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Abstract. We have studied in detail the energetics of Kerr–Newman black
hole by the Penrose process using charged particles. It turns out that the
presence of electromagnetic field offers very favourable conditions for energy
extraction by allowing for a region with enlarged negative energy states much
beyond r = 2M, and higher negative values for energy. However, when
uncharged particles are involved, the efficiency of the process (defined as the
gain in energy/input energy) gets reduced by the presence of charge on the
black hole in comparison with the maximum efficiency limit of 20.7 per cent
for the Kerr black hole. This fact is overwhelmingly compensated when
charged particles are involved as there exists virtually no upper bound on the 
efficiency. A specific example of over 100 per cent efficiency is given.
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1. Introduction
 
The problem of powering active galactic nuclei, X-raybinaries and quasars is one of the
most important problems today in high energy astrophysics. Several mechanisms have
been proposed by various authors (Abramowicz, Calvani & Nobili 1983; Rees et al.,
1982; Koztowski, Jaroszynski & Abramowicz 1978; Shakura & Sunyaev 1973; for an
excellent review see Pringle 1981). Rees et al. (1982) argue that the electromagnetic
extraction of black hole’s rotational energy can be achieved by appropriately putting
charged particles in negative energy orbits. Blandford & Znajek (1977) have also
proposed an interesting mechanism by considering the electron-positron pair produc-
tion in the vicinity of a rotating black hole sitting in a strong magnetic field. It is,
therefore, important to study the energetics of a black hole in electromagnetic field.

An ingenious and novel suggestion was proposed by Penrose (1969) for the
extraction of energy from a rotating black hole. It is termed as the Penrose process and
is based on the existence of negative energy orbits in the ergosphere, the region
bounded by the horizon and the static surface (Vishveshwara 1968). Though there does
not exist an ergosphere for the Reissner-Nordstrφm black hole, there do exist negative
energy states for charged particles (Denardo & Ruffini 1973), which means that the
electromagnetic energy can also be extracted by the Penrose process.

Though Penrose (1969) did not consider astrophysical applications of the process,
Wheeler (1971) and others proposed that it could provide a viable mechanism for high
energy jets emanating from active galactic nuclei. The mechanism envisaged a star-like
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body which on grazing a supermassive black hole breaks up into fragments due to
enormous tidal forces (Mashhoon 1973; Fishbone 1973). Some fragments may have
negative energy orbits and they fall into the black hole resulting in reduction of its
rotational energy while the others come out with very high velocities to form a jet.
However, this process fell out of favour for its astrophysical applications owing to
limits on the relative velocity between the fragments (Bardeen, Press & Teukolsky 1972;
Wald 1974): No significant gain in energy results for an astrophysically reasonable orbit
of an incident star unless the splitup itself is relativistic, i.e. relative velocity between the
fragments   1/2. Very recently, Wagh, Dhurandhar & Dadhich (1985) have shown that
these limits can be removed with the introduction of an electromagnetic field around
the black hole. The electromagnetic binding energy offers an additional parameter
which is responsible for removal of the limits. Thus the Penrose process is revived as a
mechanism for high energy sources.

In this paper we wish to study the negative energy states for charged particles in the
Kerr-Newman spacetime with a view to extracting energy by the Penrose process. A
comparative analysis of negative energy states for charged particles in the
Kerr-Newman field and for a Kerr black hole in a dipole magnetic field is done by
Prasanna (1983). We study the negative energy states in a greater detail, and set up a
Penrose process for energy extraction and also examine its efficiency in this case. It is
known (Chandrasekhar 1983) that the maximum efficiency of this process is 20.7 per
cent in the case of a Kerr black hole. The presence of charge on the Kerr-Newman black
hole decreases the efficiency further when uncharged particles participate in the process
while the efficiency is enormously enhanced (as high as over 100 per cent, in fact there is
no limit!) when charged particles are involved.

Astrophysically massive bodies are not known to have significant charge on them
[Q/ (√G M )   1]. That means the charge Q on the black hole should be taken as very
small. But a small, nonzero Q can have appreciable effect on the test charge orbits due to
the Lorentzian force. It is the Coulombic binding energy that contributes significantly
to the energy of the test particle. It is not unjustified, therefore, to study the Penrose
process with this assumption.

In Section 2, we establish the equations of motion and the effective potential for
charged particles in the Kerr-Newman field while in Section 3 the negative energy
states are examined. Section 4 deals with the setting up of an energy extraction process
and finally in Section 5 we investigate the efficiency of the process.
 
 

2. The Kerr-Newman field 
 
The Kerr-Newman spacetime in the BoyerLindquist coordinates is described by the
metric  

 
Here m is the mass, a is the angular momentum per unit mass and Q is the charge on
 

<<

(2.1)

where
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the black hole. We have used the geometrised units (c = 1, G = 1). The event horizon is
given by the larger root r+ of ∆ = 0, r+ = Μ + (Μ2 – a2 – Q2)1/2

In this spacetime there exists an electromagnetic field due to the presence of charge Q.
This field is obtained from the vector potential Ai,   

(2.2)
 
That means the rotation of the black hole also gives rise to a magnetic dipole potential
in addition to the usual electrostatic potential.
 
 
 

2.1 The Equations of Motion
 
Let a test particle of rest mass µ and electric charge e move in the exterior field of the
black hole. Its motion will be governed by the gravitational field of a charged rotating
black hole as well as by the Lorentz force due to electromagnetic interaction. The
equations of motion of the particle can be derived either from the Lagrangian ℒ 
 

(2.3) 

or from the Hamiltonian H,   
(2.4) 

 
where a dot denotes derivative with respect to the affine parameter τ/µ (τ being the
proper time) and pi is 4-momentum of the particle. Since the metric and the
electromagnetic field are time independent and axially symmetric, the energy and the
φcomponent of the angular momentum will be conserved yielding two constants of
motion. Carter (1968) showed that the HamiltonJacobi equation is separable in this
system giving the constant related to the θ -motion of the particle. It is known as the
Carter constant (Misner, Thorne & Wheeler 1973, hereinafter MTW). Hence all the
four first integrals are obtained as the rest mass of the particle is also a constant of
motion which gives the remaining integral.  

From Equation (2.3) we have 
 

(2.5) 
 

(2.6)
 
 
where E and L are the energy and the φ-component of the angular momentum per unit
rest mass of the particle as measured by an observer at infinity.

The rest mass µ of the particle gives another first integral
 

(2.7)
Now, on substituting Equations (2.5) and (2.6) in (2.7) we obtain
 

 
 
 (2.8)

.
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Which gives 

 
The event horizon r+ is given by the larger root of ψ = 0. It can be easily verified 
that ψ= 0     Δ = 0.  

For convenience we introduce the dimensionless quantities

2.2 The Effective Potential
 
By the symmetry of the metric and the electromagnetic field, it follows that the particle
commencing its motion with pθ = 0 in the equatorial plane will stay in the plane for all
time, i.e. pθ = 0 all through the motion. This can also be verified by considering the
equations of motion  
 

(2.11) 
 

for the θ-coordinate. The Lorentz force term on the right gives a force directed in the
θ = π/2 plane for Ai given in Equation (2.2) and Fik = Ak,i – Ai,k. Henceforth we shall
consider motion in the equatorial plane and set ρθ = 0. As our main aim in this
investigation is to analyse negative energy states, the restriction of motion in the 
equatorial plane will not matter much.

The effective potential for radial motion could be obtained by putting pr =  pθ = 0 in 
Equation (2.9). We write  

 
The positive sign for the radical is chosen to ensure that the 4-momentum of the

particle is future directed. The quantity ω represents the angular velocity of a locally
nonrotating observer (LNRO) at a given r and   .That is, a particle with L = 0 will have
dφ /dt = ω ≠ 0.  

Equations (2.8) and (2.12) can be rewritten as
 

(2.13) 
and  

(2.14) 
 
 where  

where

and drop the bars on these symbols in further discussion.

(2.9)

(2.10)

(2.12)

⇔ 

θ 
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 (2.15) 

 
The effective potential at the horizon reads as 
 
 

 
(2.16)  

where  
 
 
 
V(r+) can become negative if – eAt <0 and (l –eAφ) < 0. It should be noted that it is
the sign of (l –eA 

 ) which is relevant for V getting negative (Dadhich 1983). The
particle rotates slower than the LNRO if l –eΑ < 0. This can be seen from the
following.  

The angular velocity Ω = dφ /dt of a particle can be obtained by using Equations
(2.5) and (2.6),  

 
which, in view of Equations (2.9) and (2.10), directly relates the sign of (l –eΑφ) to 
Ω – ω. As argued by Dadhich (1985), Ω  ω >0 defines co/counter-rotation relative to
an LNRO. It is the LNRO frame that is physically meaningful in these considerations.
 
 

3.  The negative energy states
 

In this section we shall discuss the behaviour of the effective potential in relation to the 
occurrence of negative energy states (NES).

The NES could occur due to the electromagnetic interaction (as in the
ReissnerNordstr m case) as well as due to the counter-rotating orbits (as in the Kerr
case). The Kerr-Newman solution represents the gravitational field of a charged and
rotating black hole. The rotation of a black hole also gives rise to the magnetic dipole
field in addition to the usual electrostatic field. The presence of electromagnetic field
will favour the occurrence of NES (Dhurandhar & Dadhich 1984a, b) (i) by allowing
larger negative values for energy, and (ii) by increasing the region of occurrence of
NES. It is also known to cause in certain situations the splitting of NES region into two
disjoint patches (Dhurandhar & Dadhich 1984a, b). However, in the Kerr-Newman
field it turns out that NES may occur only in one patch extending upto the horizon
(Prasanna 1983) as in the Kerr case. In the following we shall investigate NES with
reference to counterrotation and electromagnetic interaction.
 
 

3.1  The Effective Potential Curves
 
Let us first look at some typical plots of the effective potential which exhibit its
dependence on the parameters l and λ = eQ. Fig. 1 (a) shows the effective potential V for
fixed λ = – 5 and for various values of l = –100, – 50, –10, 0, 5. It depicts (i) V is
large negative for large negative l, (ii) NES region extends beyond the ergosphere
 

<

φ 

φ 
φ 
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r = 2, and (iii) as l becomes less negative, V becomes less negative but NES region
enlarges. It is interesting to see that V < 0 even for l = 0 and l = 5. This is in contrast to
the Kerr case, and is purely due to the electromagnetic interaction.

In Fig. l(b) V  is plotted for fixed l = –10 and for various values of λ = – 10, – 5,
– 2, 0, 5. It shows that larger negative λ implies larger negative V  as well as enlarged
NES region. Hereagain we have the occurrence of NES for λ = 0 and λ = 5 which is in
contrast with the ReissnerNordstr m case (Denardo & Ruffini 1973). The contri-
bution due to counter-rotation (Ω – ω) dominates over the electrostatic term. These
plots are in agreement with Prasanna’s results (1983).
 
 

3.2  The Single-Band NES Structure 
 
The V  curves in Figs 1 and 2 exhibit the singleband NES structure as also noted by
Prasanna (1983). We establish this character analytically.  

From Equations (2.13) and (2.14), V = 0 requires γ = 0 and β <0. From
Equation (2.15) γ = 0 gives

(al + eQr)2 – Δ(r2 + l2) = 0 
 
We now show that there is only one root for the above equation for r > r+ = 1 + (1 –
 
 

 
Figure 1. The effective potential V  is plotted for a = 0.8 and Q  =0.5.The vertical axis is drawn
at the horizon (r+ = 1.33). (a) l  takes the values –100, –50, –10, 0, 5; (b) λ ranges through
–10, – 5, – 2, 0, 5. The curve corresponding to a particular value of l and a particular value of λ
can be picked up from the property that V(r+) is a monotonically increasing function of l and λ.
 

(3.1)

φ 
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Figure 1. Continued.

 
a2 — Q2)1/2· Write R = r – r+ . The above equation then reads as  

 (3.2) 
where

  

To establish the result we apply Descartes’ rule of signs. As A > 0 and D < 0, 
the above equation can have more than one positive root only when Β < 0 and C > 0. We
now show that this is not possible.

Let B < 0, which implies 

 
If lλ> 0, then C< 0. However, for lλ < 0, C < 0 will require  

Squaring both sides of the above inequality and using (3.3) we deduce C < 0 for this
case too. This proves the result. Thus γ = 0 has only one root r > r+ . As r→∞, V→l, 
and hence the NES band will occur only when V < 0 at the horizon.

(3.3)
which makes
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The single-band nature of NES prescribes a linear relationship between l and λ,

which could be inferred from V(r) < 0. From Equation (2.16) this will imply, 
l < – λr+ /a.  

3.3 The Extent of the NES Band
 
To find the extent of the NES band we consider the quartic Equation (3.1) in various
limits as the exact solution is not easily obtainable. We take |l|  1 and |λ |   1 in V =0
for larger r. Then the quartic reduces to a cubic  
 
 
by dropping Q2 terms as Q2 

  1.  
 
Case (i): Let |λ |~ |l|, l(aλ +1)> 0. For large r, terms in r2 and r can be neglected
implying

 
Case (ii): | l–λ|    1, then Equation (3.4) reduces to

 
by neglecting r2 and the constant terms. Since, a, Q < 1 and if I2 — λ2 >  0 then

In the general case we need to resort to numerical computations. Table 1 below gives
the extent of NES. It gives the root of V = 0 for various values of / and λ for fixed
a(= 0.8) and Q (= 0.5). The horizon in this case is at r+ = 1.3317.  

It is apparent from the table that for a fixed λ < 0, the value of r= r0, say, where V
gets negative, increases as l increases until l becomes positive and dominant, then it
drops off below r +. On the other hand, for λ >  0, r0 decreases as / increases and there
obviously exists no r0 for l > 0. For fixed l < 0, it decreases as X becomes less negative
but it slightly increases for |λ| small and then steadily decreases as X increases further in
the positive range. For l > 0, only large negative values of λ give r0 > r+. The large
negative λ favours large values for r 0, as is borne out by the special’cases discussed
above.  
 
 
 
 

Table 1. Roots of V = 0 for a = 0.8, Q = 0.5 and various values of l and λ.
 

>> >>

(3.4)

>>

>>
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3.4 The Factors Causing NES
 

From Equation (2.12) it is seen that V  can be negative only when λ =  eQ < 0 (i.e. 
 eAt < 0) and /or (l – eΑφ ) < 0. Here we wish to compare the contributions of these
factors in rendering V < 0. There are the following six possible cases.

 
One can immediately see that case (3) is not possible because the conditions put on

the parameters are inconsistent in view of Equation (2.2).That is, λ< 0and l > 0 do not
permit counter-rotating orbit (Ω – ω < 0).  

The second law of the black hole physics rules out case 5. It implies (MTW),

where δm = µΕ, δJ = µml, δQ =eµ.
Clearly e>0, and l > 0 does not allow δm < 0, thus ruling out NES. That is, the

magnetic field alone cannot make V < 0.
The rest of the four cases allow for the NES. In the first case, the electrostatic energy

is responsible for the NES while in case 2 it is the electrostatic and rotation, in case 6 the
rotation and magnetic field, whereas in case 4 all the three factors join hands.

We shall consider the cases 1, 2 and 6 for Q→0 but λ = eQ finite. 
From Equation (2.16), V(r+) < 0 gives  

 
Where                            by neglecting Q2. Then  
 

(3.5)
 

In case 1, the inequality (3.5) gives 

 
which, in the extreme case a→1, implies l < |λ|. In case 2, it will always be satisfied,
while in case 6 it gives

 
which will imply for a→1, |l| > λ. 

J A A – 2
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4. The energy extraction
 
In this section we consider the process of energy extraction from the black hole. In this
process proposed by Penrose (1969), it is envisaged that a particle falling onto a black
hole splits up into two fragments at some r > r+ where V < 0. Then, if one of the
fragments has negative energy (relative to infinity), it will be absorbed by the black hole
while the other fragment will come out, by conservation of energy, with the energy
greater than the parent particle. This will result in extraction of energy from the black
hole. In the case of the Kerr-Newman black hole, the extracted energy may be provided
by the rotational and/or the electromagnetic energy (Christodoulou 1970). In the
following we shall first consider the conservation equations for the 4-momenta of the
participating particles, and then give a recipe for energy extraction. 

At the point of split, we assume that the 4-momentum is conserved, i.e., 
 

P 1= P2+P3 (4.1) 
 
where pi (i = 1, 2, 3) denotes the 4-momentum of the ith particle. The above relation
stands for the following three relations.

 
where we have set µ1 = 1. The other conservation relation follows from the
conservation of charge, 

 
The quantities µi ,li; λi, Ei ri refer to the ith particle. These relations contain in all

eleven parameters, of which 7 can be chosen freely. The choice of these parameters will
be constrained by the requirements that particle 1 should reach the point of split where
V < 0 for some suitable Ι, λ values such that particle 2 can have E2 < 0 and particle 3
has an escape orbit. To ensure uninterrupted progress of particle 1 down to the horizon,
we set l1 = 0 = λ1. The l and λ parameters for particle 2 should be so chosen that
E2 < 0. We further chose r2 = 0 which will imply E2 = V at the point of split. Such a
choice is favourable for high efficiency of the process. (For further discussion refer to
Dhurandhar & Dadhich 1984b.)  

For these calculations we assume Q           l. This assumption is realistic as can be seen
 from the following relation

 
Q (metres) = (G / ε0 cA)½ Q (Coulombs). 

 
Though Q could be small, eQ = λ can produce the Lorentz force on a particle of the
charge/mass ratio of an electron, comparable to the corresponding gravitational force.
So we neglect Q in the metric but retain λ in the equations of motion.  

We shall now adopt the scheme for calculations due to Parthasarathy et al. (1985).
From Equation (2.8) we can readily write the equations for radial motion of the particle,
 

(4.6)
 

(4.2)

(4.3)

(4.4)

(4.5)

.

<<
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where 
 
 
 
 
Since we have taken r2 = 0, which means

 
by writing Equation (4.6) for particles 1 and 3 and using Equations (4.2), (4.3), (4.5) and
(4.7) we obtain E1 as follows

 
For the parent particle to be thrown from infinity Ε 1   1, and Equation (4.8) reduces
to the inequality

 
The above inequality can be analysed in µ2 – µ3 plane. The equality sign gives the
boundary of the region for the permissible values of µ2 and µ3. For the numerical
values that we consider, this boundary is a hyperbola given by  
 
 
 

(4.10)
the relevant branch of which will be decided by the following considerations.

Squaring Equation (4.1), and using p2 · p3 < 0 (future-pointing timelike vectors) we
 

(4.11)  
 
This isaregion inside a unitcirclein the µ2 –µ3 plane.The inequality (4.9)requires µ2 to
be greater than the larger root or less than the smaller root given in Equation (4.10). It is
the smaller root (i.e. with the negative sign for the radical) that gives the nonvoid
intersection with the unit circle (4.11). However, µ2 and µ3 should be greater than zero.
Fig. 2 shows the boundary of the permissible region.

The above prescription ensures that particle 1 from infinity reaches the desired
splitting point, and particle 2 has negative energy. By Equation (4.2), particle 3 has
greater energy than the incident particle. It now remains to ensure that particle 3
escapes to infinity. This further restricts the allowed region for µ2 and µ3. For particle 3
to escape to infinity two conditions must be satisfied. The particle must bounce outside
the horizon and then it should continue its motion uninterrupted. That is, 

 
where r0 is the point of split. Numerical computations to this effect show that for
0  µ3 < 1, and for small values of µ2, the particle does not escape, while for µ2 close to
the hyperbolic boundary the particle always escapes. Therefore, for a critical value of
µ2, say µ2c’ we have the particle escaping to infinity for µ2 > µ2c. So the allowed region
 

(4.7)

(4.8)

(4.9)

.

have,
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Figure 2. Schematic diagrams for µ2 (max) and µ2 (crit) are drawn. Here the numbers involved 
are too inconvenient to permit a figure to scale. The shaded region lying between µ2 (max) and 
µ2 (crit) is the allowed region.  
 
 
 
now shrinks between µ2c and the hyperbola. This is shown in Fig. 2 by the shaded 
region.
 
 

5. Efficiency of the process
 
The most important question in the black hole energetics is the efficiency of the energy
extraction process. It is therefore very pertinent to examine how efficient the Penrose
process is. The maximum efficiency of the process in extracting rotational energy of the
black hole (Chandrasekhar 1983) turns out to be approximately 20.7 per cent. We shall
rederive this result independently following the detailed analysis done by
Parthasarathy et al. (1985) and show that the presence of charge on the black hole
reduces the efficiency of the process. However, it further turns out that there exists no
upper limit on the efficiency when one considers the process with electromagnetic
interaction. Our numerical results show that there do occur events with more than 100
per cent efficiency.  
 
 

5.1  Efficiency in the Absence of Electromagnetic Interactions
 
The maximum efficiency is obtained if we take the radial components of the velocities to
be zero, the point of split being as close as possible to the horizon (MTW). We first
derive the expression for efficiency at some r > r+ and then take the limit as r→r+. 
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Let Ui(i=1,2,3) denote the 4-velocity of the ith particle at the point of split,
 

Ω1 is the angular velocity of particle 1 with respect to the asymptotic Lorentz frame,
and we have taken E1 = l.f1 is obtained by considering unit length of the 4-velocity
vector U1.At the point of split, the light cone imposes restrictions on the angular
velocity Ω of a future moving timelike particle that Ω– < Ω < Ω+ where  
 

 (5.4) 
 

The best result will be obtained by choosing the angular velocity of the second
particle to be Ω2→Ω– and that of the third to be Ω3→ Ω+. In the limit,

 
The conservation of 4-momentum can be rewritten as  

 
By algebraically manipulating the above equations we obtain
 

 (5.8) 
 

The efficiency η is defined as 
 

 
 
 
 
 (5.9) 

 
Now we take the limit as split point tends to r+. Then  
 

For the extreme Kerr-Newman black hole (a2 +Q2 = 1), the relevant gij at the horizon
are given as
 
 
 

(5.11) 
 

Putting in these values in Equation (5.10) we obtain
 

(5.12)
 

(5.1)

(5.2)

(5.3)

(5.5)

(5.6)

(5.7)

(5.10)

where
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which will imply 

 (5.13)  
For Q = 0  

 
which is in agreement with the known result. Thus the presence of charge on the black
hole decreases the maximum efficiency of the Penrose process in the absence of
electromagnetic interaction (participating particles being uncharged). 
 
 

5.2  Efficiency in the Presence of Electromagnetic Interactions
 
When we consider the participating particles being charged, the t-component of the

 
Here, the charges on particles can be chosen arbitrarily large and hence this will not give
any upper limit on the efficiency (Parthasarathy et al., 1985). In fact the term
eAt = — eQ/r can assume arbitrarily large values for large e. This is borne out by the
numerical example considered below.  

Let us assume a = 0.8, Q = 0.5. The particle 1 comes from infinity, and has
parameters µ1 =1, Ε1 = 1, l1 = 0, e1 = 0. The split is taken to occur at r = 4.0. For
l2 = – 10 and e2 = –50 we give in Table 2 the maximum efficiency for various values
of µ3. For η (max), µ2 = µ

2 (max) given by the hyperbolic boundary, and µ2c defines the 
lower boundary of the permissible region (see Fig. 2). The first row of the table gives an
instance when efficiency is 104 per cent.  
 
 

6. Conclusion
 
The presence of electromagnetic fields around a black hole (inherent in the metric as in
the present case, or externally superposed) influences the behaviour of negative energy
states for charged particles in the following two ways (Dhurandhar & Dadhich 1984a, b).

(a) The NES region is enlarged beyond the ergosphere r = 2M.  
(b) Ε can have larger negative values.  

 
Table 2. The maximum efficiency of the Penrose
process for various values of µ3, when electromag-
netic interactions are included.

 

conservation Equation (5.7) will read as 

(5.14)
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Both these factors contribute positively to the energy extraction process. The former
brings in NES at comfortable r-values, thereby increasing the probability of larger
number of events yielding energy extraction, while the latter tends to increase the
energy gain per event resulting in greater efficiency. For the Kerr-Newman black hole,
large negative charge on the test particle (i.e. large λ< 0) causes (a), while both λ and l
large and negative give rise to (b) (see Fig. 1).

It has been shown that the extraction of energy from the Kerr-Newman black hole is
more efficient—in fact, there exists no upper bound on the efficiency when charged
particles participate in the process (Table 2 shows an event of over 100 per cent
efficiency)—in contrast to when uncharged particles are involved. In the latter case, the
charge on the black hole reduces the maximum efficiency which is 20.7 per cent for the
Kerr black hole. The electromagnetic extraction of black hole’s energy is highly
efficient.  

As massive bodies cannot have significant charge on them, in our efficiency
calculations we have taken Q/M    1. We have hence neglected it in the metric but have
retained its interaction with the test particle in the equations of motion. If a black hole
acquires slight charge, our results would apply and will be indicative of the general
behaviour of NES and energy extraction process.
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