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The Sun like all stars is a self gravitating ball of gas.

There are two basic forces at play:

(1) GRAVITY, that causes stars to collapse

(2) PRESSURE, that causes stars to expand

The interplay between pressure and gravity plays out throughout a star’s life. 

There are stages in a star’s life where gravity wins and the star begins to 
collapse.

There are stages where pressure wins and the star begins to expand. 

For the most part though, gravity and pressure balance each other, a state 
known as hydrostatic equilibrium. The Sun is currently in that state of life.



While modelling the Sun we have the advantage that we know a lot more  
about the Sun than for other stars.

But this also makes modeling more challenging! 

Any model of the Sun must satisfy the following requirements:

Mass = 1.989 x 1033 g
Radius = 6.959 x 1010 cm
Luminosity (energy output) = 3.8418 x 1033 ergs/s
Age = 4.57 x 109 years

The effective temperature of the Sun is determined assuming that the 
Sun emits like a black body, i.e.,

424 effTRL σπ=

Mass is an input to solar models.

Whether we have succeeded in making a solar model is determined by 
whether or not the model has 1Ro, 1Lo at 4.57 Gyr.



Equations governing stellar structure and Evolution:

For most parts, stars are spherically symmetric, i.e., their internal structure 
is only a function of radius and not of latitude or longitude. 

This means that we can express the properties of  stars using a set of 1D 
equations, rather than a full set of 3D equations. The main equations 
concern the following physical principles:

(1) Conservation of Mass
(2) Conservation of momentum
(3) Conservation of energy
(4) Transport of radiation
(5) Nuclear reaction rates
(6) Change of abundances by various processes



The mass in a spherical shell must be accounted for by its density in the 
absence of flows:

In the spherically
symmetric case:

Equation 1: Conservation of Mass — I
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Equation 1: Conservation of Mass — II

The radius or a star can change in the course of its life.
Mass of stars (particularly low-mass stars like the Sun) do not change 

much.
Therefore, customary to use mass rather than the radius as the 

independent variable. 
Thus we write:
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Equation 2: Conservation of Momentum— I

Pressure (force/area) acts 
outwards:
Difference in pressure = Pi-Pe

= -(dP/dr)dr = fP

Force due to gravity acts inwards:
=acceleration * mass
= -g 4πr2ρdr

Force per area due to gravity
= -g 4πr2ρdr/ 4πr2= -g ρdr=fg

Αt equilibrium, sum of forces is 0
Therefore,
fP+fg = 0 ⇒ -(dP/dr)dr -g ρdr=0,
or,

(dP/dr) =-g ρ
(dP/dr) =-(Gm/r2)ρ

Converting dr to dm we get
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Equation 2: Conservation of Momentum— II

What happens when the forces do not balance? The shells accelerate:
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What happens when pressure vanishes? Free fall! Assume time taken to 
collapse is τff
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Equation 2: Conservation of Momentum— III

What happens when gravity vanishes? The star explodes!
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Digression: Ideal gases

Ideal gases have a simple relation between pressure, density, temperature 
and composition, i.e., a simple Equation of State.

For an ideal gas:

Thus for ideal gases:
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Digression: The mean molecular weight

How do we calculate the mean molecular weight? 

We assume that the star is made predominantly of Hydogen, and Helium, 
with a very small fraction of other elements.

Let mass fraction of Hydrogem = X
Mass fraction of Helium = Y
Mass fraction of everything else = Z
Then of course X+Y+Z=1

Assume mass of gas provided by nuclei, but electrons contribute to total 
number of particles. Thus, e.g., each hydrogen atom contributes two 
particles, but 1 mass unit, therefore mean mol. wt. of ionized hydrogen 
is (1/2).  We can show that
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Digression: The Virial Theorem — I

The virial theorem states that for a system in equilibrium,
Potential energy+2 Kinetic Energy =0

For a star, we can show that this leads to

If the star were made of ideal gas,  then we can relate the second term to the 
internal energy and get  Eg+2U=0, or U=-Eg/2

The total energy of a star is   Etot=Eg+U

When a star contracts, Eg becomes more negative, i.e. dEg/dt < 0, 

Energy is therefore released during gravitational contraction.

From the virial theorem we can show that half this energy goes into increasing the 
internal energy (i.e. makes the star hotter), the other half  is radiated away 
(i.e., the star  becomes more luminous).
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Digression: The Virial Theorem — II

How long would a star live if its energy were provided by release of 
gravitational energy through contraction of a star?

The KELVIN-HELMHOLTZ time scale

For the Sun, the KH time scale is about 107 years.
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Equation 3: Conservation of Energy

Define dl = luminosity of a mass shell, i.e., 

Let ε be nuclear energy released per unit time per unit mass, then

When a star expands or contracts, need to account of energy absorbed or 
released, then we can show that 
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Equation 4: The temperature distribution

In principle, a very simple equation 

Question is,  what  is ∇?
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Digression: How is heat transported?

The expression for the non-dimensional temperature gradient ∇ depends on 
how heat is transported within the star.

There are two main forms of heat transport in normal stars
(1) Radiation (i.e., heat is transported by photons)
(2) Convection (i.e., heat is transported by the bulk movement of matter.

When do we have radiative transport and when convective?  Depends on ∇.

For any mode of heat transportation, we can write

This can be interpreted as we need a certain temperature gradient to transport 
a given amount of flux for a given “conductivity.”

TkF ∇−=



Digression: Radiative heat transport

Stellar interiors are very opaque to radiation, and the mean free path of 
photons is of a order of 1-2 cm. Thus when photons transport energy, 
they do so as a diffusive process. We know how to write the flux for 
diffusion. We get,

We need (dlnT/dlnP) for Eq. (4), since l=4π r2F, we get

Or,
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Digression: Radiative heat transport

To calculate ∇ for radiative heat transport, we need to know the opacity κ.

κ is a measure of how opaque material is to radiation, and the mean 
free path of a photon in a dense medium is given by

Usually the opacity is a function of  the frequency of the radiation. The 
opacity that occurs in the expression for ∇ is the so-called 
“Rosseland” mean opacity, given by

B is the Planck function, κν are the monochromatic opacities.
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Digression: What about convection?

To transport a given amount of flux by radiation, we need to have a 
certain ∇.

But each material has a maximum ∇ beyond which the material becomes 
unstable and convection sets in. 

This maximum value of ∇ is                   and is determined by the equation 
of state (called ∇ad).

Thus convection sets in when                         , the so-called  
“Schwarzchild Criterion”
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Digression: A simple case of instability

Assume that a star is made of ideal gases, then:
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Digression: ∇ for convection

Cannot be calculated from first principles.
Usual to use the so-called “Mixing Length” formalism.
The formalism states that all convective eddies come in one size:
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Equation 5: Composition

Composition changes can occur because of three reasons:
(1) Nuclear reaction : 

(2) In a convection zone

(3) The gravitational settling of elements 
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An overview of the equations
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There are 5 equations in 6 unknowns (r, P, T, ρ , l, Xi)
Need a relation to connect ρ to P,T,Xi — the Equation of State.

Some salient points:

Equations (1) and (2) are mechanical and are connected to the other equations 
through ρ. Thus, if we have an independent prescription for r, we can solve 
these equations without reference to others.

Equation (5) is the chemical part, and because of the time scales involved, it 
can generally be decoupled from the other 4. ∴ we can solve Eq. (1) to (4) if 
Xi(m) is given at a given time. These are called “static models”.



Solving the equations

Normally Eq. (1)-(4) are solved for a given time. The time is advanced, 
Eq. (5) is solved, and then Eq. (1)-(4) solved again.
Thus we consider two independent variables: m and t.
So we look for solutions in the interval

To solve these equations we need 4 boundary conditions, either at m=0 or 
m=M, and we need initial conditions at t=t0

evolution)(stellar 
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The boundary conditions: centre

Unfortunately for us, the boundary conditions are not all at one boundary. 
That makes solving tricky.

There are two boundary conditions at the centre: We can show that

r(m=0)=0 and l(m=0)=0.
We do not get central boundary conditions on T and P. For T and P we 

can only show that
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The boundary conditions: surface

We need boundary conditions for T and P at the surface. A simplistic 
boundary condition would be

T(m=M)=0, and P(m=M)=0
In reality, pressure is non-zero, though small, and T can be a few thousand 

Kelvin.
We therefore, take refuge in models of stellar atmospheres. The simplest 

is the so called Eddington approximation, which says that in the 
atmosphere
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Assuming that acceleration due to gravity, g, is const. in the stellar 
atmosphere, the condition of hydrostatic equilibrium gives

We know at surface, T is Teff, we can find P corresponding to that and use 
these values of T and P as the boundary conditions. May have to iterate 
since the P and Teff from surface may not be that obtained from centre.
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Initial Conditions:

Initial conditions depend on where one starts the evolution.
If one begins the evolution in the so-called pre-MS phase (i.e., before 
core hydrogen fusion), the initial structure is chemically homogeneous 
(because the models are fully convective), and stratified accordingly. 
Deuterium fusion occurs before core hydrogen burning and causes the 
star to become somewhat chemically inhomogeneous before the star
enters the hydrogen fusion stage. 

If evolution is begun on the zero-age main sequence (i.e., at the onset of 
hydrogen fusion), then a proper ZAMS model must be used. The 
models are not completely chemically homogeneous because they need 
not be fully convective.



INPUTS — I

(I) The equation of state.

This gives ρ as a function of T, P, Xi. Also gives Cp, δ, ∇ad, φ.

Probably the simplest EOS is the ideal gas EOS. But that does not apply 
everywhere. Does not include ionization, radiation pressure, 
degeneracy etc.

Modern equations of state are given in tabular forms and we need to 
interpolate to get what we need. The effects include ionization,
radiation pressure, degeneracy, pressure ionization, etc.

EOS most commonly used for the Sun: OPAL. Works well for stars of 
most masses, but not for very low mass stars.



(II) Opacities:
Usually Rosseland mean opacities are provided as a funtion of T, ρ and Z. Opacity 
increases with increase in Z. 

Opacity tables generally used for solar models: OPAL, or OP.

All good opacity tables include the four basic causes of opacity:

(1) Scattering of photons by electrons — important when material is fully ionized.

(2) Free-Free transitions (i.e., Bremsstrahlung), free electrons and nuclei form 
momentary dipoles that can emit or absorb radiation.

(3) Bound-free transitions (i.e., ionization of material): the process of ionization 
requires absorption of photons to ionize.

(4) Bound-bound transitions, i.e., formation of spectral lines. Most difficult part since 
there are millions and millions of spectral lines that need to be accounted for.

In addition, opacity tables needed for very low mass stars need to include molecular 
opacities, caused by molecules such as water, methane, oxides of titanium and 
vanadium, etc.,

INPUTS — II



Rough dependences of opacities

(1) Electron scattering: Frequency independent

(2) Free-Free:

(3) Bound-free:
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INPUTS — III

(III) Nuclear Reaction Rates:
The rate at which nuclear reactions occur, and the amount of energy released 
per reaction  is one of the required inputs. Different reactions occur at 
different rates that depend on the cross section of the reactions, the 
temperature, the density and the abundance of the different nuclei.
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The p-p Chain

H1 + H1 →H2 + e+ + ν
H2 + H1 →He3 + γ

He3 + He3 →He4 + 2 H1 He3 + He4→Be7 + γ

Be7 + e-→Li7 + ν
Li7 + H1→He4 + He4

Be7 + H1→B8 + γ
B8→Be8 + e+ + ν
Be8→2 He4

T > 107K

26.2MeV

25.67MeV

19.2MeV



The CNO Cycle

C12 + H1→N13 + γ
N13→C13 + e+ + ν
C13 + H1→N14 + γ
N14 + H1→O15 + γ
O15→N15 + e+ + ν
N15 + H1→C12 + He4

N15 + H1→O16 + γ
O16 + H1→F17 + γ
F17→O17 + e+ + ν
O17 + H1→N14 + He4

24.97 MeV

104 times less probable



Relative contributions of pp and CNO



After the core-hydrogen burning stage

The 3α reaction:
He4 + He4→Be8

Be8 + He4→C12 + γ
Other reactions involving He:
C12 + He4→O16 + γ
O16 + He4→Ne20 + γ
Ne16 + He4→Mg24 + γ
Carbon Burning:
C12 + C12→Mg24 + γ
C12 + C12→Na23 + p
C12 + C12→Ne20 + He4

C12 + C12→Mg23 + n
C12 + C12→O16 + 2 He4

Oxygen Burning:
O16 + O16→S32 + γ
O16 + O16→P31 + p
O16 + O16→S31 + n
O16 + O16→Si28 + He4

O16 + O16→Mg24 + 2 He4



What else do we need to know?

(1) The mass
(2) The heavy-element and helium abundances.

Once we have these quantities, we can start to model a star and calculate 
how it  would evolve.

We also need to decide what we will use as the mixing length parameter.



Evolutionary tracks on the HR diagram



How does one model stars? Example: 51 Peg

[Fe/H]=0.21± 0.06

Murphy & Demarque 2004



How do we model the Sun?

We have two constraints at t=4.57Gyr:
(1) The luminosity of the Sun
(2) The radius of the Sun

We have two “free” parameters to play with
(1) The initial helium abundance, Y0, i.e., the helium abundance of the 

Sun at t=0
(2) The mixing length parameter α

We can, therefore, iterate. Start with a given Y0 and a, evolve till 4.57 
Gyr. Test how close the luminosity and radius is to 1LO and 1RO. Find 
corrections to Y0 and α, evolve again, repeat till convergence is 
reached. Also need to change initial Z to get observed Z/X today.



The Solar Track

1Msun,

1Lsun, 1Rsun at 4.57 Gyr

Z/X=0.023

α=2.13

Yo=0.278



Effect of α

Increasing α makes stars bluer. Main effect is on radius —
radius is smaller for larger α. Luminosity is not affected much.



Effect of initial Helium abundance

Increasing Y makes stars bluer and more luminous. Main effect 
is on luminosity. Effect on radius is much smaller.



Standard Solar Models

A standard solar model is one where the physical 
inputs are not changed to bring the model in better 
agreement with the Sun. The input physics (nuclear 
reaction rates, diffusion coefficients, opacity tables, 
equation of state) are input as they are. The agreement 
or otherwise between the Sun and the model is a 
indication of how good the input parameters.



The evolving Sun — I



The evolving Sun — II



The evolving Sun — III



The Sun across the ages — I



The Sun across the ages — II
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The Sun across the ages — III



The Sun across the ages — IV



The Sun across the ages — V
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Why is the Sun getting more centrally condensed?

For hydrogen burning, ε ∝ ρ X 2 T n

As H is used up, ε will decrease unless ρ or T (or both) increases. P also 
decreases because H-fusion reduces the number of particles.

The decrease in P causes the core to contract, increasing P, ρ, T and ε

When the core contracts, the outer layers of the star expands. Thus one
gets an increased density and pressure in the core compared to the outer 
regions.

Rule of thumb in stellar evolution: If core contracts, envelope expands, if core expands 
envelope contracts. Why? When core contracts, T increases, therefore T gradient 
increases. However, T gradient must be compatible with flux that needs to be 
transported, therefore envelope (the outer parts of the star) expands to decrease the T 
gradient to original value. The opposite happens if core expands — T gradient 
decreases, there envelope has to contract.



Model of the present-day Sun — I



Model of the present-day Sun— II



The large variation of ρ and P



Model of the present-day Sun — III



Model of the present-day Sun — IV



Model of the present-day Sun — V



How do we know that a solar model is good?
Helioseismology!

We know 
(1) The position of the CZ base (0.713R)
(2) The CZ helium abundance (0.249)
(3) The sound speed, density and Γ1 profiles.



The Schematic Sun: What input affects where?



A standard solar model

Model from Bahcall, Basu & Serenelli (2005)



The effect of diffusion

Main reason for disagreement: mismatch on position of CZ 
base



Diffusion and the abundance profile



Diffusion and opacity



How do we know where the solar CZ base is?

Solar CZ base is at 0.713 ± 0.001 Rsun



Effect of Heavy Element Abundance (Z) — I



Effect of Heavy Element Abundance (Z) — II



Effect of Heavy Element Abundance (Z) — III

∇-∇ad < 0 in radiative zone, ∇-∇ad > 0, but very small in CZ



The effect of opacity

Z/X=0.0165

Z/X=0.0233



Effect of the Equation of State — I

The way you know that the EOS is deficient is that the 
disagreement in the CZ becomes very bad!



Effect of the Equation of State — II



Why are we bothered about Γ1? 
Determining Helium Abundance!

The helium abundance (Y) of the solar envelope is 0.249 ± 0.003



Using the Sun as a Laboratory



The Solar Neutrino Problem 
The p-p chain



The neutrino spectrum



Where are the neutrinos produced?



The Solar Neutrino Problem — Early Observations



What of solar structure?



Effect of different data sets

Changing data sets do 
not change the core 
structure.



Other evidence

From Antia & Chitre (1997)



Solar Neutrinos Today



The equation of state

MHD

OPAL



The Equation of state in the solar core

From Elloitt & Kosovichev 1998
From Nayfonov & Rogers 2002

Corrected EOS



Summary:

(1) How stars such as the Sun evolve can be determined using a few basic 
equations.

(2) The models rely critically on physics inputs such as opacities, nuclear 
reaction rates, opacities, etc.

(3) The structure of the present day Sun is known very well from 
helioseismology, and this can be used to test solar models.

(4) One of the triumphs of the field was to show that the solar neutrino 
problem has a particle physics solution and that it was not a problem 
with the models.


