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I. INTRODUCTION 

T H E  diallel cross method of investigating the genetical properties of a 
group of homozygous lines has recently received much attention. HULL 

(1945) has considered some aspects of the method. A short summary of a 
more general approach by JINKS and HAYMAN (1953) and its application to 
several published sets of maize data has also appeared. In another paper 
JINKS (1954) has described experiments on inbred lines of Nicotina rustica, 
and has given an account of some of the associated statistics together with 
a discussion of the results. In this paper we apply a genetic algebra to the 
theory of the diallel cross, not only to re-establish the formulae of JINKS, but 
also to investigate more complex genetical systems. We will show how to 
measure additive and dominance variation, how to describe the relative 
dominance properties of the parental lines and how to detect non-allelic 
genic interaction. A ivorked example illustrates the theory. 

The following definitions will be used. A diallel cross is the set of all possi- 
ble matings between several genotypes. The genotypes may be defined as 
individuals, clones, homozygous lines, etc., and, if there are n of them, there 
are n2 mating combinations, counting reciprocals separately. A diallel table 
is an arrangement in a square of n2 measurements corresponding one-to-one 
to the mating combinations of a diallel cross, each row and column of the 
square corresponding to offspring with a common parental genotype. This 
general definition is necessary because a diallel table need not be restricted 
to containing measurements on the progeny of a diallel cross, but may be 
used for later generations obtained by selfing these progeny or backcrossing 
them to their parents. We shall investigate the diallel cross consisting of the 
progeny of n selfed homozygous lines and their n2 - n crosses. 

2. A SIMPLE GENETICAL SYSTEM 

2.1. Hyfiotheses. Certain of the hypotheses listed below hold in many 
genetical systems ; the others are useful simplifications and the effects of 
their failures are discussed in the 4th section. We assume; 

(i) Diploid segregation, 
(ii) No difference between reciprocal crosses, 

* Part of the cost of the accompanying mathematical formulae and tables hasbeen paid 
by the GALTON AND MENDEL M E M O R f A L  FUND. 
QENETICS 39: 789 November 1954. 
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(iii) Independent action of non-allelic genes, and in the diallel cross: 
(iv) No multiple allelism 
(v) Homozygous parents 
(vi) Genes independently distributed between the parents. 

2.2. Algebra. Consider a metrical character controlled by k genes, each 
with two alleles, A & a ,  . . . I & i, . . . . MATHER (1949) has discussed 
the case where genes a t  non-homologous loci influence the character inde- 
pendently and has investigated various mating systems. We consider a 
method which can be extended beyond sets of independent genes to those 
in which the genes a t  non-homologous loci interact. This consists of express- 
ing the (metrical) phenotype as an algebraic function of a suitable repre- 
sentation of the genotype and then, using Mendel’s laws to establish the 
relation between the genotypic representations of parent and progeny, 
obtaining statistics such as means, variances and covariances by the usual 
algebraic procedures. 

In the notation of MATHER the genotypes 11, ii and I i  a t  the ith locus 
have phenotypes c + di, c - di and c + hi respectively where c is constant, 
di > 0 and hi may take either sign. Let us represent the genotype by a 
variable Bi which takes the values 1, -1 and 0 respectively, so that the 
phenotype is the polynomial c + diBi + hi(1 - Biz). When the genotype 
controlling the character is the set, 8 = (O1,Bz, . . . e,), and when genes 
a t  non-homologous loci act independently, the phenotype is 

k 
Z{diBi + hi(1 - Biz)) 

i r l  

(omitting the constant which does not appear in differences and moments). 

(i) Since Bi3 = Bi, B{diei + hi(1 - Biz))  is the most general polynomial 

involving Bl,&, . . . 81, independently, i.e. excluding products like OiBj. 

(ii) The individual with genotype 8 produces gametes containing I and i 
in the frequencies +(1 + 8,) and $(l  - 0‘). 
(iii) The cross 8’ X 8” (which may be either reciprocal cross) produces 
progeny 11, ii and I i  in the frequencies t(L + B{)(l + Bi”), t(l - Bi’) 

(1 - e{’) and $(l - Bi’Bi”), i.e. these are the probabilities that 8i = 1, -1 
or 0 in the progeny. 
(iv) In the progeny of the cross 8’ X 0” the expectations of Bi and 1 - Biz 

are $(e{ + 8i”) and $(1 - Bi’Bi’’). The expected mean phenotype of these 
progeny is thus +Z{di(8i’ + 01”) + hi(1 - Bi’Bi’’) 1. 

2.3. The statistics of the diallel table. In this section, only genetical varia- 
tion is considered, and the phenotypes are taken to be exactly 

Some general results on this representation are : 

i 

i 

I:(diBi + hi(1 - e,’)}. 
i 

Environmental variation is discussed in 3.1. 
The genotypes of the offspring in the n X n diallel cross are determined 
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by the parental genotypes which are also the genotypes corresponding to 
the leading diagonal of the diall'el table. The parents are assumed to be 
homozygous with Ui  and vi (ui + vj = 1) as the frequencies of parents with 
positive and negative homozygotes a t  the ith locus. Thus Bi = 1 in nui 
parents and Bi = -1 in nvi parents. The mean of 8i is ui - Vi = Wj. Also 
0i2 = 1 and var Bi = 1 - wi2 = 4uivi. Since the genes are assumed dis- 
tributed independently in the parents cov (Bi,Oj) = 0 (i # j). 

Let the genotypes of the n parents be 8, = (Br1,Br~, . . . &)(r = 1, 
- -n) so that their phenotypes are yr = ZdiB,i with mean mL0 = Zdiwi- 

The progeny of 8, X 8, (or of 8, X e,) all have the phenotype y,,, = +Z 
1 1 

i 
The {di(Bri + 0.i) + hi(1 - 0,iB.i) } = $E{ (dj - hAi)B,i + di&i + hi}. 

i 
mean of all the progeny of 8, (i.e. including 8, itself) is 

and the mean of the whoie n2 progeny is mL1 = 2 (diwi + +hi(l - wi') ] - 
The difference between the mean of the parents and the mean:of their n2 
progeny is mL1 - mL0 = +Zhi(l - wiz). 

Consider the set of parents, the rth array (complete row or column) and 

- yr = $? ( (dj - hiwj)B,i + diwi + hi] 

i 

i 

the set of array means of the diallel table. The variance of the parents, 

Vobo = var ZdiB,i = 2di2 var 8,i = Zdi2(1 - wi'). 
I 1  i I i 

The covariance between the parents and their offspring in the rth array, 

WOl(r\UI = cov [Fdi4i,$2 { (di - hi&i)@Bi + dAi + hi 1 I 
8 1  i 

= +Zdi(dj - hi&) var 0.i 
i 8 

= &Zdi(di - hiB,i)(l - wi') 
1 

The variance of the rth array, 

Vl(r)L1 = f var 2{ (di - hiOri)4i + di6i + hi} 
s i  

= fZ(di - hjB,i)'(l - wiz). 

The covariance between the array means and the rth array, 

Wol(r)~I = f2(dj - hiB,i)(di - hiwi)(1 - Wiz). 

The means of the last three statistics are 

WO,, = &2di(di - hiwi)(1 - Wi') 

which is also the covariance between the parents and the means of their 
offspring, 

V l ~ l  = f2(di2 - fdihiwi + hi2)(1 - wi'), 
VOL~ = fZ(dj - hiwj)'(l - wiz) and 

which is also the variance of the means of the arrays. 
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Notation. The suffix L refers to the diallel cross mating system and its 
extension by selfing. The subsequent figure(s), commencing with zero for 
the parents, refer to the generation(s) under consideration. In variances of 
individual measurements the preceding figure not in brackets is the same as 
that following; in variances of means and in covariances the preceding 
figure(s) refer to the generation(s) of the common parent(s) from which 
these means are descended. The bracketed figure(s) occur in variances and 
covariances of arrays and their omission indicates averaging over all arrays. 
In  the L2 generation obtained by selfing the L1 individuals (which are the 
progeny of the original diallel cross) the variances within progenies are 
V Z ( ~ ~ ) L ~  and these may be averaged, firstly to give V2(r)L2 for each array, and 
secondly to give V2~2. The extension of the notation over any number of 
generations of selfing parallels those of MATHER and VINES (1952) for con- 
tinued selfing or sib-mating from a single cross, except that here we are also 
interested in statistics from parts of the diallel table. For convenience 
WOl(r)LOI and Vl(=pl will be abbreviated to W, and V,. 

2.4. Genetical components. The statistics in the previous section (with 
the omission of the here unimportant WOl(r)LI) may be written in a form 
similar to that used by MATHER (1.c.) as 

and 
where 

Those equations independent of r may be solved directly for D, F, HI, Hz 
and h. D - F + H1 - H2(4VO~J and Hz are MATHER'S (l.c.p.75) random 
mating D and H. When wi = 0, D and H1 (or Hz) become MATHER'S 
(I.c.P.56) selfing and sib-mating D and H. 

2.5. Distribution of alleles. H1 - HZ = 2hi2wi2(1 - wiz) 9 0. Now 
wiz # 1. Hence, if some loci exhibit dominance (HI # 0), the vanishing of 
HI - H, means that wi = 0 (ui = vi) a t  these loci, while HI  > Hz means 
that ui f vi, i.e. the positive and negative alleles at these loci are not in 
equal proportions in the parents. Since H1 - Hz depends on the square of 
wi i t  is not possible to decide in the latter case whether the positive or 
negative alleles are in excess. Now w?(l - w?) vanishes a t  wi = 0, increases 
slowly with w: to a maximum at w: = g(ui:vi = 0.85:0.15 or 0.15:0.85) 
and then decreases to zero at w: = 1. Hence HI - Hz fails to detect weak 
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asymmetry in general and extreme asymmetry in large diallel crosses. A test 
of significance of Hz - HI is referred to in 3.3. An estimator of the mean 
value of uivi at loci exhibiting dominance is H2/4H1. This is, however, biassed 
towards the larger values of uivi. 

2.6. Dominance. In qualitative definitions of dominance the heterozygote 
of the gene is taken to  have the same phenotype as one of the homozygotes- 
the dominant homozygote-so that parents which contain the greatest 
number of dominant homozygotes of the genes controlling the character in 
question produce offspring with the least variation among themselves and 
with the least covariation with their other and more recessive parents in 
that character. 

FIGURE 1.-Diallel cross dominance relationships in terms of V,, the variance of all the 
offspring of the rth parent, and W,, the covariance between these offspring and their non- 
recurrent parents, environmental variation being neglected. 

For a diallel cross with a certain value of Hi/D, the points (V,,W,) are distributed along 
a corresponding straight line of unit slope inside the limiting parabola, Wr2 = V,VOLO. This 
is one of the full sloping lines in the diagram. If the continued line cuts the W,-axis in A, and 
if the parallel tangent to the parabola cuts it in B, then the line is determined by AB/OB 
= HJD. The line marked A in the diagram corresponds to a diallel cross with Hr/D = 4. 

The position of (V,,W,) on the line reveals the relative proportions of dominant and 
recessive genes in the rth parent. For any diallel cross, the point corresponding to  a parent 
containing p% dominants and q% recessives lies on the curve labelled p:q. Completely 
recessive parents correspond to points a t  the upper ends of the sloping lines on the part of 
the limiting parabola labelled 0: 100, and completely dominant parents to points a t  the 
lower ends on the part labelled 1OO:O. 

In an experiment with no dominance all the points coincide at  ( tD,  3D) (Hi = 0 in the 
diagram). 
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Quantitatively we may consider any degree of dominance (measured by 
\hi(/di a t  the ith locus), the dominant homozygote deviating from the mid- 
homozygote in the same direction as the heterozygote so that hiei = \hi\. 
Similarly hi& = - lhil for the recessive homozygote. (\hi[ means the positive 
value of hi.) 

In the diallel cross an overall measure of dominance is provided by 
(Hl/D)i, the square root of the ratio of weighted means of h? and d:. This 
ratio may be obtained from the graph of W, against Vr. From 2.4, W, - V, 
= f (D  - H,) = Woml - VILl, so that the points (Vr,Wr) lie on a straight 
line of unit slope through their mean point (Vl~l,Wom~). The statistical 
inequality W: 6 VrVoLo means that points can only lie on that part of the 
line inside the parabola W," = V,Vo~o. Let the line cut the OW axis in A 
and let the parallel tangent to this limiting parabola cut the same axis in B. 
Then AB/OB = H1/D and this is identical with the value given by the 
equations in 2.4. In figure 1 the line H1/D = 4 has been labelled A. When 
there is no dominance (H, = 0) the line is tangent to the limiting parabola 
and all the points (V,,W,) coincide at  the point of contact, (tD,+D). With 
complete dominance the line passes through the origin (0,O) while with 
partial dominance it lies above and with overdominance below the origin. 
In the latter case W, may be negative. 

With the aid of this graph we can make a detailed study of the relative 
dominance properties of the parents. From 2.4, 

W, = 4D - IF, 
and V, = 4D - fF, + $Hi 
where F, = 22dihiO,i(l - w?). Since hi& is positive for a 
dominant homozygote and negative for a recessive the greater values of F, 
correspond to the more dominant parents and the lesser values to recessive 
parents. Thus, in the (V,,W,) graph, points with lower values of V, and W, 
correspond to dominant parents and points with higher values to recessive 
parents. 

If we define the completely dominant parent to be the (possibly fictitious) 
parent carrying the dominant homozygotes of all the genes (which may have 
either positive or negative effects) and the completely recessive parent that 
carrying all the recessive homozygotes then, for the complete dominant, 

and for the complete recessive 

Now, unless the degree of dominance, lhi\/dil of every gene is the same, 
(VD,WD) and (VR,WR) lie just inside the parabola. However, assuming that 
the points where the straight line cuts the parabola correspond to the com- 
pletely dominant and recessive parents, it is found that 

VD = IZ(di - lhi1)2(1 - w?) 

VR = tZ(di + lhi1)2(1 - w?). 

and 
where x1 and xz are the roots of VOUX* - VOMX + WOWI - V l ~ ,  = 0. 
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Suppose that the parent 8, contains krD dominant genes and krR recessive 
genes. Then, with certain restrictions about equality of gene effects, 
krD VR - - _  - 
krR Vr - VD 

= the ratio of the lengths of the two segments into which 

the point (V,,Wr) divides the chord joining (VR,WR) to (VD,WD). (See fig. 1). 
The ratio of the total numbers of dominant to recessive genes in all the 
parents is 

2.7. Dominance by regression methods. With no dominance the regression 
of progeny with one parent in common on their non-recurrent parents is a 
straight line of slope 4. When dominance is present consider the measure- 
ments, yr6, of the progeny of %-the rth array-and the parental measure- 
ments, Y*(S = 1, . . . n). We have ylll - $ys = $I:{diOri + hi(1 - O,iO@i)], 

which is not now independent of s, and in fact a linear relationship no longer 
exists between yn and y. for given r. A best fitting regression line may, of 
course, be found for the offspring of each parent and its slope, Wr/Vom, 
will vary from parent to parent. HULL (1945, 1952) uses this variation in 
slope to detect and measure dominance. 

i 

His method is to fit the regression surface 

yo = c + 3bl(yr + YJ - bzyrya 

to the diallel table. b2 is also the regression of regression slopes onto the 
corresponding parents and its existence indicates the presence of dominance. 
HULL'S estimator of the degree of dominance reduces to { (1 - b1)2 + 4cb2 1 *. 
Fitting his regression surface to our more general genetical model we find 
that this estimator becomes 

{ VOI.0 - 2W0I.d2 + 4cov(wr,Yr) (mL4 - mL1) 1 '/vOLO 
= { (Edihiwi(1 - w ? ) ) ~  + Bd?hi(l - w?)' . 2hi(l - w:) Jt/2d:(1 - w?) 
= (2d:hi . Zhi)*/Bd?, in the special case when all Wi = 0. 

Since HULL, unlike us, omits the diagonal of the diallel table in computing 
parent-offspring covariances these are not exact representations of his 
estimator but they suffice to reveal the main differences from our estimator, 
(Hl/D)* = (Ch?/Zd?)* when all wi = 0. 

Clearly HULL'S estimator measures mean dominance and not mean square 
dominance and must underestimate the average degree of dominance in 
any case but that of unidirectional dominance (for which i t  was admittedly 
designed). The regression coefficient, b2, which provides the test of signifi- 
cance of dominance suffers from the same disadvantage. Furthermore, the 
third degree statistic, Cov(wr,yr), is a greater source of sampling error than 
the second degree statistics used in our estimator. I t  is interesting to note 
that, perhaps contrary to expectation, our more general theory has enabled US 

to obtain the simpler and more reliable estimator of the degree of dominance. 
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2.8. Number of genes. An estimate of the summed value of hi is (2.4) 
2(mL1 - mm) = h = Xhi(1 - w:). In general this underestimates mean 
dominance because positive and negative values of hi cancel out, but its 
sign does show whether positive or negative dominants are in the majority, 
or which exhibit the greatest degree of dominance. 

Let k+ and k- be the number of groups of genes distributed independently 
in the parents for which the dominance is respectively positive and negative. 

Then - = again with certain restrictions about equality of 

gene effects. Now, if either k+ or k- is zero, i.e. all dominants have the same 
sign, this ratio estimates the number of groups which control the character 
and exhibit dominance to some degree. Usually, however, it underestimates 
this number, and it provides no information about groups of genes exhibiting 
little or no dominance. These groups of genes are not to be confused with 
MATHER’S (I.c.) effective factors. 

I t  is important to distinguish the different discussions of the gene dis- 
tribution in the previous sub-sections. The proportions in all the parents of 
positive and negative homozygotes a t  each locus which exhibits dominance 
are considered in 2.5; 2.6 gives the relative proportions of dominant and 
recessive homozygotes in each parent; here a lower bound is found to the 
number of genes exhibiting dominance in the parents. 

2.9. Dominance and size. The sign of h (2.8) gives the mean direction of 
dominance. A measure of association between the signs of dominant genes 
is the correlation between parental size and parental order of domi- 
nance. The parental measurement, y,, is closely correlated with the number 
of positive homozygotes in the parent while (W, + V,) bears the same rela- 
tion to the number of recessive homozygotes (3.2). When the correlation, 
p, between y, and (W, + V,) is nearly one the recessive genes must be 
mostly positive; when p is minus one the dominant genes are positive; when 
p is small equal proportions of the dominant genes are positive and negative. 

When $ is nearly unity, the regession of y, on (W, + V,) exists, and the 
substitution of (WR + VR) and (WD + VD) in the regression equation pre- 
dicts the measurements of the completely dominant and recessive parents. 
These must also be predictions of the possible limits of selection from 
amongst the genes exhibiting dominance, but, as before, we have no infor- 
mation about possible limits of selection from amongst the other genes. 

h2 (k+ - k-)2 
Hz (k+ + k-) 

3. COMPONENTS OF VARIATION 

3.1. Ennironmental wrigztion. Interaction between environmental fiuctua- 
tions and the genotypes in a diallel cross is revealed by heterogeneity of the 
variances within (or between duplicate) parental and F1 families. Such heter- 
ogeneity may be handled in a t  least three cases. 

(i). When the sole source of heterogeneity is a difference between parental 
and F1 variances the environmental variances of yr and yrs (r # s) may be 
denoted by E and +E’ respectively. E is estimated from differences between 
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duplicate plots, E’ is estimated from the same source or from reciprocal 
differences, and the factor of ) compensates for the replacement of each pair 
of measurements of reciprocals by their common mean, which is done before 
evaluating statistics from the diallel table. With the environmental expec- 
tations included the equations of 2.4 become 

Vow = D + E 
W, = $D - +F, + E/n 

WOrfil = $D - tF  + E/n 
V, = t D  - aFr + $HI + (E + )(n - l)E’)/n 

VlLl = t D  - IF 4 + +HI + (E + +(n - l)E’)/n 
VoLl = 2D - tF + $HI - 4H2 + (E + $(n - 2)E’)/n2 

(mL1 - mLo)2 = th2 + (n - l)((n - l)E + E’)/n3. 

Even W, and Wow, have environmental expectations because each array 
has a term in common with the parental array. 

(ii). When each F1 variance can be expressed as the sum of two com- 
ponents corresponding to its parents those of the above equations which are 
independent of r hold with E = E’ = overall mean family variance. 

(iii). When a trend exists between all the L1 family means and variances 
the genotype-environment interaction may be removed by rescaling. 
WRIGHT (1952) describes the standard method. 

When the influence of the environment is independent of genotype all the 
above equations hold with E‘ = E. We use them in this form in the next 
sub-section. 

3.2. Accuracy of the components. Those of the equations in 3.l(i) which are 
independent of r, together with an estimate of E, furnish an exact solution 
for D, F, HI, H2 and h2, but no estimate of their accuracy. However, we have 
observed (2.6) that there are n estimates, W, - Vr, of t (D - HI), and the 
sampling variation in these may be used to provide approximate standard 
errors of the genetical and environmental components. In replicated experi- 
ments, block differences supply a further estimate of error. 

In .obtaining the least squares solution of the above equations we omit 
WoLol and VILl as superfluous (because of W, and V,) and weight with a 
factor nt the equations for VOL~ and (mL1 - mL,J2 and the estimate of E 
since, unlike the others, these three statistics depend on all the measure- 
ments of the diallel table. The solution is 

ij = VOLO - I? 
E’ = 

A1 = vOLO - ~ w O L O ~  + 4v1L1 - (3n - 2)k/n 

f i 2  = 4(mL1 - ,Lo>? - 4(n - 1)G/n2 

- 4wOLo1 - 2(n - 2>B/n 

A2 = 4v1L1 - 4voL1 - 2& 

fir = 2(voLo - woLoi + vlLl - Wr - Vr) - 2(n - 2)fi/n 

where we have used Wo~ol and VlLl for the means of W, and V,. The esti- 
mates of D, F, HI, Hz and h2 are the same as in the exact solution. Only the 
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estimate of F, is new, and it shows that (W, + VJI and not just V, or W,, 
provides the better measure of dominance order (2.6). 

The expected values of the statistics, derived from the estimates of 
the components, are identical with the observed values for VO~0, VoLl, 
(mL1 - m,)2 and E, but 

and Cr = 3( - WOMI + VILI + W, + V,) so that the residual sum of squares 
= ${2(W, - Vr)’ - n(Wom1 - VILl)e] with n - 1 degrees of free- 

dom. The mean square, s2 = 3Var(Wr - VI). The covariance matrix of 0, 
PI, $Il, &, fi2 and is the inverse of the matrix of the coefficients of these 
components in the least squares equations and, as the important components 
are D, F, HI, He, h2 and E, the covariance matrix may be contracted to refer 
only to these quantities (see table 1). 

is positive so that diallel 
crossing shares with repeated backcrossing from the F1 of a single cross the 
advantage over continued selfing or sib-mating of enabling D - HI to be 
estimated with the greater accuracy. In fact, if we solely desire to test the 
deviation of 0 - $Il from zero we may use the direct estimate, Var(f> - fil) 
= 16Var(W, - V,)/n. Combined with the test of the significance of H2 
(3.3), this quick test at once classifies the experiment into one of four cate- 
gories as exhibiting no dominance, partial dominance, complete dominance 
or overdominance. 

3.3. Analysis of variance. In another paper HAYMAN (1954) has con- 
structed an analysis of variance of the diallel table to test additive and 
dominance variation in the multiple allele case. Such an analysis provides 
statistically sound tests of significance of some of the components discussed 
here, viz., (D - F + HI - H2) (i.e. VoL1)l H2, (HI - H2) and h2 as well as 
differences between reciprocal crosses. See table 3 of that paper and 6.3 in 
this paper. The error mean square from this analysis of variance may be 
used as an estimate of E. 

vir, = +(w,l- VlLl+ wr + Vr) 

The sampling correlation between I3 and 

4. GENERAL GENETICAL SYSTEMS 

4.1.  Testing the hypotheses. Before the theory of the previous sections can 
be applied to a diallel table it is necessary to show that the corresponding 
diallel cross conforms to the hypotheses postulated in 2.1. A consequence of 
those hypotheses was that W, - V, was constant, i.e. independent of r 
(2.6). We therefore expect that failures of the hypotheses may upset this 
constancy, and this i!! borne out in the investigations below. Heterogeneity 
of W, - V, is thus a good indication of such failures. Homogeneity of 
W, - V, ,while always implied by the validity of the hypotheses, may also 
be attained in certain cases of balanced failure. Two tests for heterogeneity 
of W, - V, are available. 

(i). When the experiment is replicated the variance of W, - V, may be 
analysed for line and block differences. A significant line effect indicates fail- 
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ure of the hypotheses. The main statistical fault in this test is that the n 
values of W, - V, are correlated. This paragraph, with 3.2, reveals the 
importance of the variance of W, - V, in the analysis of diallel crosses. 

(ii). A test which is useful when the experiment is not replicated depends 
on the (V,,W,) graph. This is not a line of unit slope if W, - V, varies. To  
provide a test which gives equal weight to both W, and V, the axes of the 
graph are rotated through 45" so that the coordinates of points become 
proportional to W, + V, and W, - V,. The t testing the significance of 
regression in the new axes is given by 

(VarV, - VarW,12 11 - 2 
t 2 = - - - .  with n - 2 degrees of freedom. 4 VarV,VarW, - Cov2(V,,W,) 

Significance indicates failure of the hypotheses. The weakness of this test 
is that it only detects variation in W, - V, which is correlated with the 
dominance order of the parents. Variation which merely increases the 
scatter of points about the regression line without altering its slope can only 
be detected by the first test. 

Table 2 lists, for both tests, the probabilities of the hypotheses holding 
for three characters from a diallel cross of Nicotiana rusticu varieties which 
was repeated for three years. Asterisks indicate failure of the hypotheses. 
Evidently experiments should be replicated to ensure detection of such 
failures. 

TABLE 2 
Significance tests applied to the hypotheses of 2.1 for height, flowering time, and leaf 

length by the two tests described. Asterisks indicate failure of the hypothesis. 

Character Test ( i )  Test (ii) __ .~ ~- ...- ~ 

1951* . 0 1- ,001 . 2 G .  10 
Height 1952* . 01- . 00 1 . 1 G .  05 

1953* .01- ,001 . lo-. 05 

1951 .0&. 01 > .90 

1953 . o s .  01 .70-. 60 

... . 

Flowering time 1952* .01-. 001 .Ol - .  001 

Leaf length 1951 
1952 

1G.05 
> .20 

.8@. 70 

. SO-. 70 

When failure of the hypotheses has been demonstrated the simple theory 
of section 2 is no longer applicable; a more complex genetical system must be 
postulated and new parameters introduced to represent it. In the absence of 
data from later generations the components will outnumber the statistics 
so that a solution for them cannot be found. However, it is still possible to 
draw the (V,.W,) graph and to make estimates of D, F, HI, Hz and h2 from 
the formulae in 3.2. We will now discuss what genetical interpretations can 
be ascribed to such components and what forms the graph may take under 
failure of the various hypotheses. Let OW be the vertical axis and OV the 
horizontal axis. 



THE THEORY AND ANALYSIS OF DIALLEL CROSSES 80 1 

4.2. Reciprocal diferences. When reciprocal differences exist, two values 
of each statistic are obtained from the table, one by using the columns, and 
the other by using the rows, as arrays. This ambiguity may be removed by 
replacing all entries in the table by their mean reciprocals. If the differences 
were independent of genotype then estimates of the genetical components 
are now correct as long as E contains the variation between reciprocals. If 
the differences depended on genotype then the genetical components are only 
averages in some way over maternal effects. 3.3 refers to a test for reciprocal 
differences. 

4.3. Residual heterozygosity i n  the parents. A full treatment of diallel 
crosses between partially inbred material will require a separate paper and 
only the pertinent results are mentioned here. Firstly, the (V,,W,) graph is a 
scatter about a line of unit slope, points above the line corresponding to 
heterozygous parents and points below the line to inbred parents. Secondly, 
the formulae of 3.2 produce underestimates of H1/D and H2/4H1 and an 
overestimate of F so that the degree of dominance is underestimated, 
asymmetry of the gene distribution exaggerated and the proportion of 
dominants overestimated. 

4.4. Correlated gene distributions. When the genes at different loci are 
uncorrelated Cov(&i,&j) = O(i # j) but in the general case we must take 

Cov(B,i,&j) = cij. Then, neglecting E, the formulae of 3.2 give 
r 

r 
O = Zdi'(1 - w.' 1 ) + Zdidjcij 

i , # j  
E' = 2Zdihiwi(l - Wi2) + 22dihjwjcij 

A1 = 2hi2(1 - Wiz) + ZhihjCij(WiWj + cij) 
f i 2  = Zhiz(l - wiz)>" + Zhihjcij' 

fi = 2hi(l - wiz). 
Taking all wi = 0 for simplicity we get 

I3 = Zd? + 2didjcij 
R = O  

A1 = 2hi2  + Zhihjcij' = A2 

6 = Zhi 
Since E' = 0 and A1 = fiz the measures of gene frequency are unaffected 

by the correlation. $Il (or 8 2 )  is greater than Zhi2 when the dominance 
is unidirectional, and slightly less if the hi are randomly distributed in 
sign and magnitude. The estimate of gene number, fi2/k2, is therefore 
usually depressed by the occurrence of correlation. (= VOLO) is zero 
when each parent has the same phenotype, and this occurs if each parent 
contains a suitable combination of positive and negative genes (dispersion). 
When genes of like effect are together in each parent (association) most 
cij > 0 and b is greater than Zdi2. Thus the measure of degree of dominance, 
fil/O, may be either increased or decreased by the combined effects of 
correlation on and b but the particular combination of dispersion and 
unidirectional dominance causes serious inflation and may easily turn partial 
dominance into apparent overdominance. 
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The effect on the (V,,W,) graph is interesting. When the cij are small the 
values of V, still depict the order of dominance. Further 

W, - V, = tZ(di2 - hi2)(1 - wiz) + tZ(didj - hihj&iO,j)cij. 
, # j  

The completely dominant and recessive parents correspond to WD - VD 
= WR - VR = $Z(di2 - hi2)(1 - wiz) + tE(didj - 1hihjl)cij. This is on the 
average the minimum value of W, - V, for association and the maximum 
value for dispersion. Parents with intermediate proportions of dominants and 
recessives correspond to the maximum and minimum values respectively. 
Hence with association the (V,,W,) curve is convex upwards and with dis- 
persion convex downwards. 

4.5.  Non-allelic gene interaction. Like 4.3, this heading provides scope for 
a separate paper. However, we can mention here that, now that a perfectly 
general representation of gene effect has been developed (HAYMAN and 
MATHER 1955), genic interaction presents no insuperable problems and we 
can give some of the pertinent results. A complementary type of inter- 
action distorts the (V,,W,) graph, inflates h1/n, depresses f i 2 / f 1 2  but has 
little effect on the estimators of gene frequency. A duplicate type of inter- 
action depresses f2/fiz, increases the apparent proportion of dominants but 
leaves fil/D and fi2/4fi1 and the (V,,W,) graph almost unaltered. 

4.6. Scaling. Interaction between genes at non-homologous loci in a single 
cross may often be eliminated by a suitable change of the scale of measure- 
ment, but when interaction has been shown to be present in a diallel cross 
i t  may well be impossible to find one scale on which every individual cross 
exhibits no interaction. This can, nevertheless, be accomplished when a 
trend exists between W, - V, on the one hand and both the corresponding 
parental and array mean values, yr and y,, on the other hand. The method is 
given by WRIGHT (1.c.). 

4.7. Multiple allelism. In the absence of segregation this is equivalent to  
polygenic biallelism exhibiting genic interaction and distributional correla- 
tion as illustrated here. A gene with four alleles forms four homozygotes and 
is thus equivalent to  two genes with two alleles each. There are 9 inde- 
pendent comparisons between ten genotypes, whether derived from the four 
multiple alleles of one gene, or from two biallelic genes. However, whereas 
in the first case these comparisons correspond to  additive and dominance 
effects, in the second case only 4 of the comparisons have this property, the 
others corresponding one to  position effect and 4 to genic interaction. Any 
set of 2p multiple alleles is equivalent in a like manner to p pairs of alleles. 
A set of q (# 2.) multiple alleles requires p pairs of alleles to represent i t ,  
where 2p-' < q < 2p, but there must also be some genic correlation to 
reduce the number of homozygotes to q. Evidently the effects of multiple 
allelism can be extremely complicated. 

4.8. When there is no true dominance (all hi = 0) the extended discus- 
sion of the previous five sub-sections may be reduced to the simple state- 
ment that any failure of the hypotheses which can be detected in the 
(Vr,Wr) graph causes the components estimated by the formulae of 3.2 to 
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exhibit spurious dominance. This follows directly from the concept of the 
limiting parabola in the (V,,W,) diagram. When there is no dominance all 
the points should coincide a t  (tD,+D) on the limiting parabola. Any failure 
of the hypotheses which scatters the points (V,,W,) causes their mean 
(V~L~,WOLO~) to lie inside and not on the limiting parabola. Therefore, from 

4.9. Analysis when the hypotheses fail .  The approach to the problem of a 
diallel table exhibiting genic interaction (or indeed any failure of the 
hypotheses) has been to show how the (V,,W,) graph is affected. This is all 
that can be done with data from one generation because rescaling (4.6) is not 
possible if the scale has already been fixed to minimise genotype-environ- 
ment interaction (3.1). Certainly no exact analysis can be undertaken while 
the genetical system fails to satisfy the hypotheses of section 2. 

The way to further progress is to find some sub-table of the diallel table 
which does satisfy all the hypotheses and from which valid conclusions may 
be drawn as to the degree of dominance, asymmetry of gene distribution, 
etc., in the corresponding sub-group of non-interacting lines. Interacting 
lines usually have extreme values of W, - V,, i.e. lie well off the line of unit 
slope through (V~L~,WOLO~). A surer method of discovering which line to 
eliminate is to remove the measurements on the offspring of each line in 
turn and to test for heterogeneity of W, - VI in each of the resulting 
(n - 1) X (n - 1) diallel tables. If any of these heterogeneities is not sig- 
nificant then, as far as this test is concerned, the corresponding sub-table 
satisfies the hypotheses and the lines remaining in it may be analysed as in 
sections 2 and 3. 

If the interaction is still significant whichever line is removed, the next 
step is to remove every possible pair of lines in turn and test the remaining 
sub-tables for heterogeneity of W, - VI, then, if necessary, all triples of 
lines, etc., until a diallel table satisfying the hypotheses is obtained. In 
practice, if the removal of no single line can eliminate the interaction, i t  is 
usually sufficient, and far less laborious, instead of removing every possible 
pair of lines, to remove that line whose omission minimises the heterogeneity 
and then to remove each of the remaining lines in turn. 

When only two values of W, - V, (for r = s and t) show failure of the 
hypotheses by deviating markedly from the common value of the others, 
the cause may be interaction in the single cross 8. X et. This is the case 
when it  is possible to adjust the value of this phenotype to make W, - V. 
and Wt - Vt revert to the common value of the other W, - VI. Theoreti- 
cally this should be done by minimising the heterogeneity of W, - VI but 
in practice a missing plot fit based on the analysis of variance of the diallel 
table (3.3) seems to be good enough and is simpler. If yt. and yst are fitted 
values then 

(n - 

2.6, EIi > 0. 

- 3>(Y*t + Yt,) 
= (n - l)(ye. + y.. + Yt. + Y.t - 2ye - 2yt) - 2y.. + 2y. 

and (n - 2)(ySt - yt,) = ys. - y.. - yt. + y.t where the sums ys., etc., 
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exclude the missing values. If this adjustment eliminates the interaction 
the whole table may be analysed without having to  omit all the progeny 
either of Bs or of et. 

This procedure of selecting certain lines which conform to the hypotheses 
is open to the criticism that some sub-group of lines is likely to do so merely 
through sampling variation. Replication of the experiment in time and 
space is necessary to validate such selection. 

5. SUMMARY OF THE METHOD OF ANALYSIS 

(i). Test the variances within families of parents and Fl’s for genotype- 
environment interaction. This should lie within one of the categories in 3.1 
for further analysis to be possible. 

(ii). Form the diallel table of reciprocal means, compute V, and W, 
(r = 1, . . . n) and test W, - V, for heterogeneity (4.1). If this is sig- 
nificant, plot W, - V, against 7, to decide if rescaling would be useful (4.6) 
and, if this fails, determine the interacting lines or crosses by inspection or 
otherwise and remove or adjust them (4.9). 

(iii). When a diallel table with uniform W, - V, has been obtained 
analyse its variance to find the significance of some of the genetical com- 
ponents of variation and to provide the estimate of E (3 .3) .  

(iv). From V~LO, WOLOI, V l ~ l ,  VOLI, (mL1 - mL,J2 and the estimate of E 
compute I3, p, A,, A, and fi2 and find their standard errors (3 .2) .  

8, A? (40A,)* + E’ 
(v). Evaluate and interpret - (2.6), -- (2.5), (4nA,)+ - f; (2.6), and B 4fi1 

ii. 
- (2 .8)  when the relevant components are significant. A? 

(vi). Note the order of dominance of the parents (3 .2) .  Find the correla- 
tion between W, + V, and y, and, if i t  is significant, predict the limits of 
selection (2.9). 

A quicker and more superficial analysis would omit the analysis of vari- 
ance of the diallel table and estimate E from differences between reciprocals. 

6. NUMERICAL EXAMPLE 

6.1. The data used to illustrate the analysis of a diallel table were kindly 
supplied by D R .  JINKS. They are the flowering times, in days from a date in 
1952. of Nicotiana rustica plants from a diallel cross of eight inbred varieties. 
These plants were grown in two blocks each containing 64 plots; each cross 
or self was represented by 10 progeny, grown in two plots of 5, with one plot 
in each block. Table 3 contains the mean flowering times per plot of the 
progeny. The variances within plots do vary significantly, but in the manner 
described in 3.l(ii) so that it is legitimate to use an average value for E. 

6.2. Table 3 also contains the variances, V, of arrays and the covariances, 
W,. between the arrays and the parental array, calculated for each block 
from the diallel table of mean reciprocals. W, - V, is reasonably constant 
except for r = 1 and 3 ;  the table shows exceptional and consistent heterosis 
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TABLE 3 

Mean $owering time per plot of the progeny of a diallel cross of eighl varieties. 
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1 
2 
3 
4 

C? 5 
6 
7 
8 

22.8 14.4 27.2 17.2 18.3 16.2 18.6 16.4 
15.4 17.2 14.8 18.6 15.2 17.0 14.4 10.8 
31.8 21.0 24.8 24.6 19.2 29.8 12.8 13.0 
16.2 11.4 16.8 18.4 12.4 16.8 12.6 9 .6  
14.6 12.2 15.2 15.2 15.2 18.0 10.4 13.4 
20.2 14.2 18.6 22.2 14.3 20.2 9 .0  11.8 
14.0 12.2 13.6 13.8 15.6 15.6 11.4 13.0 
15.2 10.0 17.0 20.8 20.0 17.0 13.0 14.0 

W, 

18.29 
7.44 

23.17 
10.37 
4.41 

15.38 
3.72 
2.67 

1 
2 
3 
4 

d 5 
6 
7 
8 

Block I1 

1 

24.2 
16.5 
30.4 
17.8 
18.8 
23.4 
16.6 
17.2 

0 
2 3 4 5  6 7 8  W, 

16.2 30.8 27.0 
18.8 14.6 18.6 
23.0 21.2 25.4 
13.0 16.3 18.0 
13.8 15.4 13.8 
14.0 14.8 17.0 
9 . 2  16.2 14.4 

11.6 18.2 20.8 

20.2 
15.3 
20.0 
14.2 
L5.2 
17.3 
15.6 
17.4 

16.8 14.4 16.0 
15.2 11.8 13.2 
28.4 14.2 14.4 
14.8 12.2 11.2 
16.0 12.2 20.0 
22.6 10.2 12.8 
11.0 10.6 9 .8  
12.6 9 . 8  15.8 

14.02 
7.18 

17.91 
11.10 
5.73 

16.57 
4.84 
4.04 

x T  wr - v, v r  

24.46 
5.55 

30.59 
7.48 
2.53 

14.10 
1.96 
3.76 

vr 
25.39 
6.61 

22.84 
10.19 
4.82 

18.35 
4.79 
8.33 

-6.18 
1.89 

-7.42 
2.89 
1.88 
1.28 
1.76 

-1.08 

wr - v r  

-11.37 
0.56 

-4.93 
0.91 
0.91 

-1.79 
0.05 

-4.29 

in the progeny of the corresponding crosses. The tests of 4.1 confirm hetero- 
geneity of W, - V,. 

(i). The analysis of the variance of W, - V, is 

Mean square Df P 
Lines 31.67 '7 .01-.001 
Blocks 13.98 1 .05-.01 
Error 2.46 7 

(ii). In the test of the deviation of the slope of the (V,,W,) line from 
unity, tI4 = 4.068 and P = .01-.001, which is highly significant. 

The significant variation of W, - V, from line to line means that these 
diallel tables do not satisfy the hypotheses of section 2. The graph of 
W, - V, against , reveals no trend so that a change of scale is not suggested. 
The source of the trouble is probably complementary gene action in the 
cross el X e3, and an adjustment of the plot means of the progeny of this 
cross should make the diallel cross conform to the hypotheses. 

The formulae of 4.9 provide estimates of the plot means in the diallel 
table of means over the two blocks. The estimate of the difference between 
any two corresponding plot means in the two blocks = (BI total - BII 
total)/(n2 - 2) which minimises the block interaction sum of squares in 
the analysis of variance of two diallel tables. (The totals, as in 4.9, exclude 
the means of the progeny of el x e,). The estimated plot means are 
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\ 

Block 9 1  x 8 3  P 3  x 8 1  

I 23.3 19.2 
I1 23.6 19.6 

which are about two-thirds of the observed values. The other new entries 
in Table 3 are 

Block W1 v1 w1 -v1 w3 v3 w3 - v3 
I 10.27 7.82 2.45 17.51 17.44 1.37 
I1 10.29 9.94 0.34 10.33 6.44 3.89 

The tests now show W, - V, to be uniform 
(i). In the analysis of variance of W, - V, the probabilities of both line 

(ii). The slope of the (V,,W,) line does not differ significantly from unity 

6,3. We are now free to analyse the variance of the diallel tables and to 

and block mean squares are .20-.lo. 

(P > .SO). 
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find the components of variation, remembering, of course, that our results 
provide no information about the cross X e,. Figure 2 depicts the points 
(V,,W,), the limiting parabola W,Z = Vo~oV,, and the line of unit slope 
through the adjusted mean point (V~LI,WOLOI). The unadjusted points lie 
well off this line. 

The analysis of variance is derived from the adjusted table 3 in the way 
described by HAYMAN (I.c.). Table 4 contains the significance levels of the 

TABLE 4 
Signijicance leuels of the components of variance derived from the data in tuble 3. 

Item Probability 
(a) D - F + HI - Hz < .001 
(bJ hz < ,001 
(bz) HI - Hz > .20 
(bs) < ,001 
(b) Hz < .001 
(c) Reciprocal < .001 
(d) differences <.001 
(B) Blocks > .20 

components. The significance of (b) shows that dominance is present while 
(bl) shows that it is largely unidirectional. From the sign of h we see that 
the progeny mean is less than the parental mean so that this dominance is in 
the direction of early flowering time. Asymmetry is not significant (bz) at 
loci exhibiting dominance. This also implies that (a) detects purely additive 
variation and this is highly significant. The significant differences between 
reciprocal families are an unfortunate systematic effect due to faulty lay-out 
of seed-boxes in the greenhouse so that the use of mean reciprocals in all 
other computations is justified. The overall block difference is not signifi- 
cant. The block interaction mean square, which is the estimate of E, is 3.37. 

Block VOLO WoLol VlLl VOLI (mu - mLd2 

6.4. The values of the statistics of 3.2 are 

I 20.33 8.97 7.58 4.20 3.63 
I1 19.60 8.76 8.68 5.13 3.41 

and the mean estimates of the components of variation with their standard 
errors are 

I3 F AI A2 f i 2  B D - f i 1  

16.59 - 0.59 7.76 7.11 12.60 3.37 8.83 
f 1 . 7 9  f4.24 f4.12 f 3 . 5 9  f2.40 f 0 . 6 0  f 3 . 5 4  

The sum of the squares of deviations of observed from expected values of 
VOL', VILI, V, and W, (r = 1, . . . n) is 142.84. The two diallel tables 
supply 37 statistics, and 12 constants are fitted to them, leaving 25 degrees 
of freedom for error. Hence the mean squared deviation is 5.71. Now, from 
the top left corner of the matrix in table 1, Varf) = $(n + l)s2/n, the 
factor of 4 allowing for the use in the estimation of means of statistics from 
two blocks. Since n = 8 and s2 = 5.71, VarG = 3.21. Similarly, from the 
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next term down the leading diagonal of the matrix, Varp = X 6.28 
x 5.71 = 17.94, etc. The square roots of these variances give the standard 
errors above. Their large values are due to the variations in V3 and W3 
between blocks which suggest that  this variety is unstable to environmental 
variations. Apparently fi, and k2 are not quite significant but the more 
reliable analysis of variance in 6.3 shows that k, is significant. Here D - AI 
is just significantly different from zero; it is highly so if we use the zimple 
formula for Var (0  - k,) a t  the end of 3.2 which gives a standard error of 
1.96 for 0 - Al. Evidently dominance is present but it is definitely not 
complete dominance. 

6.5. (Hl/fi)* = 0.6s is an estimate of the mean degree of dominance over 
all loci. In  figure 2, AB/OB estimates Hl/D without allowing for E. If the 
formulae of 3.2 are applied to the original diallel tables (i.e. without adjust- 
ing the cross el x e,) then (A1/D)* = 1.02. This illustrates the extent to 
which nonallelic genic interaction can inflate this estimate of the degree of 
dominance and emphasises the importance of the preliminary survey with 
the (V,,W,) graph. 

The estimate of uv is fi2/&, = 0.23 agreeing with the result in the 
analysis of variance (6.3) that H, is not significantly different from H1. 

{ (40fi,)* + PI/{ (4hH1)$ - = 0.95 which is near enough to unity, 
implying equality between the numbers of dominant and recessive alleles 
in the parents. This is, of course, a necessary consequence of the foregoing 
result that ui = v, = 3. 

h 2 / f i 2  = 1.77 so that a t  least two of the genes controlling flowering time 
exhibit some degree of dominance. 

6.6. The order of dominance of the parents, determined by W, + V,, is 
75821436 and the order of flowering time is 78524631, parent 7 being the 
earliest and carrying the most dominants. The correlation between yr and 
W, + V, is 0.80 corroborating our result above (6.3) that  early flowering is 
partially dominant. 

6.7. This example has been worked in detail more to illustrate our meth- 
ods and some of the difficulties which arise than to present a set of results 
conforming closely to our theories. Measurements of height and leaf length 
from the same plants were more consistent than flowering time over the 
two blocks and showed less or no reciprocal differences and little genotype- 
environment interaction. Further, while height exhibited genic interaction, 
leaf length satisfied our hypotheses completely. 

SUMMARY 

Experiments with diallel crosses provide a powerful method of investi- 
gating polygenic systems. The theory of a diallel cross between homozygous 
lines is discussed in terms of components of variation similar to MATHER’S 
(I.c.) D and H components. Assuming a simple underlying genetical system, 
we show that the various statistics obtained from measurements on the 
progeny provide estimates of the overall degree of dominance, of the rela- 
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tive dominance properties of the parents, and of the symmetry or otherwise 
of the gene distribution in the lines. The dominance relations are exhibited 
graphically. The effects of complications such as genic interaction are also 
considered. A genetic algebra is used to simplify the mathematical compu- 
tations. The final sections are a summary of the method of analysis and a 
worked example. 
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