> or [SFC/]FL<nnn> or [SFC/]<nnnn>M or [SFC/]<nnnn>FT or TOP FL<nnn> or [TOP] ABV FL<nnn></nnn></nnn></nnnn></nnnn></nnn></nnn></nnn>

7	8
Movement or expected movement*	Changes in intensity*
MOV <direction, speed=""></direction,>	INTSF or WKN or NC
KMH[KT], or	
STNR	

^when FIR is divided in sub-areas: separate AIRMET should be issued for each sub-area, as necessary. Issued AIRMET and GAMET should cover the same sub-area.

*In the case of the same phenomenon covering more than one area within the FIR, these elements can be repeated, as necessary.

4.3.3.1.1 Location indicator and name of the FIR

location indicator <name> FIR[/n]

Example:

EBBU BRUSSELS FIR

4.3.3.1.2 Phenomenon

The description of the phenomenon consists of a qualifier and a phenomenon abbreviation. AIRMET shall be issued only for the following phenomena (with only one phenomenon in each AIRMET):

at cruising levels below FL100 (FL150 or higher for mountainous areas, where necessary):

- surface wind speed
- surface visibility
- thunderstorms
- mountain obscuration
- cloud
- icing
- turbulence
- mountain wave

The appropriate abbreviations and combinations thereof, and their meaning are given in Appendix D.

4.3.3.1.3 Indication if the phenomenon is observed or forecast

OBS [AT <GGggZ>] or FCST [AT <GGggZ>]

The indication whether the information is observed or forecast is given by the abbreviations OBS and FCST. OBS and FCST may be followed by a time group in the form AT GGggZ, where GGgg is the time of the observation or forecast in hours and minutes UTC. If the exact time of the observation or forecast is not known, the time is not included. When the phenomenon is based on a forecast without a reported observation, the time given for GGggZ represents the time of commencement of the phenomenon.

Examples:

OBS OBS AT 0140Z FCST FCST AT 0200Z

4.3.3.1.4 Location of the phenomenon

The location of the phenomenon is given with reference to geographical coordinates (latitude and longitude in degrees and minutes). The MWOs should try to be as specific as possible in reporting the location of the phenomenon and, at the same time, to avoid overwhelming geographical information, which may be difficult to process or perceive. The number of coordinates should be no less than 4 and normally no greater than 7 noting the first point is repeated (the end point should be a repeat of the start point). The recommended best practice is to list the coordinates in a clockwise order as this is an XML/GML convention.

The following is the most common way to describe the location of the phenomenon:

- Indication of a part of the FIR with reference to longitude and latitude as a closed line:

WI<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>-<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>-<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>-<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>-<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>-<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>-<Nnn[nn]>or<Snn[nn]><Wnnn[nn]>or<Ennn[nn]>- For example:

WI N6030 E02550 - N6055 E02500 - N6050 E02630 - N6030 E02550

WI N60 E025 - N62 E027 - N58 E030 - N59 E026 - N60 E025

Use of polygons with complex FIR boundaries

Annex 3 (18th Edition, July 2013) species that the points of a polygon '... should be kept to a minimum and should not normally exceed seven'. However, some FIR boundaries are complex, and it would be unrealistic to expect that a polygon would be defined that followed such boundaries exactly. As such, some States have determined that the polygon points be chosen in relation to the complex boundary such that the FIR boundary approximates, but is wholly encompassed by, the polygon, and that any additional area beyond the FIR boundary be the minimum that can be reasonably and practically described. Caution should however be exercised in those instances where international aerodromes are located in close proximity to such a complex FIR boundary. **Appendix G** provides examples and advice with regard to describing such areas for SIGMET, but can be used as guidance for AIRMET as well.

The following are additional ways to describe the location of the phenomenon:

-Indication of a part of the FIR with reference to latitude:

N OF or S OF <Nnn[nn]> or <Snn[nn]>

For example:

N OF S2230

- Indication of a part of the FIR with reference to a longitude:

E OF or W OF <Ennn[nn]> or <Wnnn[nn]>

For example:

W OF E080

- Indication of a part of the FIR with reference to a latitude and longitude:

any combination of the above two cases;

For example:

N OF N1515 AND W OF E13530

-with reference to a LINE, described with lat/long of two points:

N OF, NE OF, E OF, SE OF, S OF, SW OF, W OF, NW OF, [LINE] <Nnn[nn]> or <Snn[nn]> <Wnnn[nn]> or <Ennn[nn]> - <Nnn[nn]> or <Snn[nn]> <Wnnn[nn]> or <Ennn[nn]>

For example:

NE OF LINE N2500 W08700 - N2000 W08300

W OF LINE N20 E042 - N35 E045

At a specific point within the FIR, indicated by a single coordinate of latitude and longitude

<Nnn[nn]> or <Snn[nn]> <Wnnn[nn]> or <Ennn[nn]> -<Nnn[nn]> or <Snn[nn]><Wnnn[nn]> or <Ennn[nn]>

For example:

N5530 W02230

S23 E107

More details on reporting of the location of the phenomenon are given in Appendix 6 to Annex 3 and in **Appendix E** to this Guide.

4.3.3.1.5 Flight level or altitude and extent

[SFC/]FL<nnn> or FL<nnn/nnn> or [SFC/]<nnnn>M or [SFC/]<nnnn>FT or TOP FL<nnn> or [TOP] ABV FL<nnn>

The location or extent of the phenomenon in the vertical is given by one or more of the above abbreviations, as follows:

reporting of single level – **FL<nnn>**;

For example: FL090

- reporting of a layer – SFC/FL<nnn>, SFC/<nnn>M, or SFC/<nnn>FT, where the lower level is the surface and the upper level is a flight level, an altitude in metres or an altitude in feet respectively;

For example: SFC/FL100, SFC/3000M, SFC/9900FT

- reporting a layer using flight levels – **FL**<**nnn/nnn**>, where the lower flight level is reported first; this is used particularly in reporting turbulence and icing;

For example: FL070/090

 reporting the top of a phenomenon with reference to one flight level (base is unknown but top is known) – TOP FL<nnn>

For example: TOP FL080

 reporting a phenomenon with reference to one flight level and the abbreviation ABV (top is unknown, but base is known) –ABV FL<nnn>

For example: ABV FL060

 reporting the top of a phenomenon exceeding the vertical limit of AIRMET message and the abbreviation ABV – TOP ABV FL<nn>

Additional Examples:

ISOL CB ... TOP ABV FL100 MOD TURB ... FL050/080 MOD ICE ... SFC/FL090 MOD MTW ... FL060/180

Note that the flight levels reported should be up to FL100 (FL150 or higher for mountainous areas, where necessary).

4.3.3.1.6 <u>Movement</u>

MOV <direction> <speed> KMH[KT] or STNR

Direction of movement is given with reference to one of the sixteen points of compass (N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW and NNW). Speed is given in KMH or KT. The abbreviation STNR is used if no significant movement is expected.

Examples:

MOV NW 30KMH MOV NNW 30KMH MOV E 25KT STNR

Note. – Annex 3 (18th Edition, July 2013) does not enable AIRMET to contain explicit forecast position as per SIGMET message.

4.3.3.1.7 Expected changes in intensity

The expected evolution of the phenomenon's intensity is indicated by one of the following

abbreviations:

INTSF – intensifying WKN – weakening NC – no change

4.3.4 Cancellation of AIRMET

4.3.4.1 If, during the validity period of an AIRMET, the phenomenon for which the AIRMET had been issued is no longer occurring or no longer expected, this AIRMET should be cancelled by the issuing MWO. This is in support to Annex 3, 7.2.2 which requires "*AIRMET information shall be cancelled when the phenomena are no longer occurring or are no longer expected to occur in the area*".

Note – If it is expected (or confirmed from observation) that the phenomenon for which AIRMET had been issued will change (or has changed) significantly from the original message content, the current AIRMET message should be cancelled and a new AIRMET message should be issued as appropriate (see 4.3.4.2).

The cancellation is done by issuing the same type of AIRMET with the following structure:

- WMO heading with the same data type designator;
- first line, including the next sequence number followed by a new validity period that represents the remaining time of the original period of validity, and
- second line, which contains the location indicator and name of the FIR, the combination CNL AIRMET, followed by the sequential number of the original AIRMET and its original validity period.

Examples:

Cancellation of AIRMET with the following first line:

WAXY31 YUSO 151520 YUDD AIRMET 1 VALID 151520/151800 YUSO-YUDD SHANLON FIR ...

Cancellation AIRMET:

WAXY31 YUSO 151430 YUDD AIRMET 2 VALID 151650/151800 YUSO-YUDD SHANLON FIR CNL AIRMET 1 151520/151800=

4.3.4.2 If it is known that an existing AIRMET no longer accurately describes the existing or expected future evolution of the phenomena a new AIRMET, correctly describing the hazard should be issued, followed immediately by a cancellation of the original, erroneous AIRMET. The new AIRMET should be issued before the cancellation in order to ensure there is always an AIRMET in force and that the cancellation is not mistakenly understood to mean the hazard has completely dissipated.

Originally issued AIRMET, later determined to no longer be accurate (bold text identifies points that will be changed):

WSAU21 ADRM 201855 YBBB AIRMET E01 VALID 202000/210000 YPDM-YBBB BRISBANE FIR MOD TURB FCST WI **S1900 E13730 – S2000 E13130 -**S1600 E13500 – S1530 E13700 SFC/FL120 MOV SE 12KT WKN=

Update AIRMET (bold text identifies points that have been changed):

WSAU21 ADRM 202155

YBBB AIRMET E02 VALID 202200/210000 YPDM-YBBB BRISBANE FIR MOD TURB FCST WI S1530 E13700 – **S2000 E13750** – **S2045 E13245** – S1600 E13500 – S1530 E13700 SFC/FL120 MOV SE 12KT WKN=

Cancellation AIRMET (this cancels the original AIRMET):

WSAU21 ADRM 202155 YBBB AIRMET E03 VALID 202155/210000 YPDM-YBBB BRISBANE FIR CNL AIRMET E01 202000/210000=

APPENDIX A

List of the abbreviations and decode used in SIGMET and AIRMET

Abbreviation	Decode
ABV	Above
AIRMET	AIRMET Information
AND*	And
APRX	Approximate or approximately
AT	At (followed by time)
BKN	Broken
BR	Mist
BY*	By
СВ	Cumulonimbus
CENTRE*	Centre (used to indicate tropical cyclone centre)
CLD	Cloud
CNL	Cancel or cancelled
CTA	Control area
DS	Duststorm
DU	Dust
DZ	Drizzle
E	East or eastern longitude
EMBD	Embedded in layer (to indicate CB embedded in layers of other clouds)
ENE	East-Northeast
ERUPTION*	Eruption (used to indicate volcanic eruption)
ESE	East-Southeast
EXP	Expected
FCST	Forecast
FG	Fog
FIR	Flight information region (link to global FIR map: <u>http://gis.icao.int/flexviewer/</u>)
FL	Flight level
FRQ	Frequent
FU	Smoke
FZRA	Freezing rain
GR	Hail
GS	Small hail and/or snow pellets
HVY	Heavy (used to indicate intensity of weather phenomena)
HZ	Haze
	Ice crystals
ICE	lcing
INTSF	Intensify <i>or</i> intensifying
ISOL	Isolated
KM	Kilometres
КМН	Kilometres per hour
KT	Knots
LINE	Line
MPS	Metres per second
MOD	Moderate (used to indicate intensity of weather phenomena)
MOV	Move or moving or movement
мт	Mountain
мтw	Mountain waves
N	North or northern latitude
NC	No change
NE	North-east

Abbreviation	Decode
	Nautical miles
	North-Northeast
NNW	North-Northwest
	North-west
OBS	Observe or observed or observation
OBSC	Obscure or obscured or obscuring
OCNL	Occasional or occasionally
OF*	Of (place)
OVC	Overcast
PL	Ice pellets
PO	Dust/sand whirls
PSN	Position
RA	Rain
RDOACT*	Radioactive
S	South or southern latitude
SA	Sand
SE	South-east
SEV	Severe (used e.g. to qualify icing and turbulence reports)
SFC	Surface
SG	Snow grains
SIGMET	Information concerning en-route weather phenomena which may affect the safety of aircraft operations
SN	Snow
SQ	Squalls
SQL	Squall line
SS	Sandstorm
SSE	South-Southeast
SSW	South-Southwest
STNR	Stationary
SW	South-west
тс	Tropical cyclone (not required in the EUR Region)
тси	Towering Cumulus
то	To (place)
ТОР	Cloud top
TS	Thunderstorm
TSGR	Thunderstorm with hail
TURB	Turbulence
UIR	Upper flight information region
VA	Volcanic ash
VALID*	Valid
VIS	Visibility
W	West or western longitude
WSPD	Wind speed
WI	Within
WID	Width
WNW	West-Northwest
WSW	West-Southwest
Z	Coordinated Universal Time (used in meteorological messages)

* not in the ICAO Doc 8400, ICAO Abbreviations and Codes

---APPENDIX B

List of EUR SIGMET (WS, WV) and AIRMET (WA) headers (blue highlight – verification needed by State)

Updated 20 May 2014 – note that updates to Appendix B during 2014 will be provided at the following website: <u>http://www.paris.icao.int/Met/index.htm</u>

State	MWO Loc	MWO name	WS AHL		WV AHL		WA AHL		ATSU Ind	FIR Ind	FIR Name
Albania	LATI	Tirana/Tirana	WSAB31	LATI	WVAB31	LATI	WAAB31	LATI	LAAA	LAAA	Tirana
Armenia	UDYZ	Yerevan	WSAY31	UDYZ					UGEZ	UDDD	Yerevan
Austria	LOWW	Wien/Schwechat	WSOS31	LOWW	WVOS31	LOWW	WAOS41	LOWW	LOVV	LOVV	Wien
Azerbaijan	UBBB	Baku	WSAJ31	UBBB	WVAJ31	UBBB	WAAJ31	UBBB		UBBB	Baku/Heydar Aliyev
Belarus	UMMM	Minsk	WSBY31	UMMS	WVBY31 Effective 2013 - un then WSB UMMS	e July ntil			UMMV	UMMV	Minsk
Belgium	EBBR	Brussels/National	WSBX31	EBBR	WVBX31	EBBR	WABX31	EBBR	EBBU	EBBU	Brussels(ACC-FIC)
Bosnia And Herzegovina	LYBE	Beograd/Surcin	WSQB32	LYBM	WVQB32	LYBM	N/A		LYBA	LQSB	Sarajevo (E)
Bosnia And Herzegovina	LDZA	Zagreb/Pleso	WSQB31	LDZM	WVQB31	LDZM	N/A		LDZO	LQSB	Sarajevo (W)
Bulgaria	LBSF	Sofia/Vrajbedebna	WSBU31	LBSM	WVBU31	LBSM	WABU31	LBSM	LBSR	LBSR	Sofia
Croatia	LDZA	Zagreb/Pleso	WSRH31	LDZM	WVRH31	LDZM	WARH31	LDZM	LDZO	LDZO	Zagreb
Cyprus	LCLK	Larnaca/Larnaca	WSCY31	LCLK	WVCY31	LCLK			LCCC	LCCC	Nicosia
Czech Republic	LKPW	Praha/Ruzyne	WSCZ31	LKPW	WVCZ31	LKPW	WACZ41	LKPW	LKAA	LKAA	Praha
Denmark	EKMI	Kobenhavn	WSDN31	EKCH	WVDN31	EKCH	N/A		EKDK	EKDK	Kobenhavn
Estonia	EEMH	Tallinn	WSEO31	EETN	WVEO31	EETN			EETT	EETT	Tallinn
Finland	EFHK	Helsinki-Vantaa	WSFI31	EFHK	WVFI31	EFHK			EFES	EFIN	Finland
France	LFML	Aix	WSFR34	LFPW	WVFR34	LFPW			LFMM	LFMM	Marseille
France	LFBD	Bordeaux	WSFR32	LFPW	WVFR32	LFPW			LFBB	LFBB	Bordeaux
France	LFPS	Paris	WSFR31	LFPW	WVFR31	LFPW			LFFF	LFFF	Paris
France	LFRN	Rennes	WSFR35	LFPW	WVFR35	LFPW			LFRR	LFRR	Brest
France	LFST	Strasbourg	WSFR33	LFPW	WVFR33	LFPW			LFEE	LFEE	Reims
France	LFPW	Toulouse	WSFR31	LFPW	WVFR31	LFPW			LFEE	LFEE	France UIR

Second Edition

State	MWO Loc	MWO name	WS AHL	WV AHL	WA AHL	ATSU Ind	FIR Ind	FIR Name
			WSFR31 LFPW	WVFR31 LFPW		LFFF	LFFF	France UIR
			WSFR31 LFPW	WVFR31 LFPW		LFMM	LFMM	France UIR
			WSFR31 LFPW	WVFR31 LFPW		LFRR	LFRR	France UIR
			WSFR31 LFPW	WVFR31 LFPW		LFBB	LFBB	France UIR
Georgia	UGTB	Tbilisi	WSGG31 UGTB	WVGG31 UGTB	WAGG31 UGTB	UGGG	UGGG	Tblisi
Germany	EDZH	Hamburg	WSDL32 EDZH	WVDL32 EDZH		EDYY	EDYY	Hannover UIR
			WSDL31 EDZH	WVDL31 EDZH	WADL41 EDZH	EDWW	EDWW	Bremen
Germany	EDZM	Munchen	WSDL31 EDZM	WVDL31 EDZM	WADL41 EDZM	EDMM	EDMM	Munchen
Germany	EDZF	Frankfurt	WSDL32 EDZF	WVDL32 EDZF		EDUU	EDUU	Rhein UIR
			WSDL31 EDZF	WVDL31 EDZF	WADL41 EDZF	EDGG	EDGG	Langen
Greece	LGAT	Athinai	WSGR31 LGAT	WVGR31 LGAT	WAGR31 LGAT WAGR32 LGAT WAGR33 LGAT WAGR34 LGAT	LGGG	LGGG	Athinai
Hungary	LHBP	Budapest	WSHU31 LHBM	WVHU31 LHBM	WAHU41 LHBM	LHCC	LHCC	Budapest
Ireland	EINN	Shannon	WSIE31 EIDB	WVIE31 EIDB	N/A	EIDB	EISN	Shannon
Israel	LLBD	Meteorological Service	WSIS31 LLBD	WVIS31 LLBD	WAIS31 LLBD		LLLL	Tel-Aviv FIR and SRR
Italy	LIMM	Milano	WSIY31 LIIB	WVIY31 LIIB	WAIY31 LIIB	LIMM	LIMM	Milano
			WSIY32 LIIB	WVIY32 LIIB	WAIY32 LIIB	LIRR	LIRR	Roma
			WSIY33 LIIB	WVIY33 LIIB	WAIY33 LIIB	LIBB	LIBB	Brindisi
Kazakhstan	UATT	Aktobe	WSKZ31 UATT	WVKZ31 UATT		UATT	UATT	Aktobe
Kazakhstan	UAAA	Almaty	WSKZ31 UAAA	WVKZ31 UAAA		UAAA	UAAA	Almaty
Kazakhstan	UACC	Astana	WSKZ31 UACC	WVKZ31 UACC		UACC	UACC	Astana
Kazakhstan	UAII	Shymkent	WSKZ31 UAII	WVKZ31 UAII		UAII	UAII	Shymkent
Kyrgyzstan	UCFM	Bishkek/Manas	WSRA41 UCFM	WVRA41 UCFM		UCFM and/or UAFM (note UAFM not	UCFM	Bishkek

State	MWO Loc	MWO name	WS AHL		WV AHL		WA AHL		ATSU	FIR Ind	FIR Name
									Ind		
									defined in		
									<mark>79</mark> 10)		
	UCFO	Osh	WSRA41	UCFO	WVRA41	UCFO			?	UCFO	Osh
Latvia	EVRA	Riga	WSLV31	EVRA	WVLV31	EVRA	WALV31	EVRA	EVRR	EVRR	Riga
Lithuania	EYVI	Vilnuis	WSLT31	EYVI	WVLT31	EYVI			EYVL	EYVL	Vilnius
Malta	LMML	Malta/Luqa	WSMP31	LMMM	WVMP31	LMMM			LMMM	LMMM	Malta
Netherlands	EHDB	De Bilt	WSNL31	EHDB	WVNL31	EHDB	WANL31	EHDB	EHAA	EHAA	Amsterdam
Norway	ENMI	Oslo	WSNO31	ENMI	WVNO31	ENMI	WANO31	ENMI	ENOS	ENOR	Norway
Norway	ENVV	Bergen	WSNO32	ENMI	WVNO32	ENMI	WANO32	ENMI	ENSV	ENOR	Norway
Norway	ENVV	Bergen	WSNO34	ENMI	WVNO34	ENMI	WANO34	ENMI	ENBD	ENOR	Norway
Norway	ENVN	Tromso	WSNO35	ENMI	WVNO35	ENMI	WANO35	ENMI	ENBD	ENOR	Norway
Norway	ENVN	Tromso	WSNO36	ENMI	WVNO36	ENMI	WANO36	ENMI	ENOB	ENOB	Bodo Oceanic FIR/UIR
Poland	EPWA	Warszawa/Okecie	WSPL31	EPWA	WVPL31	EPWA	WAPL31	EPWA	EPWW	EPWW	Waszawa
Portugal	LPPT	Lisboa	WSAZ31	LPMG	WVNT32	LPMG			LPPO	LPPO	Santa Maria Oceanic
Portugal	LPPT	Lisboa	WSPO31	LPMG	WVPO31	LPMG			LPPC	LPPC	Lisboa
Republic of Moldova	LUKK	Chisinau	WSRM31	LUKK	WVRM31	LUKK			TAAA	LUUU	Chisinau
Romania	LROM	Bucresti/Otopeni	WSRO31	LROM	WVRO31	LROM			LRBB	LRBB	Bucresti
Russian Federation	ULAA	Arkhangelsk/ Talagi	WSRS31	RUAA	WVRS31	RUAA	N/A		ULAA	ULAA	Arkhangelsk/Talagi
			WSRS37	RUAA	WVRS37	RUAA			ULAM	ULAM	Naryan-Mar
Russian Federation	USCC	Chelyabinsk	WSRA33	RUEK	WVRA33	RUEK	N/A		USCC	USCC	Chelyabinsk
Russian Federation	UELL	Chulman/Neryungri	WSRA32	RUYK	WVRA32	RUYK	N/A		UELL	UELL	Chulman
Russian Federation	UIII	Irkutsk	WSRA31	RUIR	WVRA31	RUIR	N/A		UIII	UIII	Irkutsk
Russian Federation	UMKK	Kaliningrad	WSRS31	RUKG	WVRS31	RUKG	N/A		UMKK	UMKK	Kaliningrad
Russian Federation	USDK	Kamenny cape	WSRA32	RUAM			N/A		USDK	USDK	Kamenny cape
Russian Federation	UWKD	Kazan	WSRS31	RUKZ	WVRS31	RUKZ	N/A		UWKD	UWKD	Kazan
Russian	UHHH	Khabarovsk/Novy	WSRA31	RUHB	WVRA31	RUHB	N/A		UHHH	UHHH	Khabarovsk

State	MWO Loc	MWO name	WS AHL	WV AHL	WA AHL	ATSU Ind	FIR Ind	FIR Name
Federation								
Russian Federation	USKK	Kirov	WSRS31 RUNN	WVRS31 RUNN	N/A	USKK	USKK	Kirov
Russian Federation	ULKK	Kotlas	WSRS33 RUAA	WVRS33 RUAA	N/A	ULKK	ULKK	Kotlas
Russian Federation	UNKL	Krasnoyarsk/ Yemelyanovo	WSRA31 RUKR		N/A	UNKL	UNKL	Krasnoyarsk
Russian Federation	UHMM	Magadan	WSRA31 RUMG	WVRA31 RUMG	N/A	UHMM	UHMM	Magadan
Russian Federation	UERR	Mirny	WSRA33 RUYK		N/A	UERR	UERR	Mirny
Russian Federation	UUWV	Moscow	WSRS31 RUMA	WVRS31 RUMA	N/A	UUWV	UUWV	Moscow
Russian Federation	ULMM	Murmansk	WSRS31 RUMU	WVRS31 RUMU	N/A	ULMM	ULMM	Murmansk
Russian Federation	U000	Norilsk	WSRA32 RUKR		N/A	U000	U000	Norilsk
Russian Federation	UNNT	Novosibirsk	WSRA31 RUNW		N/A	UNNT	UNNT	Novosibirsk
Russian Federation	USPP	Perm/Bolshoe Savino	WSRA32 RUEK	WVRA32 RUEK	N/A	USPP	USPP	Perm
Russian Federation	UHPP	Petropavlovsk- Kamchatsky/ Yelizovo	WSRA31 RUPK	WVRA31 RUPK	N/A	UHPP	UHPP	Petropavlovsk- Kamchatsky
Russian Federation	ULLI	Pulkovo	WSRS31 RUSP	WVRS31 RUSP	N/A	ULLL	ULLL	Saint-Petersburg
Russian Federation	USTR	Roshchino	WSRA32 RUOM		N/A	USTR	USTR	Tyumen
Russian Federation	URRR	Rostov-na-Donu	WSRS31 RURD	WVRS31 RURD		URRV	URRV	Rostov
Russian Federation	USDD	Salekhard	WSRA37 RUOM		N/A	USDD	USDD	Salekhard
Russian Federation	UWWW	Samara/Kurumoch	WSRS31 RUSM	WVRS31 RUSM	N/A	UWWW	UWWW	Samara
Russian Federation	UUYY	Syktyvkar	WSRS32 RUAA	WVRS32 RUAA	N/A	UUYY	υυΥΥ	Syktyvkar

State	MWO Loc	MWO name	WS AHL		WV AHL		WA AHL	ATSU Ind	FIR Ind	FIR Name
Russian	USDS	Tarko-Sale	WSRA34	RUOM			N/A	USDS	USDS	Tarko-Sale
Federation										
Russian	UEST	Tiksi	WSRA38	RUYK	WVRA38	RUYK	N/A	UEST	UEST	Tiksi
Federation										
Russian Federation	ULWW	Vologda	WSRS34	RUAA	WVRS34	RUAA	N/A	ULWW	ULWW	Vologda
Russian Federation	UEEE	Yakutsk	WSRA31	RUYK	WVRA31	RUYK	N/A	UEEE	UEEE	Yakutsk
			WSRA39	RUYK				UEVV	UEVV	Zhigansk
Russian Federation	USSS	Yekaterinburg/ Koltosovo	WSRA31	RUEK	WVRA31	RUEK	N/A	USSS	USSS	Yekaterinburg
Serbia	LYBE	Beograd/Surcin	WSYG31	LYBM	WVYG31	LYBM	WAYG31 LYBM	LYBA	LYBA	Beograd
Slovakia	LZIB	Bratislava	WSSQ31	LZIB	WVSQ31	LZIB	WASQ41 LZIB	LZBB	LZBB	Bratislava
Slovenia	LJLJ	Ljubljana/Brnik	WSLJ31	LJLJ	WVLJ31	LJLJ	WALJ31 LJLJ	LJLA	LJLA	Ljubljana
Spain	GCGC	Gran Canaria (MET)	WSCR31	LEMM	WVCR31	LEMM	WACR40 LEMM	GCCC	GCCC	Canarias FIC/ACC
Spain	LEMM	Madrid (Centro Nacional de Comunicaciones de Meteorologia y Centro Nacional Motne)	WSSP32	LEMM	WVSP32	LEMM	WASP42 LEMM	LECB	LECB	Barcelona FIC/ACC
	LEMM	Madrid (Centro Nacional de Comunicaciones de Meteorologia y Centro Nacional Motne)	WSSP31	LEMM	WVSP31	LEMM	WASP40 LEMM (Area 1 - LECM MADRID FIR/1) WASP41 LEMM (Area 2 - LECM MADRID FIR/2)	LECM	LECM	Madrid FIC/ACC
Sweden	ESSA	Stockholm/Arlanda	WSSN31	ESWI	WVSN31	ESWI		ESAA	ESAA	Sweden
Switzerland	LSSW	Zurich	WSSW31	LSSW	WVSW31	LSSW	WASW41 LSSW	LSAS	LSAS	Zurich/Geneve
Macedonia, The FYRO	LWSK	Skopje	WSMJ31	LWSK	WVMJ31	LWSK	N/A	LWSS	LWSS	Skopje
Tajikistan	UTDD	Dushanbe							UTDD	Dushanbe
Turkey	LTAC	Ankara/Esenboga	WSTU31	LTAC	WVTU31	LTAC	WATU31 LTAC	LTAA	LTAA	Ankara

State	MWO Loc	MWO name	WS AHL	WV AHL	WA AHL	ATSU	FIR Ind	FIR Name
						Ind		
Turkey	LTBA	Istanbul/Ataturk	WSTU31 LTBA	WVTU31 LTBA	WATU31 LTBA	LTBB	LTBB	Istanbul
Turkmenistan	UTAA	Askhabad	WSTR31 RUMS			UTAA	UTAA	Askhbad
Ukraine	UKBV	Boryspil	WSUR31 UKBV	WVUR31 UKBV	WAUR31 UKBV	UKBV	UKBV	Kyiv
Ukraine	UKDV	Dnepropetrovsk	WSUR35 UKDV	WVUR35 UKDV	WAUR35 UKDV	UKDV	UKDV	Dnepropetrovsk
Ukraine	UKLV	L'viv	WSUR32 UKLV	WSUR32 UKLV	WAUR32 UKLV	UKLV	UKLV	L'viv
Ukraine	UKOV	Odesa	WSUR33 UKOV	WVUR33 UKOV	WAUR33 UKOV	UKOV	UKOV	Odesa
Ukraine	UKFV	Simferopol	WSUR34 UKFV	WVUR34 UKFV	WAUR34 UKFV	UKFV	UKFV	Simferopol
United Kingdom	EGRR	London/Exeter	WSUK31 EGRR	WVUK31 EGRR	N/A	EGTT	EGTT	London
			WSUK33 EGRR	WVUK33 EGRR		EGPX	EGPX	Scottish
			WSNT21 EGRR	WVNT21 EGRR		EGGX	EGGX	Shanwick Oceanic
United Kingdom	EGJJ	Jersey	WSUK32 EGJJ	WVUK32 EGJJ	N/A	EGJJ	EGJJ	Jersey
Uzbekistan	UTSS	Samarkand	WSUZ31 UTNN	WVUZ31 UTNN	N/A	UTNR	UTNR	Nukus
			WSUZ31 UTSS	WVUZ31 UTSS		UTSD	UTSD	Samarkand
Uzbekistan	UTTT	Tashkent/Yuzhny	WSUZ31 UTTT	WVUZ31 UTTT	N/A	UTTR	UTTR	Tashkent/Yuzhny

APPENDIX C

Phenomenon	Description	Meaning
Thunderstorm	OBSC ² TS	Obscured thunderstorm(s)
(TS)	EMBD ³ TS	Embedded thunderstorm(s)
	FRQ ⁴ TS	Frequent thunderstorm(s)
	SQL^5TS	Squall line thunderstorm(s)
	OBSC TSGR	Obscured thunderstorm(s) with hail
	EMBD TSGR	Embedded thunderstorm(s) with hail
	FRQ TSGR	Frequent thunderstorm(s) with hail
	SQL TSGR	Squall line thunderstorm(s) with hail
Tropical cyclone	TC (+ TC name)	Tropical cyclone (+ TC name)
(TC)		
Turbulence	SEV TURB ⁶	Severe turbulence
(TURB)		
Icing (ICE)	SEV ICE	Severe icing
	SEV ICE (FZRA)	Severe icing due to freezing rain
Mountain wave	SEV MTW ⁷	Severe mountain wave
(MTW)		
Duststorm (DS)	HVY DS	Heavy duststorm
Sandstorm (SS)	HVY SS	Heavy sandstorm
Volcanic ash	VA (+ volcano name,	Volcanic ash (+ volcano name)
cloud (VA)	if known)	
Radioactive cloud	RDOACT CLD	Radioactive cloud

Meteorological phenomena to be reported by SIGMET

Notes:

1. Only one of the weather phenomena listed should be selected and included in each SIGMET

2. Obscured (**OBSC**) indicates that the thunderstorm is obscured by haze or smoke or cannot be readily seen due to darkness

3. Embedded (**EMBD**) – indicates that the thunderstorm is embedded within cloud layers and cannot be readily recognized

4. Frequent (**FRQ**) indicates an area of thunderstorms within which there is little or no separation between adjacent thunderstorms with a maximum spatial coverage greater than 75% of the area affected, or forecasts to be affected, by the phenomenon (at a fixed time or during the period of validity)

5. Squall line (SQL) indicates thunderstorms along a line with little or no space between individual clouds

6. Severe (SEV) turbulence (TURB) refers only to:

- low-level turbulence associated with strong surface winds;
- rotor streaming;
- turbulence whether in cloud or not in cloud (CAT) near to jet streams.
- Turbulence is considered severe whenever the peak value of the cube root of the eddy dissipation rate (EDR) exceeds 0.7.

7. A mountain wave (MTW) is considered:

severe – whenever an accompanying downdraft of 3.0 m/s (600 ft/min) or more and/or severe turbulence is observed or forecasted.

8. Sandstorm/duststorm should be considered heavy whenever the visibility is below 200 m and the sky is obscured.

APPENDIX D

Phenomenon ¹	Description	Meaning
Surface wind	SFC WIND	Widespread ² mean surface wind speed
speed	(+wind speed and	above 15 m/s (30 kt)
	units)	2
Surface visibility	SFC VIS (+visibility)	Widespread ² areas affected by reduction of
	(+ one of the weather	visibility to less than 5 000 m, including
	phenomena causing the	the weather phenomenon causing the
	reduction of visibility)	reduction of visibility
Thunderstorm	ISOL ³ TS	Isolated thunderstorm(s)
	OCNL ⁴ TS	Occasional thunderstorm(s)
	ISOL ³ TSGR	Isolated thunderstorm(s) with hail
	OCNL ⁴ TSGR	Occasional thunderstorm(s) with hail
Mountain	MT OBSC ⁵	Mountains obscured
obscuration		
Cloud	BKN CLD (+height)	Widespread ² areas of broken cloud
	OVC CLD (+height) ISOL ³ CB	Widespread ² areas of overcast cloud Isolated CB
	OCNL ⁴ CB	Occasional CB
	FRQ ⁶ CB ISOL ³ TCU	Frequent CB Isolated TCU
	OCNL ⁴ TCU	Occasional TCU
	FRQ ⁶ TCU	Frequent TCU
Icing	MOD ⁷ ICE	Moderate icing (except for icing in
101115		convective clouds)
Turbulence	MOD ⁸ TURB	Moderate turbulence
Mountain wave	MOD ⁹ MTW	Moderate mountain wave

Meteorological phenomena to be reported by AIRMET

Notes:

1. Only one of the weather phenomena listed should be selected and included in each AIRMET

2. The term "widespread" is used to indicate a spatial coverage of more than 75 percent of the area concerned. (reference: EUR ANP, VOLUME I, BASIC ANP, PART VI – MET, para 19)

3. Isolated (**ISOL**) indicates that an area of thunderstorms, or cumulonimbus cloud, or towering cumulus cloud, consists of individual features which affect, or are forecast to affect, an area with a maximum spatial coverage less than 50 per cent of the area concerned (at a fixed time or during the period of validity)

4. Occasional (**OCNL**) indicates that an area of thunderstorms, or cumulonimbus cloud, or towering cumulus cloud, consists of well-separated features which affect, or are forecast to affect, an area with a maximum spatial coverage between 50 and 75 per cent of the area concerned (at a fixed time or during the period of validity)

5. Mountain obscured (**MT OBSC**) should be used to indicate widespread mountain obscuration. (reference: EUR ANP, VOLUME I, BASIC ANP, PART VI – MET, para 19)

6. Frequent (**FRQ**) indicates an area of cumulonimbus cloud or towering cumulus cloud, within which there is little or no separation between adjacent CB or TCU clouds, with a maximum spatial coverage greater than 75% of the area affected, or forecasts to be affected, by the phenomenon (at a fixed time or during the period of validity)

7. Moderate (MOD) icing (ICE) should refer to icing in other than convective clouds.

8. Moderate (MOD) turbulence (TURB) refers only to:

- low-level turbulence associated with strong surface winds;
- rotor streaming;
- *turbulence whether in cloud or not in cloud (CAT);*
- *Turbulence is considered moderate whenever the peak value of the cube root of the eddy dissipation rate (EDR) is above 0.4 and below or equal to 0.7.*

9. A mountain wave (**MTW**) is considered moderate (**MOD**) whenever an accompanying downdraft of 1.75–3.0 m/s (350–600 ft/min) and/or moderate turbulence is observed or forecast

APPENDIX E

Guidelines for reporting geographical coordinates in SIGMET and AIRMET

When reporting geographical coordinates of points in SIGMET or AIRMET the following should apply:

1. Each point is represented by latitude/longitude coordinates in whole degrees or degrees and minutes in the form:

N(S)nn[nn] W(E)nnn[nn]

Note: There is a space between the latitude and longitude value.

Examples: N3623 W04515 S1530 E12500 N42 E023

2. In describing lines or polygons, the latitude, longitude coordinates of the respective points are separated by the combination space-hyphen-space, as in the following examples:

$S0530\ E09300 - N0100\ E09530 - N1215\ E11045 - S0820\ E10330 - S0530\ E09300$

S05 E093 - N01 E095 - N12 E110 - S08 E103 - S05 E093

Note 1: The points of a polygon should be provided in a clockwise order, and the end point should be a repeat of the start point.

Note 2: In the case of the same phenomenon covering more than one area within the FIR, these elements may be repeated, as necessary.

3. When describing a volcanic ash cloud approximate form and position, a limited number of points, which form a simplified geometric figure (a line, or a triangle, or quadrangle, etc.) should be used in order to allow for a straightforward interpretation by the user.

EUR/NAT SIGMET test focal points

NOMINATED SIGMET TEST FOCAL POINTS AMONGST STATES ACCREDITED TO THE EUR/NAT OFFICE

(Last updated: 3 January 2014)

STATE	SIGMET TEST FOCAL POINT	ORGANIZATION	CONTACT EMAIL ADDRESS	CONTACT TELEPHONE NUMBER	CONTACT FAX NUMBER
ALBANIA	Fisnik Tabaku	Albanian Civil Aviation Authority	fisnik.tabaku@dgca.gov.al	+355 42 22 62 32	+355 42 22 62 32
	Redi Alikaj	Albanian Civil Aviation Authority	redi.alikaj@dgca.gov.al	+355 42 22 62 32	+355 42 22 62 32
ALGERIA					
ANDORRA	Not applicable				
ARMENIA	Danghyan Vachik	ARMATS JSC	vachik <u>52@mail.ru</u>	+374 10 59 31 43	+374 10 59 30 50
AUSTRIA	Michael Pichler	Austrocontrol	Michael.Pichler@austrocontrol.at		
	Roland Elentner	Austrocontrol	roland.elentner@austrocontrol.at	+43 5 1703 2545 +43 664 8321 167	
AZERBAIJAN	Dr. Nazim Huseynov	Azeraeronavigation	dr.nazim@azans.az	+99412 497 17 14	+99412 497 27 58
	Melikov Baxruz	Azeraeronavigation	melikov@azans.az	+99412 497 16 93	+99412 497 27 58

STATE	SIGMET TEST FOCAL POINT	ORGANIZATION	CONTACT EMAIL ADDRESS	CONTACT TELEPHONE NUMBER	CONTACT FAX NUMBER
	Tatyana Alehverdiyeva	Azeraeronavigation	sinoptic@azans.az	+99412 497 16 93	+99412 497 27 58
BELARUS					
BELGIUM	Wim Demol	Belgocontrol	Wim_Demol@belgocontrol.be	+32 2 2062810	+32 2 2062809
BOSNIA & Herzegovina	Tomislav Stojiljkovic	Civil Aviation Directorate of Republic of Srpska	tomislav.stojiljkovic@rscad.org	+387 51 337 573	+387 51 337 571
BULGARIA	Georgi Mednikarov	BULATSA	georgi.mednikarov@atsa.bg	+359 2 937 1260	+359 2 98 000 43
	Antony Kolarov	BULATSA	antony.kolarov@atsa.bg	+359 2 937 1264	+359 2 98 000 43
CROATIA	Vladimir Malovic	NHMI	vlado@cirus.dhz.hr	+385 1 4565 617	
	Milan Roca	Croatia Control Ltd	milan.roca@crocontrol.hr szm@crocontrol.hr	+385 1 6259 286	+385 1 6259 223
CYPRUS	Keti Savvidou	Cyprus Meteorological Service	ksavvidou@ms.moa.gov.cy	+357 22 802 945	+357 22 305500
CZECH REPUBLIC	Zoja Kvasnickova	CHMI	kvasnickova@chmi.cz	+420 244 032 132	+420 244 032 128
	Pavel Gal	CHMI	pavel.gal@chmi.cz	+420 244 032 135	+420 244 032 128
	Bohumil Techlovsky	СНМІ	techlovskyb@chmi.cz	+605 221 550 (+420)	+420 244 032 241
DENMARK	Ole O. Kristensen	DMI	ook@dmi.dk epost@dmi.dk		
	Johnny Hörling Funder		jhf@naviair.dk		

46

STATE	SIGMET TEST FOCAL POINT	ORGANIZATION	CONTACT EMAIL ADDRESS	CONTACT TELEPHONE NUMBER	CONTACT FAX NUMBER
	<u>sfj@dmi.gl</u> [Greenland]		<u>sfj@dmi.gl</u>		
ESTONIA	Natalja Verbenko	EHMI	natalia@emhi.ee	+372 666 0933	+372 666 0931
	Margarita Gorohhovatskaja	EHMI	rita@emhi.ee	+372 666 0992	
FINLAND	Kari Osteberg	FMI	lentosaa@fmi.fi	+358 919 293 800	+358 919 293 303
	Maria Holmberg	FINAVIA	maria.holmberg@finavia.fi	+358 207 084 111	
	Serkan Tetik	FINAVIA	serkan.tetik@finavia.fi	+358 20 708 3360 +358 400 355 663	+358 20 708 3090
FRANCE	Patrick Simon	Meteo-France	Patrick.Simon@meteo.fr	+33 5 61 07 81 50	+33 5 61 07 81 09
GEORGIA	Nino Gelovani	United Administration of Georgia	n.gelovani@uta.gov.ge	+995 32 51 06 43 +995 77 40 06 90	+995 32 36 40 51
GERMANY	Bernd Richter	DWD	Bernd.Richter@dwd.de	+49 69 80622559	+49 69 80623559
	Horn Reinhold	DWD	Reinhold.Horn@dwd.de	+49 69 80622558	+49 69 80623559
GREECE	Ilias Iliadis	HNMS	ili@hnms.gr	+30 210 969 9141	+30 210 962 8952 +30 210 964 9646
	Kostas Kasapas	HNMS	kasapas@hnms.gr aeronauticalia@hnms.gr	+30 210 969 9012	+30 210 962 8952

STATE	SIGMET TEST FOCAL POINT	ORGANIZATION	CONTACT EMAIL ADDRESS	CONTACT TELEPHONE NUMBER	CONTACT FAX NUMBER
HUNGARY	Laszlo Tölgyesi	HMS	tolgyesi.l@met.hu	+36 1 346 4644	+36 1 346 4949
ICELAND	Unnur Olafsdottir	ISAVIA	unnur.offalfsdottir@isavia.is	+354 424 4000 +354 424 4196 (Direct)	+354 424 4001
	Kristin Hermannsdottir	IMO	kristin@vedur.is	+354 522 6000	+354 522 6001
IRELAND	Kyran Dollard	Met Eireann	Kyran.Dollard@met.ie	+353 01 806 4272	
ISRAEL	Evgeny Brainin	Meteorological Service	brainine@ims.gov.il	+972 3 940 3179 +972 50 621 2790	+972 3 940 3126
ITALY	Giuseppe Leonforte	Centro Nazionale di Meteorologia	leonforte@meteoam.it	+39 06 9129 3879	+39 06 9129 3887
	Sergio Fiacconi	Centro Meteorologico Regionale	fiacconi@meteoam.it	+39 02 7390 4600	+39 02 7390 4605
	Forecast Office	Centro Meteorologico Regionale	cmrwatch@meteoam.it	+39 02 7390 4600	+39 02 7390 4605
KAZAKHSTAN	Gulsagida Jigitcheyeva	JSC "Kazairservice"	<u>kazairservice@mail.ru</u> gulsagida-m.d@mail.ru	+77172799181 +77172799182	+77172797182
Kyrgyzstan		SE "Kyrgyzaeronavigatsia"	Kan_atm@transfer.kg orozbaevat@mail.ru	+996312393559 +996312393483	+ 996312393093
LATVIA	Alla Zilina	SJSC "Latvijas Gaisa Satiksme"	alla.zilina@lgs.lv	+37167300760	+37167300705
	Janis Veveris	Latvian Environment, Geology and Meteorology Centre	janis.veveris@lvgmc.lv	+37 167032637	+37 167145154

STATE	SIGMET TEST FOCAL POINT	ORGANIZATION	CONTACT EMAIL ADDRESS	CONTACT TELEPHONE NUMBER	CONTACT FAX NUMBER
LITHUANIA	Zita Derenciene	Lithuanian Hydrometeorological Service	zita.derenciene@meteo.lt	+370 5 271 5058	+370 5 272 8874
LUXEMBOURG	Not applicable				
MALTA	Charles Galdies	Malta International Airport plc	charles.galdies@maltairport.com	+356 2369 6527	+356 2124 6694
MONACO	Not applicable				
Montenegro					
Morocco	Abderrahim Mouhtadi	Direction de la Meteorologie Nationale	Abderrahim.mouhtadi@gmail.com Mouhtadi.abderrahim@marocmeteo.ma	+212 5 22 65 49 10 +212 6 61 47 23 38	+212 5 22 91 36 98
NETHERLANDS	Annemiek Den Uijl	KNMI	metno-1@knmi.nl	+31 30 2206 778	+31 30 2210 407
	Kees Blom	KNMI	metno-l@knmi.nl	+31 6 112 469 76	+31 30 2210 407
NORWAY	John F. Syer	met.no	johnfs@met.no	+47 22 963 000	+47 22 963 050
POLAND	Anna Klokowska- Siejek	IMGW	anna.siejek@imgw.pl	+48 5694454	+48 5694454
PORTUGAL	Goncalo dos Santos	IPMA	goncalo.santos@ipma.pt	+351 21 844 7023	+351 21 840 2370
REPUBLIC OF MOLDOVA	Leonid Vidibozski	MoldATSA	vidibozski@moldatsa.md	+37322 502 924	+373 22 502 907
	Aleksey Gashchenko	MoldATSA	gascenko@moldatsa.md	+37322 502 924	+373 22 502 907

STATE	SIGMET TEST FOCAL POINT	ORGANIZATION	CONTACT EMAIL ADDRESS	CONTACT TELEPHONE NUMBER	CONTACT FAX NUMBER
ROMANIA	Laurentiu Brojboiu	ROMATSA	laurentiu.brojboiu@romatsa.ro	+4021 2083 318 +4073 0505 082	+4021 2083 579
	Valentin Magureanu	ROMATSA	valentin.magureanu@romatsa.ro	+4021 2083 350 +4073 3311 668	+4021 2083 581
RUSSIAN FEDERATION	Elena Averyanova	Aviamettelecom of Roshydromet	Averyanova.Elena@mecom.ru	+7 499 252 1039	+7 499 252 5504
	Yuilya Naryshkina	Aviamettelecom of Roshydromet	juliaavia@mail.ru	+7 499 252 2729	+7 499 255 5075
	Leonid Bezrouk	Aviamettelecom of Roshydromet	bez@mecom.ru	+7 499 795 1477	+7 499 252 5504
SAN MARINO	Not applicable				
SERBIA	Snezana Lazarevic	RHMZ	snezana.lazarevic@hidmet.gov.rs	+381 11 3050816	+381 11 2542676
	Perisa Sunderic	RHMZ	perisa.sunderic@hidmet.gov.rs	+381 11 3050886	+381 11 2542676
	Danijela Milosavljevic	RHMZ	danijela.milosavljevic@hidmet.gov.rs	+381 11 2861074	+381 11 2542676
	Ilija Malidzan	SMATSA	mwo.beograd@smatsa.rs	+38111 3104 868	+38111 3104 956
SLOVAKIA	Cyril Kunzo	SHMI	cyril.kunzo@shmu.sk	+421 2 4857 4262	+421 2 4333 8548
SLOVENIA	Petar Hitij	SEA	petar.hitij@gov.si	+386 1 478 4190	+386 1 478 4053
	Petar Colic	SEA	petar.colic@gov.si	+386 4 280 4500	+386 4 280 4518
	Dezurni Brnik	SEA	dezumi.brnik@arso.gov.si	+386 4 280 4500	+386 4 280 4518

STATE	SIGMET TEST FOCAL POINT	ORGANIZATION	CONTACT EMAIL ADDRESS	CONTACT TELEPHONE NUMBER	CONTACT FAX NUMBER
SPAIN	Shift Forecaster- CNP	AEMET	cnpjt@aemet.es	+34 915819748	+34 915819742
	Ángel Alcázar	AEMET	aalcazari@aemet.es	+34 915819763	
	Victoria Conde Torrijos	AEMET	mcondet@aemet.es	+34 915810219	
	Guillermo García Yáñez	AEMET	ggarciay@aemet.es telepro@inm.es	+34 915819 757	+34 915445307
Sweden	Ingela Oleskog	SMHI	Ingela.oleskog@smhi.se	+46 11 495 8507	+46 11 495 8001
SWITZERLAND	Marcel Haefliger	MeteoSwiss	fwinfo@meteoswiss.ch	+41 43 816 2010	+41 43 816 2014
TAJIKISTAN					
THE FYRO Macedonia	Jasmina Gavrilovska	"M-NAV" A.D. Skopje	jgavrilovska@dgca.gov.mk	+389 2 3148 203/155 +389 70 344 799	
	Ljupcho Sekuloski	"M-NAV" A.D. Skopje	ljsekuloski@dgca.gov.mk	+389 2 3148 204/155 +389 70 344 207	
TUNISIA					
TURKEY	Emrullah Bayraktar	TSMS	ebayraktar@dmi.gov.tr	+90 312 302 2575	
	Cemal Oktar	TSMS	coktar@dmi.gov.tr	+90 312 302 2590	
	Askin Bilgi	TSMS	abilgi@dmi.gov.tr	+90 312 302 2601	

STATE	SIGMET TEST FOCAL POINT	ORGANIZATION	CONTACT EMAIL ADDRESS	CONTACT TELEPHONE NUMBER	CONTACT FAX NUMBER
TURKMENISTAN					
UKRAINE	Yurii Sadichko	UkSATSE	ysadychko@uksatse.org.ua	+38 044 461 5754	+38 044 246 2196
UNITED KINGDOM	Jon Dutton	Met Office	jonathan.dutton@metoffice.gov.uk	+44 1392 884924	+44 1392 88 5681
	Chris Tyson	Met Office	chris.tyson@metoffice.gov.uk	+44 1392 88 4892	+44 1392 88 5681
	James Randall	NATS	James.Randall@nats.co.uk	+44 1489 444 612	
	Peter Dixon [Jersey]	States of Jersey Meteorological Department.	dixon.p@jerseymet.gov.je	+44 1534 448770	+44 1534 448778
UZBEKISTAN	Valentina Lisenko	Uzaeronavigation Centre	met@uzatc.buzton.com	+998 71 140 27 61	+998 71 254 75 47

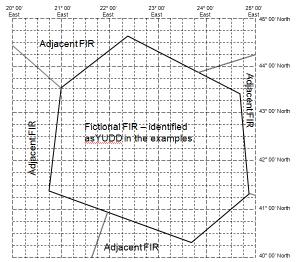
APPENDIX G

SIGMET EXAMPLES

Note. — The figures used in this appendix are intended simply to clarify the intent of the SIGMET message in abbreviated plain language, and therefore how each SIGMET should be constructed by MWOs and also interpreted by users. The figures used are <u>not</u> intended to give guidance on how a SIGMET in graphical format should be produced.

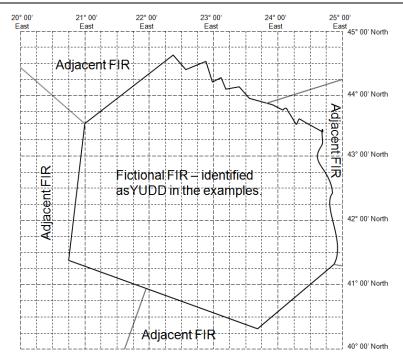
Examples of 'ws' SIGMET. See the sections for SIGMET for volcanic ash only (WV) and SIGMET for tropical cyclone only (WC) for examples specific to those phenomena.

Contents


General

- 1) An area of the FIR defined by a polygon.
 - Use of polygons with complex FIR boundaries.
- 2a) In a sector of the FIR defined relative to specified line joining two points on the FIR boundary
- 2b) In a sector of the FIR defined relative to a line of latitude and a line of longitude (effectively a quadrant)
- 2c) In a sector of the FIR defined relative to a line of latitude or longitude (effectively a segment)
- 3) At a specific point within the FIR
- 4) Volcanic Ash SIGMET only
 - Covering entire FIR/CTA
 - Multiple areas in SIGMET for volcanic ash
- 5) Tropical Cyclone SIGMET only Multiple areas in SIGMET for tropical cyclone

General

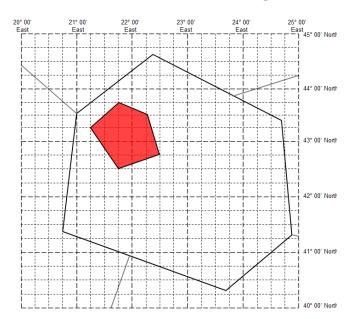

Explanation of fictional FIR.

In each of the examples below, a fictional FIR area is indicated, with portions of adjacent FIRs also indicated. The FIR areas are overlaid on a coordinate grid, in order that the example plain language SIGMETs can be explicitly related to the intended meaning.

For some cases, examples are given where the FIR has boundaries that are complex (country borders for example, especially when defined by rivers)

Fictional FIR is used for the examples.

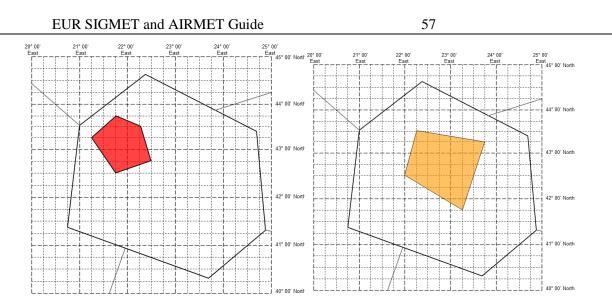
Repetition of start point as last coordinate.


In accordance with practices and procedures laid down for other aeronautical bulletins (i.e. NOTAM), it is recommended that the last point of a polygon is a repeat of the first point of the polygon. This will ensure that the polygon has been closed, and that no points have been omitted.

'Direction' of encoding of the points of a polygon

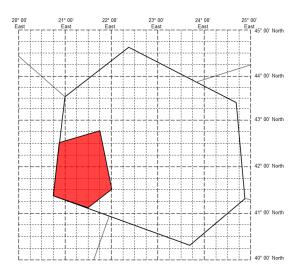
In accordance with practices and procedures laid down for other aeronautical bulletins and international practice (e.g. BUFR encoding of WAFS significant weather (SIGWX) forecasts), it is recommended that the points of a polygon are provided in a 'clockwise' sense. This assists automated systems in determining the 'inside' of polygons.

1) An area of the FIR defined by a polygon. The end point should be a repeat of the start point.


When the SIGMET does not include a 'forecast position' section.

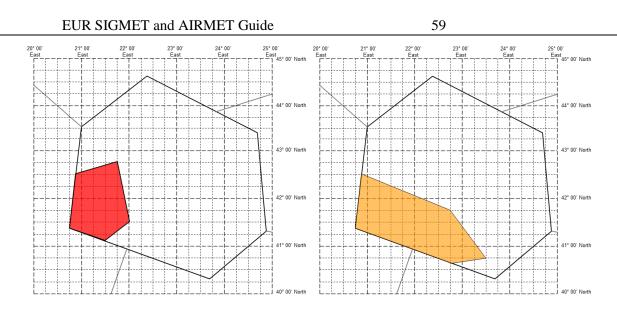
YUDD SIGMET 2 VALID 101200/101600 YUSO -

YUDD SHANLON FIR/UIR SEV TURB FCST WI N4230 E02145 - N4315 E02115 - N4345 E02145 - N4330 E02215 - N4245 E02230 - N4230 E02145 FL250/370 MOV ESE 20KT INTSF=


With an explicit forecast position:

YUDD SIGMET 2 VALID 101200/101600 YUSO -

YUDD SHANLON FIR/UIR SEV TURB FCST WI N4230 E02145 - N4315 E02115 - N4345 E02145 - N4330 E02215 - N4245 E02230 - N4230 E02145 FL250/370 MOV ESE 20KT INTSF FCST 1600Z WI N4145 E02315 - N4230 E02200 - N4330 E02215 - N4315 E02345 - N4145 E02315=

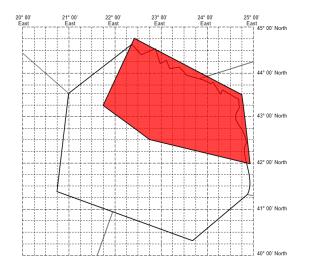

When the SIGMET does not include a 'forecast position' section.

YUDD SIGMET 2 VALID 101200/101600 YUSO -

YUDD SHANLON FIR/UIR SEV TURB FCST WI N4230 E02052 - N4245 E02145 - N4130 E02200 - N4107 E02130 - N4123 E02045 - N4230 E02052 FL250/370 MOV SE 30KT WKN=

With an explicit forecast position:

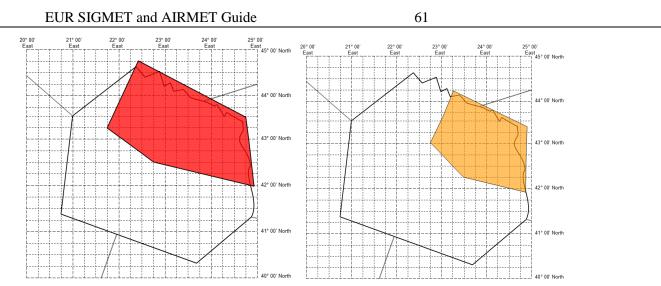
YUDD SIGMET 2 VALID 101200/101600 YUSO -


YUDD SHANLON FIR/UIR SEV TURB FCST WI N4230 E02052 - N4245 E02145 - N4130 E02200 - N4107 E02130 - N4123 E02045 - N4230 E02052 FL250/370 MOV SE 30KT WKN FCST 1600Z WI N4230 E02052 - N4145 E02245 - N4045 E02330 - N4040 E02248 - N4123 E02045 - N4230 E02052=

Use of polygons with complex FIR boundaries.

Annex 3 (18th Edition, July 2013) specifies that the points of a polygon '... should be kept to a minimum and should not normally exceed seven'. However, some FIR boundaries are complex, and it would be unrealistic to expect that a polygon would be defined that followed such boundaries exactly. As such, some States have determined that the polygon points be chosen in relation to the complex boundary such that the FIR boundary approximates, but is wholly encompassed by, the polygon, and that any additional area beyond the FIR boundary be the minimum that can be reasonably and practically described. Caution should however be exercised in those instances where international aerodromes are located in close proximity to such a complex FIR boundary.

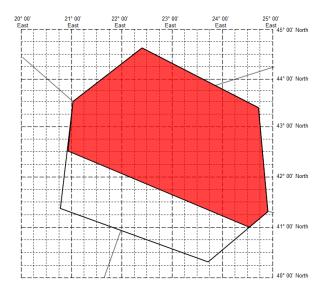
In the examples below, it would not be practical to follow the NE boundaries exactly. The point close to N4330 E02245 is obviously a 'major' turning point along the FIR boundary, but the other, numerous and complex turning points can only be approximated when constrained to seven points.


When the SIGMET does not include a 'forecast position' section.

YUDD SIGMET 2 VALID 101200/101600 YUSO -

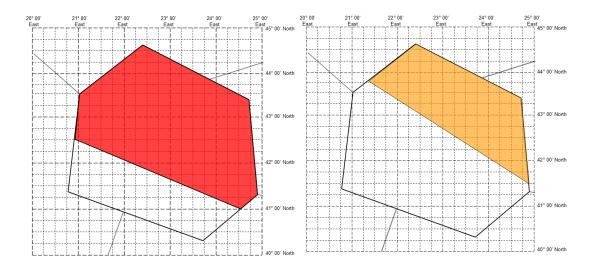
YUDD SHANLON FIR/UIR SEV TURB FCST WI N4315 E02145 - N4445 E02245 - N4330 E02445 - N4200 E02455 - N4230 E02245 - N4315 E02145 FL250/370 MOV SE 20KT WKN=

With an explicit forecast position:

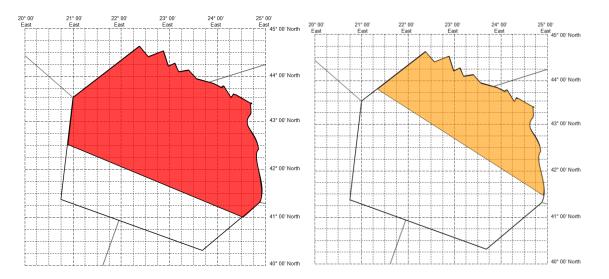


YUDD SIGMET 2 VALID 101200/101600 YUSO -

YUDD SHANLON FIR/UIR SEV TURB FCST WI N4315 E02145 - N4445 E02245 - N4330 E02445 - N4200 E02455 - N4230 E02245 - N4315 E02145 FL250/370 MOV SE 20KT WKN FCST 1600Z WI N4300 E02245 - N4415 E02315 - N4322 E02452 - N4155 E02445 - N4215 E02330 - N4300 E02245=

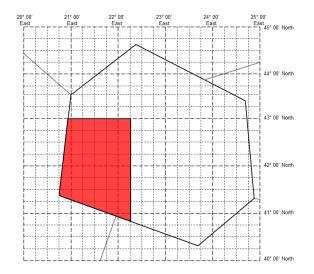

2a) In a sector of the FIR defined relative to specified line joining two points on the FIR boundary.

When the SIGMET does not include a 'forecast position' section.

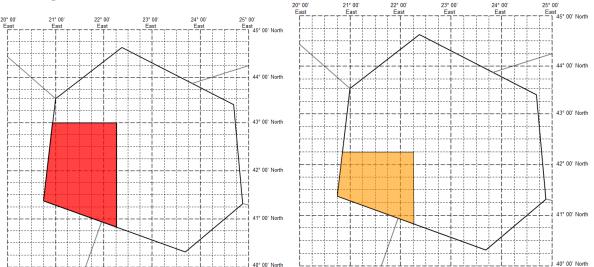

YUDD SIGMET 2 VALID 101200/101600 YUSO -YUDD SHANLON FIR/UIR SEV TURB FCST NE OF LINE N4230 E02052 - N4100 E02430 FL250/370 MOV NE 15KT WKN=

With an explicit forecast position:

YUDD SIGMET 2 VALID 101200/101600 YUSO -


YUDD SHANLON FIR/UIR SEV TURB FCST NE OF LINE N4230 E02052 - N4100 E02430 FL250/370 MOV NE 15KT WKN FCST 1600Z NE OF LINE N4346 E02122 - N4130 E02452=

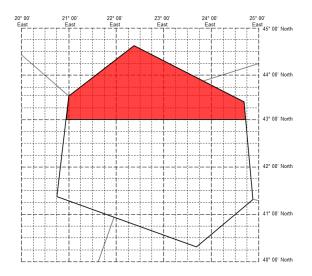
YUDD SIGMET 2 VALID 101200/101600 YUSO -YUDD SHANLON FIR/UIR SEV TURB FCST NE OF LINE N4230 E02052 - N4100 E02430 FL250/370 MOV NE 15KT WKN FCST 1600Z NE OF LINE N4346 E02122 - N4130 E02457=


2b) In a sector of the FIR defined relative to a line of latitude and a line of longitude (effectively a quadrant)

When the SIGMET does not include a 'forecast position' section.

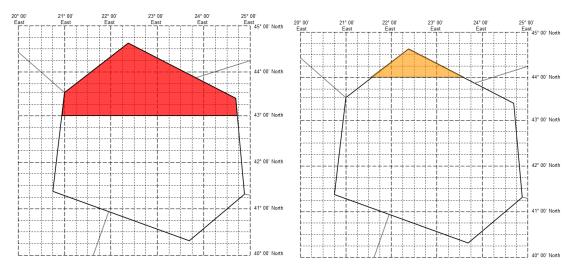
YUDD SIGMET 2 VALID 101200/101600 YUSO -YUDD SHANLON FIR/UIR SEV TURB FCST S OF N4300 AND W OF E02215 FL250/370 MOV S 12KT WKN=

When the SIGMET does include a 'forecast position'.


With an explicit forecast position:

YUDD SIGMET 2 VALID 101200/101600 YUSO -

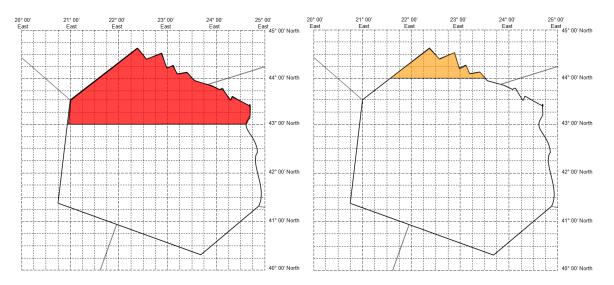
YUDD SHANLON FIR/UIR SEV TURB FCST S OF N4300 AND W OF E02215 FL250/370 MOV S 12KT WKN FCST 1600Z S OF N4215 AND W OF E02215=


2c) In a sector of the FIR defined relative to a line of latitude or longitude (effectively a segment)

When the SIGMET does not include a 'forecast position' section.

YUDD SIGMET 2 VALID 101200/101600 YUSO -YUDD SHANLON FIR/UIR SEV TURB FCST N OF N43 FL250/370 MOV N 15KT WKN=

When the SIGMET does include a 'forecast position' section.



YUDD SIGMET 2 VALID 101200/101600 YUSO -YUDD SHANLON FIR/UIR SEV TURB FCST N OF N43² FL250/370 MOV N 15KT WKN FCST 1600Z N OF N44=

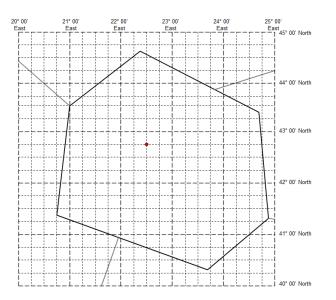
 $^{^2}$ It would be equally valid to use 'N4300'.

Second Edition

³ November 2014

YUDD SIGMET 2 VALID 101200/101600 YUSO -

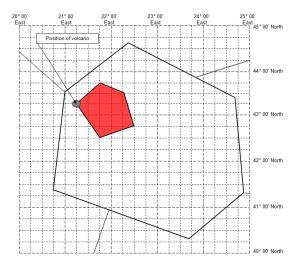
YUDD SHANLON FIR/UIR SEV TURB FCST N OF N43³ FL250/370 MOV N 15KT WKN FCST 1600Z N OF N44=


 $^{^3}$ It would be equally valid to use 'N4300'.

Second Edition

³ November 2014

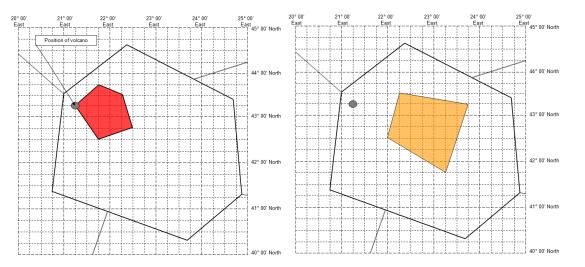
3) At a specific point within the FIR;


When the SIGMET does not include a 'forecast position' section.

YUDD SIGMET 2 VALID 101200/101600 YUSO -YUDD SHANLON FIR/UIR SEV TURB OBS N4245 E02230 FL250/370 STNR WKN=

4) Volcanic Ash SIGMET Only

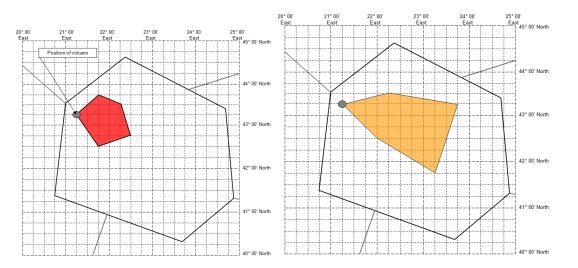
When the VA SIGMET does not include a 'forecast position' section.



YUDD SIGMET 2 VALID 101200/101600 YUSO -

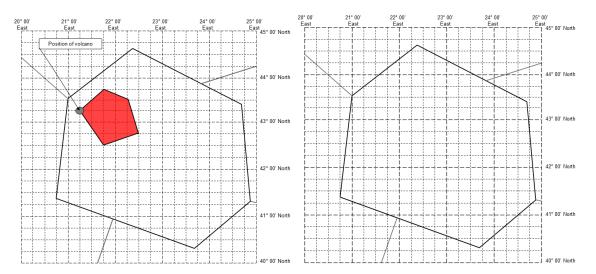
YUDD SHANLON FIR/UIR VA ERUPTION MT ASHVAL PSN N4315 E02115 VA CLD OBS AT 1200Z WI N4315 E02115 - N4345 E02145 - N4230 E02215 - N4245 E02230 - N4230 E02145 - N4315 E02115 FL250/370 MOV ESE 20KT NC=

When the SIGMET does include a 'forecast position' section.


For VA (eruption ceased, ash cloud persists downwind):

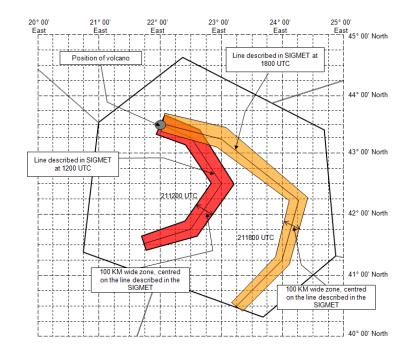
YUDD SIGMET 2 VALID 101200/101800 YUSO -

YUDD SHANLON FIR/UIR VA ERUPTION MT ASHVAL PSN N4315 E02115 VA CLD OBS AT 1200Z WI N4315 E02115 - N4345 E02145 N4330 E02215 - N4245 E02230 - N4230 E02145 - N4315 E02115 FL250/370 MOV ESE 20KT NC FCST 1800Z VA CLD APRX N4330 E02215 - N4315 E02345 - N4145 E02315 - N4230 E02200 - N4330 E02215=


For VA (eruption on-going):

YUDD SIGMET 2 VALID 101200/101800 YUSO -

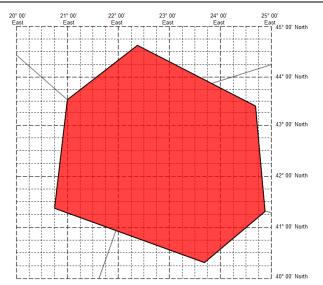
YUDD SHANLON FIR/UIR VA ERUPTION MT ASHVAL PSN N4315 E02115 VA CLD OBS AT 1200Z WI N4315 E02115 - N4245 E02145 - N4330 E02215 - N4245 E02230 - N4230 E02145 - N4315 E2115 FL250/370 MOV ESE 20KT NC FCST 1800Z VA CLD APRX N4315 E02115 - N4330 E02215 - N4315 E02345 - N4145 E02315 - N4230 E02200 - N4315 E02115=


For VA (eruption ceasing, ash dispersing):

YUDD SIGMET 2 VALID 101200/101800 YUSO -

YUDD SHANLON FIR/UIR VA ERUPTION MT ASHVAL PSN N4315 E02115 VA CLD OBS AT 1200Z WI N4315 E02115 - N4345 E02145 - N4330 E02215 - N4245 E02130 - N4230 E02145 - N4315 E02115 FL250/370 MOV ESE 20KT WKN FCST 1800Z NO VA EXP=

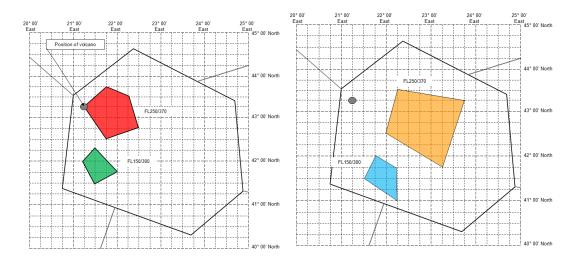
For VA (eruption on-going), defining the area affected as a line of specified width:



YUDD SIGMET 2 VALID 211200/211800 YUSO -

YUDD SHANLON FIR/UIR VA ERUPTION MT ASHVAL PSN N4330 E02200 VA CLD FCST 1200Z FL310/450 100KM WID LINE BTN N4330 E02200 - N4315 E02230 - N4230 E02300 - N4145 E02230 - N4130 E02145 NC FCST 1800Z VA CLD APRX 100KM WID LIN BTN N4330 E02200 - N4315 E02300 - N4215 E02415 - N4115 E02400 - N4030 E02315=

Covering entire FIR (volcanic ash only).

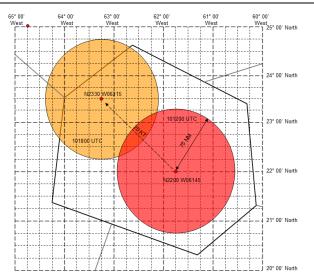


YUDD SIGMET 2 VALID 101200/101800 YUSO -YUDD SHANLON FIR/UIR VA ERUPTION MT ASHVAL PSN N4315 E02115 VA CLD FCST ENTIRE FIR FL250/370 STNR WKN=

Multiple areas in SIGMET for volcanic ash.

Strictly, the only way to include a second instance of a volcanic ash cloud in a SIGMET message is to use the 'AND' option in the 'Forecast position' section.

In the example below, two areas of volcanic ash cloud (at different levels) are forecast to move as described. The normal courier font refers to the northernmost areas of ash, and the italicised font refers to the southernmost areas of ash during the period. 'AND' is highlighted in **bold** to identify the separation of the two features.

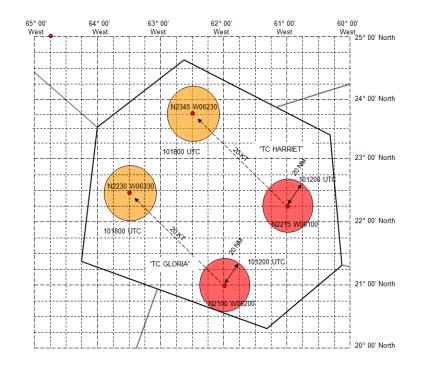


YUDD SIGMET 2 VALID 101200/101800 YUSO -

YUDD SHANLON FIR/UIR VA ERUPTION MT ASHVAL PSN N4315 E02115 VA CLD OBS AT 1200Z WI N4315 E02115 - N4345 E02145 N4330 E02215 - N4245 E02230 - N4230 E02145 - N4315 E02115 FL250/370 MOV ESE 20KT NC FCST 1800Z VA CLD APRX N4330 E02215 - N4315 E02345 - N4145 E02315 - N4230 E02200 - N4330 E02215 **AND** WI N4200 E02115 - N4217 E02130 - N4145 E02200 - N4130 E02130 - N4200 E02115 FL150/300 MOV ESE 20KT NC FCST 1800Z VA CLD APRX N4200 E02145 - N4145 E02215 - N4100 E02215 - N4130 E02130 - N4200 E02145=

The above only works if there are two instances of ash at the start and end of the period. If the number of ash areas is different at the start and end, it is recommended that separate SIGMETs be issued as necessary.

5) Tropical Cyclone SIGMET Only


77

YUDD SIGMET 2 VALID 101200/101800 YUSO -YUDD SHANLON FIR/UIR TC GLORIA FCST AT 1200Z N2200 W06145 CB TOP FL500 WI 75NM OF CENTRE MOV NW 20KT WKN FCST 1800Z TC CENTRE N2330 W06315=

Multiple areas in SIGMET for tropical cyclone.

Strictly, the only way to include a second instance of a tropical cyclone in a SIGMET is to use the 'AND' option in the 'Forecast position' section.

The example below demonstrates how two separate TCs, and the CB within a specified radius of those TCs, can be described. The normal courier font refers to TC Gloria, and the italicised font refers to TC Harriet. 'AND' is highlighted in **bold** to identify the separation between information for the two features.

YUDD SIGMET 2 VALID 101200/101800 YUSO -

YUDD SHANLON FIR/UIR TC GLORIA FCST AT 1200Z N2100 W06200 CB TOP FL500 WI 20NM OF CENTRE MOV NW 20KT WKN FCST 1800Z TC CENTRE N2230 W06330 **AND** TC HARRIET FCST AT 1200Z N2215 W06100 CB TOP FL400 WI 20NM OF CENTRE MOV NW 20KT WKN FCST 1800Z TC CENTRE N2345 W06230=

APPENDIX H

SIGMET GUIDANCE TABLE: SIMPLIFIED FROM ANNEX 3 TABLE A6-1

Note. – The table below seeks to provide more explicit guidance than that given in Table A6-1 of Annex 3 (18th Edition, July 2013). It does this by removing all references to the AIRMET message and special air-report message elements contained in Table A6-1. The table below simplifies the available options and provides more specific expansion of the symbolic structure of SIGMET messages, with guidance sub-titles where appropriate. It should be noted that Annex 3, Appendix 6, Table A6-1 remains the authoritative reference.

Ref No.	Element as specified in Chapter 5 and Appendix 6	Detailed Content	Expanded symbolic - These 'expanded' symbolic representations of the various SIGMET code elements represent the interpretation of Table A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the guidelines below.	Examples. These examples of various SIGMET code elements represent the interpretation A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the examples below.
1.1	Location indicator of FIR/CTA $(M)^{1}$	ICAO location indicator of the ATS	חתחת	YUCC ²
		unit serving the FIR		YUDD ²
		or CTA to which the SIGMET refers (M)		
1.2	Identification	Message	n	SIGMET 5
1.2	lucitimeation	identification and	nn	SIGMET A3
		sequence number	nnn	SIGMET B10
		(M) ³		
1.3	Validity period	Day-time groups	VALID nnnnnn/nnnnn	VALID 221215/221600
		indicating the period		VALID 101520/101800
		of validity in UTC		VALID 252000/260000
		(M)		VALID 122000/130400 (6 hour validity applicable to TC or VA only)
1.4	Location indicator of	Location indicator of	nnnn-	YUDO- ²
	MWO (M)	MWO originating the		YUSO- ²
		message with a separating hyphen		
		(M)		
1.5	Name of the	Location indicator	nnnn nnnnnnnnn FIR	YUCC AMSWELL FIR ²
	FIR/CTA or aircraft	and name of the	nnnn nnnnnnnnn FIR/UIR nnnn nnnnnnnnn CTA	YUDD SHANLON FIR/UIR ²
	identification (M)	FIR/CTA for which the SIGMET is	nnnn nnnnnnnn CTA	YUDD SHANLON FIR ²
		issued (M)		YUCC AMSWELL CTA
2.1	Phenomenon (M)4	Description of	OBSC ⁵ TS	OBSC TS
		phenomenon	OBSC ⁵ TSGR ⁶	OBSC TSGR
		causing the issuance of SIGMET	EMBD ⁷ TS	EMBD TS EMBD TSGR
		(C)		FRQ TS
		(0)	EMBD ⁷ TSGR ⁶	FRQ TSGR
			FRQ ⁸ TS	SQL TS

Ref No.	Element as specified in Chapter 5 and Appendix 6	Detailed Content	Expanded symbolic - These 'expanded' symbolic representations of the various SIGMET code elements represent the interpretation of Table A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the guidelines below.	Examples. These examples of various SIGMET code elements represent the interpretation A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the examples below.
			FRQ ⁸ TSGR ⁶ SQL ⁹ TS SQL ⁹ TSGR ⁶ TC nnnnnnnnn TC NN ¹⁰ SEV TURB ¹¹ SEV ICE ¹² SEV ICE (FZRA) ¹² SEV MTW ¹³ HVY DS ¹⁴ HVY SS ¹⁴ VA ERUPTION PSN Nnn[nn] or Snn[nn] Ennn[nn] or Wnnn[nn] VA CLD VA ERUPTION MT nnnnnnnn PSN Nnn[nn] or Snn[nn] Ennn[nn] or Wnnn[nn] VA CLD VA CLD RDOACT CLD	SQL TSGR TC GLORIA TC NN SEV TURB SEV ICE SEV ICE (FZRA) SEV MTW HVY DS HVY SS VA ERUPTION PSN N27 W017 VA CLD VA ERUPTION PSN S1200 E01730 VA CLD VA ERUPTION MT ASHVAL PSN S15 E073 VA CLD VA ERUPTION MT VALASH PSN N2030 E02015 VA CLD VA CLD RDOACT CLD
2.2	Observed or forecast phenomenon (M)	Indication whether the information is observed and expected to continue, <i>or</i> forecast (M)	OBS OBS AT nnnnZ FCST FCST AT nnnnZ	OBS AT 1210Z OBS FCST AT 1815Z FCST
2.3	Location (C) ¹⁸	Location (referring to latitude and longitude (in degrees and	1) An area of the FIR defined by a polygon. The end point shall be a repeat of the start point. Minimum 4 coordinates and not normally more than 7 coordinates.	1) An area of the FIR defined by a polygon. The end point shall be a repeat of the start point. Minimum 4 coordinates (including the last point as a repeat of the first), and not normally more than 7 coordinates.

EUR SIGMET and AIRMET Guide

81

Ref No.	Element as specified in Chapter 5 and Appendix 6	Detailed Content	Expanded symbolic - These 'expanded' symbolic representations of the various SIGMET code elements represent the interpretation of Table A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the guidelines below.	Examples. These examples of various SIGMET code elements represent the interpretation A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the examples below.
		minutes))	WI ²⁴ Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn] - Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn] - Nnn[nn] or Snn[nn]	WI N6030 E02550 - N6055 E02500 - N6050 E02630 - N6030 E02550
			Wnnn[nn] or Ennn[nn][- Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn] - Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn]]	WI N30 W067 - N32 W070 - N35 W068 - N30 W067
			or 2a) In a sector of the FIR defined relative to a specified line joining two points on the FIR boundary. (or so close to the FIR boundary so as to	or 2a) In a sector of the FIR defined relative to a specified line joining two points on the FIR boundary (or so close to the FIR boundary so as to leave no doubt that the intent is for the line to
			leave no doubt that the intent is for the line to connect to the FIR boundary at that point).	connect to the FIR boundary at that point).
			[N][NE][E][SE][S][SW][W][NW] OF [LINE] Nnn[nn] Or Snn[nn] Wnnn[nn] Or Ennn[nn] - Nnn[nn] Or Snn[nn] Wnnn[nn] Or Ennn[nn]	NE OF LINE N2515W08700 - N2000W08330 S OF LINE S14E150 - S14E155
			or	or
			2b) In a sector of the FIR defined relative to a line of latitude and a line of longitude (effectively a quadrant);	2b) In a sector of the FIR defined relative to a line of latitude and a line of longitude (effectively a quadrant);
			N OF Nnn[nn] AND W OF Wnnn[nn] or N OF Nnn[nn] AND E OF Wnnn[nn] or	S OF N3200 AND E OF E02000 S OF S3215 AND W OF E10130 S OF N12 AND W OF E040
			S OF Nnn[nn] AND W OF Wnnn[nn] Or S OF Nnn[nn] AND E OF Wnnn[nn] Or N OF Nnn[nn] AND W OF Ennn[nn] Or	N OF N35 AND E OF E078
			N OF Nnn[nn] AND E OF Ennn[nn] Or S OF Nnn[nn] AND W OF Ennn[nn] Or S OF Nnn[nn] AND E OF Ennn[nn] Or	or
			or	
			2c) In a sector of the FIR defined relative to a line of latitude or longitude (effectively a segment);	2c) In a sector of the FIR defined relative to a line of latitude or longitude (effectively a segment);
			N OF Nnn[nn] or S OF Nnn[nn] or	N OF S2230 S OF S43 E OF E01700
			N OF Snn[nn] or S OF Snn[nn] or	E OF W005
			W OF Wnnn[nn] or E OF Wnnn[nn] or W OF Ennn[nn] or	
			E OF Ennn[nn]	

Ref No.	Element as specified in Chapter 5 and Appendix 6	Detailed Content	Expanded symbolic - These 'expanded' symbolic representations of the various SIGMET code elements represent the interpretation of Table A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the guidelines below.	Examples. These examples of various SIGMET code elements represent the interpretation A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the examples below.
			or 3) At a specific point within the FIR; Nnn[nn] Wnnn[nn] Or Nnn[nn] Ennn[nn] Or Snn[nn] Wnnn[nn] Or Snn[nn] Ennn[nn] or 4) A reference to the whole FIR/CTA ENTIRE FIR ²¹	or 3) At a specific point within the FIR; N5530 W02230 S12 E177 or 4) A reference to the whole FIR/CTA ENTIRE FIR
			ENTIRE CTA ²¹	ENTIRE CTA
2.4	Level (C) ¹⁸	Flight level or altitude and extent (C) ¹⁹	 Generic height/range descriptors to be used when 'Location' descriptors above are used. FLnnn SFC/FLnnn SFC/FLnnn SFC/nnnnM SFC/nnnnFT FLnnn/nnn TOP FLnnn ABV FLnnn TOP ABV FLnnn or ²⁰ 2) Radius from TC centre from which CB related to Tropical Cyclone ONLY may be expected. CB TOP FLnnn WI nnn{KM/NM} OF CENTRE CB TOP ABV FLnnn WI nnn{KM/NM} OF CENTRE CB TOP BLW FLnnn WI nnn{KM/NM} OF CENTRE cB TOP BLW FLnnn WI nnn{KM/NM} OF CENTRE cB TOP BLW FLnnn WI nnn{KM/NM} OF CENTRE are called to Tropical Cyclone of the specified width within which volcanic ash is 	 1) Generic height/range descriptors. FL180 SFC/FL070 SFC/9000FT FL050/080 FL310/450 TOP FL390 ABV FL280 TOP ABV FL100 or²⁰ 2) Radius from TC centre from which CB related to Tropical Cyclone ONLY may be expected. CB TOP FL500 WI 270KM OF CENTRE CB TOP FL500 WI 270KM OF CENTRE CB TOP FL500 WI 150NM OF CENTRE CB TOP ABV FL450 WI 250KM OF CENTRE CB TOP BLW FL530 WI 150NM OF CENTRE or²¹ 3c) Zone defined by a line of specified width within which
			3) Zone defined by a line of specified width within which volcanic ash is expected.	 Zone defined by a line of specified width within which volcanic ash is expected.

EUR SIGMET and AIRMET Guide

83

Ref No.	Element as specified in Chapter 5 and Appendix 6	Detailed Content	Expanded symbolic - These 'expanded' symbolic representations of the various SIGMET code elements represent the interpretation of Table A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the guidelines below.	Examples. These examples of various SIGMET code elements represent the interpretation A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the examples below.
			22 BTN Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn] - Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn] - Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn][- Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn]]	FL310/450 100KM WID LINE BTN S4330 E02200 - N4315 E02230 - N4230 E02300 - N4145 E02230 - N4130 E02145
			or	or
			FLnnn/nnn nnNM WID LINE ²² BTN Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn] - Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn] - Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn][- Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn]]	FL310/450 60NM WID LINE BTN S4330 E02200 - N4315 E02230 - N4230 E02300 - N4145 E02230 - N4130 E02145
2.5	Movement or expected movement (C) ¹⁸	Movementorexpected movement(directionandspeed)withreference to one ofthe sixteen points ofcompass,orstationary (C)	MOV[N][NNE][NE][ENE][E][ESE][SE][SSE][S][SSW][SW][WSW][W][WNW][NW][NWW] nnKMH or MOV[N][NNE][NE][ENE][E][ESE][SE][SSE][S][SSW][SW][WSW][W][WNW][NW]]NNW] nnKT or	MOV E 40KMH MOV E 20KT MOV SE STNR
2.6	Channes in intensity	Evented shares	STNR INTSF	WKN
2.0	Changes in intensity (C) ¹⁸	Expected changes in intensity (C)	or	WKN INTSF NC
			WKN	
			or	
			NC	
2.7	Forecast position	Forecast position of	1a) Specific to Tropical Cyclone only.	1a) Specific to Tropical Cyclone only.
	(C) ^{18, 19, 28}	volcanic ash cloud or the centre of the	FCST nnnnZ TC CENTRE Nnnnn or Snnnn Ennnnn or Wnnnnn	FCST 2200Z TC CENTRE N2740 W07345
		TC or other hazardous	FCST nnnnZ TC CENTRE Nnn or Snn Ennn or Wnnn	FCST 1600Z TC CENTRE S15 W110
		phenomena ²⁵ at the	[AND] ²³	
		end of the validity period of the	or	or
		SIGMET message (C)	2a) Specific to Volcanic Ash only: A polygon defining an ash cloud. The	2a) Specific to Volcanic Ash only: A polygon defining an ash cloud. The end point shall be a repeat of the start point.
	1		·	

Ref No.	Element as specified in Chapter 5 and Appendix 6	Detailed Content	Expanded symbolic - These 'expanded' symbolic representations of the various SIGMET code elements represent the interpretation of Table A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the guidelines below.	Examples. These examples of various SIGMET code elements represent the interpretation A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the examples below.
			end point shall be a repeat of the start point. Minimum 4 coordinates and not normally more than 7 coordinates.	Minimum 4 coordinates and not normally more than 7 coordinates.
			FCST nnnnZ VA CLD APRX Nnn[nn] Or Snn[nn] Wnnn[nn] Or Ennn[nn] – Nnn[nn] Or Snn[nn] Wnnn[nn] Or Ennn[nn] [– Nnn[nn] Or Snn[nn] Wnnn[nn] Or Ennn[nn]] [– Nnn[nn] Or Snn[nn] Wnnn[nn] Or Ennn[nn]]	FCST 1700Z VA CLD APRX S15 E075 - S15 E081 - S17 E083 - S18 E079 - S15 E075 Or
			or	2b) Specific to Volcanic Ash only: A zone defined by a line of specified width, defining an ash cloud.
			2b) Specific to Volcanic Ash only: A zone, defined by a line of specified width, defining an ash cloud. FCST nnnnZ VA CLD APRX nnKM (nnNM) WID LINE ²² BTN Nnn[nn] Or Snn[nn] Wnnn[nn] Or Ennn[nn] - Nnn[nn] Or Snn[nn] Wnnn[nn] Or Ennn[nn] [- Nnn[nn] Or Snn[nn] Wnnn[nn] Or Ennn[nn] [- Nnn[nn] Or Snn[nn] Wnnn[nn] Or Ennn[nn] [- Nnn[nn] Or Snn[nn] Wnnn[nn] Or Ennn[nn] [- Nnn[nn] Or Snn[nn]	FCST 1700Z VA CLD APRX 180KM WID LINE BTN S15 E075 - S15 E081 - S17 E083 - S18 E079 FCST 1700Z VA CLD APRX 90NM WID LINE BTN S15 E075 - S15 E081 - S17 E083 - S18 E079
			[AND] ²³	or
			or	2c) Specific to Volcanic Ash only affecting entire FIR or CTA
			2c) Specific to Volcanic Ash affecting entire FIR or CTA	FCST 1400Z ENTIRE FIR ²¹
			FCST nnnnZ ENTIRE FIR ²¹	or
			or	FCST 0300Z ENTIRE CTA ²¹
			FCST nnnnZ ENTIRE CTA ²¹	or
			or 2d) Specific to Volcanic Ash only: the volcanic ash cloud is expected to	2d) Specific to Volcanic Ash only: the volcanic ash cloud is expected to be completely out of the FIR or CTA
			be completely out of the FIR or CTA	FCST 0600Z NO VA EXP
			FCST nnnnZ NO VA EXP	or
			or 3a) Specific to hazards other than TC or VA, an area of the FIR defined by a polygon. The end point shall be a repeat of the start point. Minimum 4 (including the last point being a repeat of the first point)	3a) Specific to hazards other than TC or VA, an area of the FIR defined by a polygon. The end point shall be a repeat of the start point. Minimum 4 coordinates (including the last point being a repeat of the first point), and not normally more than 7
			coordinates, and not normally more than 7 coordinates.	coordinates.

EUR SIGMET and AIRMET Guide

Ref No.	Element as specified in Chapter 5 and Appendix 6	Detailed Content	Expanded symbolic - These 'expanded' symbolic representations of the various SIGMET code elements represent the interpretation of Table A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the guidelines below.	Examples. These examples of various SIGMET code elements represent the interpretation A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the examples below.
			FCST nnnnZ WI ²⁴ Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn] - Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn] -	FCST 1600Z WI N6030 E02550 - N6055 E02500 - N6050 E02630 - N6030 E02550
			Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn][- Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn] - Nnn[nn] or Snn[nn] Wnnn[nn] or Ennn[nn]]	FCST 0800Z WI N30 W067 - N32 W070 - N35 W068 - N30 W067
			or	or
			3b) Specific to hazards other than TC or VA, in a sector of the FIR defined relative to specified line joining two points on the FIR boundary (or so close to the FIR boundary so as to leave no doubt that the intent is for the line to connect to the FIR boundary at that point).	3b) Specific to hazards other than TC or VA, in a sector of the FIR defined relative to specified line joining two points on the FIR boundary (or so close to the FIR boundary so as to leave no doubt that the intent is for the line to connect to the FIR boundary at that point).
			FCST nnnnZ [N][NE][E][SE][S][SW][W][NW] OF [LINE] Nnn[nn] Or Snn[nn] Wnnn[nn] Or Ennn[nn] - Nnn[nn] Or Snn[nn] Wnnn[nn] Or Ennn[nn]	FCST 2100Z NE OF N2500 W08700 - N2000 W08300 FCST 1200Z NE OF LINE N2500 W08700 - N2000 W08300 FCST 1600Z S OF S14 E150 - S14 E155 FCST 2000Z S OF LINE S14 E150 - S14 E155
			or	or
			3c) Specific to hazards other than TC or VA, in a sector of the FIR defined relative to a line of latitude and a line of longitude (effectively a quadrant);	3c) Specific to hazards other than TC or VA, in a sector of the FIR defined relative to a line of latitude and a line of longitude (effectively a quadrant);
			FCST nnnnZ N OF Nnn[nn] AND W OF Wnnn[nn] Or FCST nnnnZ N OF Nnn[nn] AND E OF Wnnn[nn] Or FCST nnnnZ S OF Nnn[nn] AND W OF Wnnn[nn] Or FCST nnnnZ S OF Nnn[nn] AND E OF Wnnn[nn] Or FCST nnnnZ N OF Nnn[nn] AND E OF Wnnn[nn] Or FCST nnnnZ N OF Nnn[nn] AND W OF Ennn[nn] Or FCST nnnnZ N OF Nnn[nn] AND E OF Ennn[nn] Or FCST nnnnZ S OF Nnn[nn] AND W OF Ennn[nn] Or FCST nnnnZ S OF Nnn[nn] AND W OF Ennn[nn] Or	FCST 1600Z S OF N3200 AND E OF E02000 FCST 0600Z S OF S3215 AND W OF E10130 FCST 1230Z S OF N12 AND W OF E040 FCST 0300Z N OF N35 AND E OF E078
			or	or
			3d) Specific to hazards other than TC or VA, in a sector of the FIR defined relative to a line of latitude or longitude (effectively a segment);	3d) Specific to hazards other than TC or VA, in a sector of the FIR defined relative to a line of latitude or longitude (effectively a segment);
			FCST nnnnZ N OF Nnn[nn] or FCST nnnnZ S OF Nnn[nn] or	FCST 1600Z N OF S2230 FCST 1130Z S OF S43 FCST 0800Z E OF E01700

Ref Element as specified No. In Chapter 5 and Appendix 6	Detailed Content	Expanded symbolic - These 'expanded' symbolic representations of the various SIGMET code elements represent the interpretation of Table A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the guidelines below.	Examples. These examples of various SIGMET code elements represent the interpretation A6-1 of Annex 3. MWOs are encouraged to align their SIGMETs with the examples below.
		FCST nnnnZ N OF Snn[nn] Or FCST nnnnZ S OF Snn[nn] Or FCST nnnnZ W OF Wnnn[nn] Or FCST nnnnZ E OF Wnnn[nn] Or FCST nnnnZ W OF Ennn[nn] Or FCST nnnnZ E OF Ennn[nn] Or FCST nnnnZ E OF Ennn[nn] Or FCST nnnnZ N OF Ennn[nn] Or FCST nnnnZ Nnn[nn] Nnn[nn] Or FCST nnnnZ Nnn[nn] Wnnn[nn] or FCST nnnnZ Snn[nn] Wnnn[nn] or FCST nnnnZ Snn[nn] Wnnn[nn] or FCST nnnnZ Snn[nn] Wnnn[nn] or	FCST 1200Z E OF W005 or 3e) Specific to hazards other than TC or VA, at a point: FCST 0800Z N5530 W02230 FCST 1500Z S12 E177
Cancellation of SIGMET (C) ²⁷	Cancellation of SIGMET referring to its identification	CNL SIGMET n nnnnn/nnnnn CNL SIGMET nn nnnnn/nnnnn CNL SIGMET nnn nnnnn/nnnnn or CNL SIGMET n nnnnnn/nnnnn VA MOV TO nnnn FIR ²¹ CNL SIGMET nn nnnnnn/nnnnn VA MOV TO nnnn FIR ²¹ CNL SIGMET nn 251030/251430 VA MOV TO YUDO FIR ²⁷	CNL SIGMET 2 102000/110000 ²⁷ CNL SIGMET 12 101200/101600 ²⁷ CNL SIGMET A12 031600/032000 ²⁷ CNL SIGMET 3 251030/251630 VA MOV TO YUDO FIR ²⁷ CNL SIGMET 06 191200/191800 VA MOV TO YUDO FIR ²⁷ CNL SIGMET B10

87

Table A-1: Expanded SIGMET template

Footnotes to table: (note, the number in brackets at the end of each footnote refers to the footnote reference in Table A6-1 of Annex 3 (18th Edition, July 2013).

- 1. See 4.1. "Recommendation.— In cases where the airspace is divided into a flight information region (FIR) and an upper flight information region (UIR), the SIGMET should be identified by the location indicator of the air traffic services unit serving the FIR. Note.— The SIGMET message applies to the whole airspace within the lateral limits of the FIR, i.e. to the FIR and to the UIR. The particular areas and/or flight levels affected by the meteorological phenomena causing the issuance of the SIGMET are given in the text of the message." (2)
- 2. Fictitious location. (3)
- 3. In accordance with 1.1.3 "The sequence number referred to in the template in Table A6-1 shall correspond with the number of SIGMET messages issued for the flight information region since 0001 UTC on the day concerned. The meteorological watch offices whose area of responsibility encompasses more than one FIR and/or CTA shall issue separate SIGMET messages for each FIR and/or CTA within their area of responsibility." (4)
- 4. As per 1.1.4 "In accordance with the template in Table A6-1, only one of the following phenomena shall be included in a SIGMET message, using the abbreviations as indicated below [list of SIGMET phenomena follows]" (7)
- 5. In accordance with 4.2.1 a) "obscured (OBSC) if it is obscured by haze or smoke or cannot be readily seen due to darkness". (8)
- 6. In accordance with 4.2.4 "Hail (GR) should be used as a further description of the thunderstorm, as necessary" (9)
- 7. accordance with 4.2.1 b) "embedded (EMBD) if it is embedded within cloud layers and cannot be readily recognized" (10)
- 8. In accordance with 4.2.2 "An area of thunderstorms should be considered frequent (FRQ) if within that area there is little or no separation between adjacent thunderstorms with a maximum spatial coverage greater than 75 per cent of the area affected, or forecast to be affected, by the phenomenon (at a fixed time or during the period of validity)" (11)
- 9. In accordance with 4.2.3 "Squall line (SQL) should indicate a thunderstorm along a line with little or no space between individual clouds." (12)
- 10. Used for unnamed tropical cyclones. (13)
- 11. In accordance with 4.2.5 and 4.2.6 "Severe turbulence (TURB) should refer only to: low-level turbulence associated with strong surface winds; rotor streaming; or turbulence whether in cloud or not in cloud (CAT). Turbulence should not be used in connection with convective clouds." and "Turbulence shall be considered: a) severe whenever the peak value of the cube root of EDR exceeds 0.7" (14)
- 12. In accordance with 4.2.7 "Severe icing (ICE) should refer to icing in other than convective clouds. Freezing rain (FZRA) should refer to severe icing conditions caused by freezing rain". (15)
- 13. In accordance with 4.2.8 "A mountain wave (MTW) should be considered: a) severe whenever an accompanying downdraft of 3.0 m/s (600 ft/min) or more and/or severe turbulence is observed or forecast; and *b) moderate whenever an accompanying downdraft of 1.75–3.0 m/s (350–600 ft/min) and/or moderate turbulence is observed or forecast.*" (16)
- 14. In accordance with 4.2.9 "Sandstorm/duststorm should be considered: a) heavy whenever the visibility is below 200 m and the sky is obscured; and b) moderate whenever the visibility is: 1) below 200 m and the sky is not obscured; or 2) between 200 m and 600 m."
- 15. In the case of the same phenomenon covering more than one area within the FIR, these elements can be repeated, as necessary. (21)

- 16. Only for SIGMET messages for volcanic ash cloud and tropical cyclones. (22)
- 17. Only for SIGMET messages for tropical cyclones. (23)
- 18. Only for SIGMET messages for volcanic ash. (24)
- 19. A straight line between two points drawn on a map in the Mercator projection or a straight line between two points which crosses lines of longitude at a constant angle. (25)
- 20. To be used for two volcanic ash clouds or two centres of tropical cyclones simultaneously affecting the FIR concerned. (26)
- 21. The number of coordinates should be kept to a minimum and should not normally exceed seven. (27)
- 22. Optionally can be used in addition to Movement or Expected Movement. (28)
- 23. To be used for hazardous phenomena other than volcanic ash cloud and tropical cyclones. (29)
- 24. End of the message (as the SIGMET/AIRMET message is being cancelled). (30)
- 25. The levels of the phenomena remain fixed throughout the forecast period. (31)
- 26. During any SIGMET test message, no other information should be included after the specified text. (N/A)
