THE 80-TON CRANE AT WOOLWICH ARSENAL.

 No. III.In our present paper we propose dealing with the 80 -ton crane itself, which is now in course of construction at the works of Sir William Armstrong and Co., Elswick, New-castle-upon-Tyne, that firm having contracted for its the Superintendent of Machinery at the Royal Arsenal the Superintendent of Machinery at the Royal Arsenal, Mr. Hay, who has perfected a series of important hydraulic "achinery throughout the various departments. The "accumulator," which produces the water power for the enormous number of cranes employed, is capable of extending its influence to a great many of them at the same time, three steam engines being attached to it, all of which can be simultaneously applied if necessary.
height or space of 60 ft ; it has a rake tons throughout a height or space of 60 ft .; it has a rake of 47 ft . 6 in . from
the centre of the pivot to a perpendicular let drop from the
the bed-plate of the hydraulic engine for winding the chains and revolving the crane will be bolted. The stays for the jib are of wrought iron, and are supported from the jib by other cross stays, as shown in the engraving. The main cross stays are of cast iron, and trussed together by diagonal stays of the ordinary character. A wrought iron platform, lightly constructed, is to be suspended at the extremity of the jib, for facilitating the means of access of jib-end sheaves. A wrought iron ballast box, capable of holding about 100 tons of gravel or slag ballast, is to be attached to the platform girders at the back of the crane, for the purpose of counterweighting the full weight of the load. This counterweight, together with the natural stiffness of the crane, will, it is anticipated, be sufficient to overcome the resistance of a far heavier load than 85 tons, the greatest test to which it is intended ever to ubmit it.
The hydraulic engine, for lifting and revolving, will have three cast iron oscillating cylinders, with cast iron plungers,
nects the contiguous portions of the girder over the centres of each column. The web of the girder is of $\frac{1}{2} \mathrm{in}$. plate. The girders are stiffened at short intervals by cross-framing of cast iron between them.
Whilst wishing every success to the working of the 80 -ton crane, we cannot avoid expressing a fear that the principle which has been followed in the design of the foundations may possibly prove not to have been a sound one. We are of opinion that such foundations should be independent of and distinct from the pier with which they co-operate, so that, should any subsidence take place beneath the crane, it may not affect the latter. A crane constructed upon this-the independent-principle was erected some time ago by the Superintendent of Machinery at Devonport, and has been found to act admirably. At the same time it is quite clear that Colonel Scratchley, R.E., the Inspector of Works at the Arsenal, has laid the foundations of the new " T "pier and 80 -ton crane with such extreme care and so solidly that it seems almost impossible

centre of the swivel block, and a clear height of 30 ft . 3in. from the deck of the pier to the swivel eye when fully raised. The stipulated speed of lifting the extreme load provided of about 7 ft . per minute for loads up to but not exceeding 40 tons, and a third speed of about 40 ft . per minute for raising the unloaded swivel block for any necessary purpose. An auxiliary chain is to be provided, having 3ft. less rake than the main block, this being intended for the purpose of lifting loads up to 8 tons at the rate of about 25 ft . per minute. The details of arrangement are shown in the engraving. The speed of turning the crane on its axis is provided to be at the rate of five minutes for the accomplishment of a single complete revolution. These of course, it is needless to say, are only estimates of the actual working capabilities of the crane now under consideration.

The jib is of wrought iron 55 ft . long, and is attached at the bottom to a platform composed of wrought iron girders mounted upon four pairs of cast iron rollers, which run along the sweep plate or "roller path," described in our last article on this subject. Two of the pairs have a cogged wheel inside, worked by the hydraulic gear, for revolving the crane within the circle of the roller path; the other rollers are plain. Each pair of rollers is carried in a cast axles to work in The roller path is of cast iron, and the central pivot or bed, for the crane to work on, of the same material. The latter will be bushed with a gun-metal socket for the central pin of the crane, and it will be connected with the cast iron summit length of the 7 ft . screw pile by four wrought iron bolts each 3 in . in diameter. The central pin is of wrought iron, and about $13 \frac{3}{4}$ in. in diameter. It connects the crane to the centre pivot or bed. The platform girders are to be floored on the top with timber, to which, and direct to the girders themselves,
and will be provided with valves, working gear, and shafts for the spur and bevel gearing, for communicating the power of the hydraulic engine to the lifting drums and to the front rollers for turning the crane, will be provided throughout of wrought iron, and will have gun-metal bearings to work in. Wrought iron cupped drums of large and small sizes are provided for the large and small lifting chains respectively, and a separate brake and pawl wheel is connected to each several drum. All parts of the machinery exposed to the accumulator pressure are to be tested to an hydraulic force of 2500 lb . to the square inch before being fixed in their places.
The multiplying power of the main lifting block is to be four to one, and the lifting chain for this block to be $1 \frac{1}{2}$ in in diameter, or $4 \frac{1}{2} \mathrm{in}$. chain. The auxiliary power is to be direct without any multiplying power, and the lifting chain for its block is to be lin. in diameter, or 3in. chain. Both the main and the auxiliary lifting chains are to be tested to an endurance of 10 per cent. over and above the ordinary Admiralty proof at a public chain-testing establishment before being fixed to the crane after its erection.
Before concluding our notice of this monster machine and its appurtenances, we will digress for a moment to describe briefly the construction of the continuous wrought ron girders, two of which run upon the summits of the ftt. columns forming the causeway between the " T " end of the pier and the shore. From centre to centre of each column is 48 ft . The height of the web of the girders is $3 \mathrm{ft} .9 \frac{1}{2} \mathrm{in}$. The flanges are 18 in , wide. Each flange consists of four layers of $\frac{1}{2} \mathrm{in}$. plates, the topmost layer being about 23 ft . long and lying over the centre of the span, the second being slightly longer, and so on, the fourth, or lowermost, being 48 ft . long. Wherevera joint exists there are, of course, "cover plates" put over it. A cover plate con-
that any subsequent disturbance of the piles and framework can take place.

THE BRAKE COMPETITION.

The Railway Accidents Commission commenced their experimental inquiry into the comparative merits of various systems of continuous brakes on Wednesday morning. have caused these experiments to be carried out, and the system of inquiry to be adopted. It is therefore unnecessary to deal further with this portion of the subject here and we may confine our attention to the actual progress of the inquiry, and the results obtained. As regards the first point, it became evident on Wednesday that the two days originally stated as presumably affording sufficient time to carry out the inquiry, would by no means suffice; and it is more than probable that, instead of two, seven or eight days may be occupied. It will be seen from the appended revised programme that no fewer than sixteen distinct experiments have to be made, and as no fewer than ten different systems of brake are represented, the result would be that if all were to be tried in the same way we should have 160 distinct experiments. In many cases, however, it is evident that far fewer than sixteen experiments can be made with certain systems, but we shall be under the mark probably if we assume that 100 separate trials will have to be made before the inquiry can be considered fairly complete. The experiments begin each day about half-past ten a.m., and they are prolonged to a late hour in the evening. On Wednesday night, however, it was found that only the " a " series of experiments as laid down on the programme had been completed with the London and North-Western, the Caledonian, the Brighton, the Great Northern, and the Midland. The Lancashire and Yorkshire and one of the Westinghouse trains took no
part in this trial, as all the brakes are more or less "conLondon on those trains, while of the f series and Brighton, the Lancashire and Yorkshire, and the Great Northern trains were disposed of. It will be seen that as the whole set of experiments hangs together, and must be taken as a whole in order to arrive at any just
conclusion concerning the merits and demerits of the different competing systems, it would be unfair to the competitors to give any particulars of the results obtained at given distance after running a given number of yards pos sesses, indeed, when taken by itself, no possible scientific interest. We shall consequently rese
The large number of leading railway men present from every quarter of the kingdom affords ample evidence of tute in themselves one of the most remarkable episodes in the history of railways. The mode of making the experiments is extremely simple. A train is started, and having run $3 \frac{1}{2}$ miles to get up speed, comes upon the staked-out
trial ground at the highest velocity the engine can attain. The experiment is then made, the results noted, and the train is emptied of its occupants, some seventy in number. distance. This draws up, takes its load of observers, and then backs steadily to the starting-point, and makes its rum, to be succeeded in the same manner by the next thain on out of the way. On Tuesday, those present at the trials were favoured with a sight practically unique in railway experience. When all a series of experiments were exception of the London and North-Western, and were sent back as one train, the engines running each at the ninety carriages on the whin. this consisted of ninety carriages and six splendid engines. The Caledonian,
Great Northern, London and Brighton, Lancashire and Yorkshire, and two Midland trains went to make up the whole composite train, and we think it is not too much to got together, or one which could supply a better idea of the enormous amount of talent and wealth involved in the working of the modern railway system.

PROGRAMIE.

Proposed Brake Experdigets by the Rallways Accidents Each train to consist of thimssion brake vans; the carriages may be four wheel or six wheel, at the companies' option; the engines and trains complete should be
brought to the Derby station of the Midland Railway not later
thut ing the engines and carriages in in detail. Eas to allow carriage to bor weigh
with a weight corresponding with the say, ?2 owt. per seat. to to representt an averame loond of of pass, reckenoning,
loggage ; each van to be loaded with a weight of two tons, gentign, the average weoght of luggage it conveys t the weight
each carriage and van empty to be carefully taken; the weight o each carriage and van empty to be carefully taken; the weight
each loaded carriage to be taken in like manner: the weight
each engine used in the cach engine used in the experiments, noting height of water in
gaugg ghass at the time, and approximate quantity-weight- of
fuel in fire-box; the weight of each tender used in like manner to be noted; first, without coke and water; seond, with water, only
tank full, and height noted; third, weight of coke or conl in
tend tender, at starting; a general description to be furnished of the
particulars of application of the brakes of each description to the respective trains.
and Lincoln Branch of the Midland Railway, betweenNewark and Thurgaton. This ground to be staked out as may be directed, the
levels carefully taken, and section plotted. The particulars will be furnished to the companies who have provided the trains for ex periment. Tho days selected for the trials are the 9th, 10th, and
If neessary the 1th and 12 tho of June. All the trains should be
be beaught it Newark, in readiness for proceeding with the tring of the thturne. The direction in which the
earains will be worked in making the experiments will be from
trat Newark or Rolleston Junction towards Nottingham, and the to be provided with a slipt coupling, to be useod as may be required
It is desired that all comprate It is desired that all comparative experiments, class by class,
should be made, as nearly as the cose will permit, at the same time
and under the like circumstances of and under the eike circumstances of weather, wind state of rails,
sc. Should the weather be favourable on the morning of the 9 ,h
June, it is proposed to commence with the experiments in entir trains, fitted-up with continuous brakes, taken in order as may be most convenient to the railway companies.
It has been arranged, and the commissi
make experiments on the following trains, viz, :London and
North-Western Railway Conpany, Clarke and Webbs brat Great Northern Railway Company, Smith's vacuum brake ; Mid Cand Railway Company, Westinghouse brake ; Midland Railway
Company, Clarke's hydraulic brake : Midland Railway Company Barker's hydraulic brake; Midland Railway Company, Kitson' shire Railway, Fay's brake; Caledonian Railway, Steele's air brake North-Enstern Railway, vacuum brake, applied to engine and
tender wheels; London, Brighton, and South Coast Railway, Westinghouse vacuum brake.
and sixty miles per hour respectively tried, at the two speeds of forty before the signal is given; nor will the thards or driver be allowed to touch the brake handides or levers after starting the trains, until engine by flag waved on engine- when both driver and guards will
puto put one rakes, or by cord signal to guard; no sand to be used except
in the experiments directed ; in making the experiments havin
for for their object the stopping in the shortest possible space, tho
amount of shock sustandined in the act of stopping to be observed
and measured as fan as practicable and measured as far as practicable.
Firt Series, with Complece Trains-Stop by application of (a)
Tender brake and van brakes worked by hand ; (b) Tonder brake
val van brake, and continuous brake applied by guards on flag or cor
signal ; (c) Tender brake and continuous brake, applied
on on flag or cord signal, and engine brake, if any; ; d) Tender brake
and continuous brake, appplied by driver and guards, and brake, if any, using, in fact, all available meansto sto stop excepting
sand tubes
 steam, and apply continuous brakes ; (i) : Driver to shut of steam,
and
 brake; (e) Tender brake and reversing brake.
Third Series-Ascertain the Friction of the Trains of Carriages:
(a) By running them down incline from a state of rest, or (b) By
observing retardation of motion over a given space, the train of carriages being detached from engine by slip coupling. N.B. - Such
supplementany experiments to be made, as the circumstances at supplementany experiments to be made, as the circumstances at
the time may render desirable, and as the commissioners may
think fit. The number of people on the engine of each experimental train during the time of the trials is not to exceed engine-driver, fireman, piilot-driver, non-commissioned officer R.E. for signalling,
Mr. Woods, Colonel Inglis, Lieut. Scott, R.E., and locomotive superintendent (or representative) of owning company, and brake patentee (or representative).

THE CHEMICAL SOCIETY Thursday, 3rd June, 1875. Professor Abel, F.R.S., President, in the Chair AFTER the minutes of the previous meeting had been read and confirmed, and the donations announced, Messrs. P. Melmore,
R. E. H. Goffin, C. G. Cresswell, and A. Senier, were formally admitted Follows of the Cociety. The names rene, for tere formatimy
were those of Messrs, A. W. Genard, J. Brett Guyer, E. Gee Were hose oo Messrs. A. Ge. Genard, Mrett Guyer, E. Gee, and
A. Now. Mess. Falkand Mackinnon, Charles Thomas
Bianshard, B. A., George Crampton, John Cope Butterfield, Joseph
 Fellows of the Society after their names had been read the third The first paper, by Mr. J. T. Coleman, was on "The Effeets of
Pressure and Cold upon the Gaseous Products of the Distillation Pressure and Cold upon the Gaseous Products of the Distillation
of Carbonaceous Shules." The author finds that if the gas which
in produced in such large quantities in the
 Fah, at a pressure of 140 olb to to the square inch, a a quantity of
volatile hydrocarbons having a density of about 680 is obtained, suitable to be used for air gas purposes, or for increasing the
illuminating power of poor coal gas. The amount of liquid condensed is about one gallon per 1000 cubic feet of gas. The latter,
ffter the removal of these hydroarbonss, burns with a blue tlame resembling that of a Bunsen's burner.
别 Chemistry of the Tea paper by Dr. C. Brown " "On the Agricultural
Chans of Indin," was read. This paper contains a arge number of analytical reselts connected with the
cultivation of the three varieties of the tea plant grown in India. cult ivation of the three varieties of the tea plant grown in India.
In one instance it was found that in the portion of the tea garden treated with Dr. C. Brown's fertiliser, the yield of tea per acre
was 494 lb, and in the unmanured portion it was only 397 lb Analysis of the ash of the two specimens of tea yielded results Which were nimost identical.
bution to the agriculture of the Brown for his important contri be possible to do justice to it without standy ing it in detail.
Mr. Way was much struck by the interesting fact which the table of the ash constituents showed, that there was a large amount
of soda uncombined with chlorine. In his own somewhat extended of soda uncombined with chlorine. In his own somewhat extended
experience he had observed that the sodium, in most cases, was hiefly present as sodium chloride.
ld system of constructing the manure on the composition of the shh of the plant. This, however, was fallacious. For instance, it would be inferred from the ash, that the turnip crop required much
potash and but little phosphoric acid. It was found, however, in ractice, that turnips require a phosphatic manure. Instend
aking the old method of composing the manure on the resulta the analysis of the ash, the best way was to proceed on direct
Dr. Thudicum remarked that the table suggested a very interesting point. Wo knew that potash was very necessary for plant
Srowth, and it was remarkable that as the leaf grows old it loses
its potash. It would appear from this, that after the potash had Its potash. It would appear from this, that after the potash had
served to build up the leaf, as it were, it was absorbed again into the ystem, its place being taken by lime and magnesia. In certain patho
ogical diseases, the potash in the cell structure is withdrawn and
 to vegetable life. He, that did not quite agree with the last speaker as
to to the effect of manures. In the case referred to it was not the
phosphoric acid but the sulphuric acid which was accidently present phosphoric acid but the sulphuria acid whi
that gave the manure its peculiar action.
Pro
Phillips' paper "On the Structure and Composition Mr. J. A. Pseups paper Crs the structure nnd Composition of certain
Pseudomphic Crystals having the Form of Orthoolase." These remarkable crystals which occur at Huel Coates, in Cornwall, are
felspar crystals in which the potash has been removed, and its place occupied by oxide of tin and other minerals. The author has proured thin seotions of these crystals and submitted them to microcopical examination. He describes their appearance as that of persed with quartz crystals sand crystals of tin oxide, and in some instances bue tourmaline (indicolite). The paper contains camposition.
nd also President said the fellows were much indebted to the author nd also to Professor Maskelyne, for the lucid comments which he Dr. Wright then read two papers by himeelf and Mr. G. H. Beckett, the first of which was entitled "
Narceine and other Narceine Derivatives."
After referring to the pertinacity with which narceine tydro obloride retains traces of hydrochloric acid, and the readiness wit which the former is decomposed by water, the authors say that in than the "bisulphate," which is prepared by surystallising more narceine sition $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{NO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, 10 \mathrm{H}_{4} \mathrm{O}$, but breaks up in presence of water into more basic sants, of indedinite componsition. Unikence of the
hydrochloride, narceine sulphate is complectely decomposed by odium carbonate, affording a means of obtaining pure narceine.
The action of nascent hydrogen on narceine removes the oxygen and gives rise on on uncrerystallisabale base. When nareesine is oxengen
with acetic anhyydride it is partly dehy drated and with a thyl iodide it yields a varnish-like non-crystalline compound In the seocon p paper "On the Action of Organic Acids and their
Anhydrides on the Natural Alkaloids, Part V.," the authors treat of the action of succinic acid, camphoric neid, and oxalic neid on succinic acid the action is not similar to that which takes place with the monobasic acids, but a new class of compornds is formed analagous to the ethylene-succinic acid of Lourenco. The action
of oxalic acid on the alkaloids converts them into a mixture of polymerides, from which, in one case, dicodeine and tricodeine were
solated, and in the other diamorphine, trimorphine, and tetraProfessor Abel having thanked the author, a paper on the
"Action of Chlorine on Pyrogallol," by Dr. J. Stenhouse nnd Mr Charles E. Groves, was read by the latter. In this paper the authors describe who compounds they have succeeded in preparing
from pyrogallol by the notion of chlorine on it in an acotic acid
solution. The first. saturating the solution in the cold, and then heating it to 70 deg.
 hydrochloric acid. The mixture then solidifies to a mass of minute crystals, which are purified by pressure, and crystallisation from
mixture of ether and benzenc.
Leukogallol is moderately soluble
in ether, and roadily soluble in water. It melts at 104 deg. Cent.
and is at the same time decomposed, giving rise to new crystalline

products.

Mr. Lewis then gave an account of three forms in which mairo-
The President having thanked the authors for their interesting He finds that the action of nitric acid on diacetyllaizarin rodoces nitroalizarin $\mathrm{C}_{11} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{4}$, a very definite and stable booly,
crystallising in orange yellow needles, and dissolving in caustic

 derivatives are of a silar col
Nitroalizarin produces, with alumina, mordants of an orange red
colour similar to "aurin," and with iron mordints a reddish purple, whilst amidoalizarin gives a purple with alumina mordants, tives dye unmordanted silk, nitronlizarin a clear goldet colour, and amidoalizarin a purple
of med. Tho anthor also gave an account
matal scales, and, like the diacetyl derivative, is readily dneomposed by The President thanked the author, in the name of the fellows, then rend a communication "OO some Metallic Derivatives of obtained by Mr. Perkin, the author proceeded to give a description
 longer yields coumarin when treated with an acid, hut an amorphoue brown substance. The potassium compound C.H. $\mathrm{O}, 2 \mathrm{KH} \mathrm{O}$ is
very similar. The barium compound is not crystallisable. All
these are prepared directly from coumanin of the base. The lead compound, $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}, 2 \mathrm{~Pb} \mathrm{O}$, is obtained as
one a bright yellow precipitate on adding plumbio nitrate or acetate to The last paper was on "The Action of Dilute Mineral Acids on
Bleaching Powder," by Mr. F. Kopfer. The author, after noticing the conlluting statements as o the nature of this important com-
pound, gives details of the experiments he made by carefully diswilling an aqueous solution of carefully prepared chloride of lime with various acids, acetic, hydrochloric, and nitric, in the propor-
tion sufficient to liberate only the hypochlorous acid, assuming the formula $\mathrm{Ca}\left\{\begin{array}{l}\mathrm{Cl} \\ \mathrm{OCl}\end{array}\right.$ proposed by Dr. Odling to be the correct one. In all cases he found that pure hypochlorous acid was obtained
free from chlorine. It would seem, therefore that the constitution of this compound originally proposed by Gay Lussac, or that of Oding, is the correct one
The next meeting, the last of the session, will take place on (1) "On Nitrosyl Bromide and on Sulphur Bromide", by Mr :M. P. Muir. (2) "Notes on the Chemistry of Tartaric and Citric
Acid," by Mr. K. Warrington. (3) "On the Action of Nitric Acid on Copper, Mercury, \&e., especially in the Presence of Metallio Nitrates," by Mr. . J. J. Ackworth. (4) "Decomposition of Water
by the joint Action of Aluminium acid Aluminium Iodide, Bromide, or Chloride, including Instances of Reverse-action," by Dr. Glad
 J. W. Provost.

The belalan Iron Trade.-The current aspect of this trade is one of extreme quietness. There are inquiries for riils, tires,
plates, puddlo bares, but Belgian firms state that they find it
difficult to competo with England in regard to such matioie Exglish Coal in Beleriva,-Official advices from Brussels estabish the somewhat remarkable fact that we are sending more
and more of our coal to Belgium. In the first four months of 1873 , English coal entered Belgium to the extent of 40,000 tons; in the
 siEN.-The monthly sitting of members held on Saturday, the 5th inst, was very numerously
Mr. Joseph Newtonded. C.E. As As was
As the election and nomination of new members took prececence of the other business of the
evening. Among those elected were Mr. Alfred WW Week (hortiociltural engineer, Chelsea), Mr. G. Trench (of the Gun
Cotton Works, Faverhham), Mr. Holehouse, and Mr. W.J. Connor Mr. Ainslie and Mr. John Hogg were nominated for ordinary memberahip, and Mr. Aubrey was appointed auditor. The chair-
man next introduced Sir David SAlomons, who, with the aid of models, beautifully constructed by Mr. Bateman, and which comtraversing it, expllained his antomatic (electrical) system of sig-
nalling. Mr. Lloyd Wise afterwards introduced aresolution adverse nalling. Mr. Lloyd Wise afterwards introduced aresolution adverse
to some of the provisions of the proposed new patent law, whioh was carried. The meeting terminated at a late hour.
OPENING out or Extessive Coal Minks iv Cil the present week, Wangeling-Yong, an Imperial Co.-During the present week, Wang.Ching-Yong, an Imperial Commissioner
from China, visited the South Yorkshiro collery Jistrict, with a a
view of examining the most modern and powerful machinery used view of examining the most modern and powerful machinery used
in drawing coan and carrying on the work in connection with large collieries. It appears that the Imperial Commissioner visited the
district at the instance of the Chinese Government, who to open out some large coal-mines in that country. He was accom-
 On entering Barnsley, he was received by Mr. W. H. Peacock,
jun., manager of the Holnd Silisstone Colilieries. After
uncheon at the King's Heal Hit uncheon at the King's Head Hotel, Barnsley, the party visited the
collieries belonging to the Dodworth and Sikstone Coal and Iron comineries
Company, where the Imperial Commissioner inspected the surface
plant, and afterwards descended the shafts and viowed the workings, with which he seemed greatly surprised. Ho next
paid a a , isit to the Monk Breton Colliery, near Barnsley,
where there are probably a couple of the largeat horizont where there are probably a couple of the larg the plant and
winding engines in England. After viewing the appoing ences, thes Imperial Commissioner expressed his disesire to sce
apoliery, where a large quantity of water has to be pumped. It a coliery where a arge quantity of water nas to be pampec.
may be stated that one of his chief objects in visiting England was to inspect arrangements and machinery for clearing mincs
with water. Up to the prosent time ono of the greatest dificilitios Which has been met with in connection with mining operations in China has been the largo intlux of water which has been met with,
and which has stopped mining operations, or in terferod with them to a serious extont. The commissioner was next driven to the
Wath Main Colliery at Wath-upon-Deanie, where something like
120,000 gallons of water per hour has to be pumped the water it 120,000 gallons of water per hour has to be pumped, the water, it
is believed, being drained from some of the heavy collieries in the is believed, being draied re party next visited the Melton Iron-
immediate loaity. The
works, belonging to Messra. W. H. and G. Dawes, where he works, belonging to Messrs. W. H. and G. Dawes, where he
inspected the bhast furnaces and the other appliances used for
producing forished firon. Tho next place visited was the Hoylnnd Silkstone Collieries, where he made a very minute
inspeotion of the large and substantial surface plant which is being put down for working the silkstone soam. During the week he
has daso visited the works of Sir John Brown and those of Messros
ha blo Cams also visited the works of Sir Company at Shefidid II It may be stated that the
Imperinal Commisioner is an acomplished Chinese sholar, and has
already spent some time in various pavts of Europe, He can already spont some time in various parts of Europe. He can
speak German and French fluently, as well an a fair amount of
English. It is believed before leaving England he will give orders for a large quantity of mining machininery to take out to his native
country for developing mining operations there.

RAILWAY MATTERS.

There are now completed and in operation 325 miles of the Texas
and Pacific Railroad, and it is expected that during the present
Moss of the members of the French Council of State are, says
the Continental Herald favourable to the submarine tunnel the Continental Herald favourable to the submarine tunnel
scheme. They have commissioned M. Collignon, the engineer, to

pany states that the railways worked by the company durar Com-hall-year were 12781 miles; the State lines (single track) were 1511 miles, worked for an average of three months, making the total
lengsth 1430 miles. The Nizam's State Railway, which was opened
for traftic on the 9 th of October, 1874, was connected with this company's south-east line at Wadi, 25 , wales bonnocted with thish this
66 miles short of Raichoor, tha junction with the Madras railway system. The number of train miles run upon this company's lines
was $1,644,380$, being an incrense of 81,359 run in the corresponding WE understand, says the Railuay Ners, that Captain Tyler, R.E., with two eminent railway engincers, have been requested to
act on the part of the Ottoman Government in the arbitration which has been decided upon to settle all pending differences
between the Turkish Government and Baron Hirsch in connection with the Roumelian ruilways. The two arbitrators appointed by
the Porte are Server Pashan, formerly Minister of Foreion Affairs and nfterwards Ambassador at Paris, now a member of the Council
of State ; and Odian Effendi, also a Councillor of State, and a member of the Budget Commission now sitting. The arbitrators
on the part of Baron de Hirsch, who have been designated, but are

 nomineo holds a high appointment in the Austrian Railway admin-
istration; M. de Kremer, Austrian Councillor of State, is his probable colleague. Captain Tyler and the
act as technical duvisers to its nominees. ThE Levant Herald says:-"The working company of the Otto-
man railways has, wo fearn, stopped tho works which were in progress on the Shumla line, and which, after several years' delay,
had at length been begun in Oetober last. If we are rightly in. had at ength been begun in October last. If we are righty in-
formed, the principal cuse of this stoppage is the non-payment of
the bi-monthly cortififinates presented by the company to the Govern. ment. These certificates having remained unliquidated for more than six months past, the company has, it appears, found it impos-
siblo to go on making advances to the Government for the execution of the works, and is now compelled to dismiss its workmen. Under
 The Shumla line, which, according to the existing contract, ought
 with the rest of Europe, through its junction at one end with the view, moreover, it would have been desirable that the stronghold with the interior of the empire
The report of the directors of the Madras Railway Company
states that, considering the great anount of injury which was done to various, parts of the railway by the extruordinary severity of
the floods in October last, it was, in the onine proof of the energy and skill of the company's officers that the permanent way should have been speedily restored to working
order and that the traffic receipts of the line should not have been more injuriously affected. At the Goriattum-bridge, on the southwest line, five arches were ewept awny. At the Cheyer bridge
five piers and two abutments, and at the Paupugneer-bridge four permanent and two temporary piers were washed away. At the 140ft. girders carried away, besides two more much damaged. At
the Tennnir-bridge two piers were destroyed. Besides the forethe Pennnir-bridge two piers were destroyed. Besides the fore-
going, innumerable other casualties of a minor description were exgoing, innumerable other casualties of a minor description were ex-
perienced on several parts of the lines. By the most strenuous
exertions temporary yepairs of the evined structures were effected and through traftio was reesumed on the south-west line by the 4 th of November, within ten days of the disaster; and on the north-
west line through communication was fully established on the 19th oo January last; but it had been previously restored in part, sub. ject to transhipment of light goods and passengers and ferrying
ncross three of the rivers, on the 17 th of November, after an interruption of twenty-three days. The acting chief engineer, in a
letter dated the 5 th of March, remarked that " designs for the reconstruction of the damaged portions of the bridges had received
the sanction of the Government." They were being executed with the greatest possible energy. The works at the Cheyair, Paupugthe greatest possible energy. The works at the Cheyair, Paupug-
nee, and Chitravatty bridges were soor orward that the engineer
believed they would be ready for traffic by the 15th of April. If no heavy yreshes came down before the end of May he expected that the bridge over tho Pennnir river would be restored by that
time. Precautions would be taken to prevent, if possible, the recurrence of such disasters in future
As experimental trial trip from London to Cambridge and back has been made on the Great Northern Railway in order to
test the performance of one of Mann's boudoir sleeping cars, described by the proprietors as a new design of a carriage of luxury
for the public. We have already mentioned the fact of these cars being used on the Parive Viennana Iine. The car, which fully justifies
by the perfection of its fittings, the term a carriage of uxury, is 3 oft. long, and differs from the Pullman sleeping cars in two chiof
characteristics-first, that instead of having one large room, it is divided into four small compartmens line of railway. Two of the
its beds are placed transversely to the lind corpartments make up four beds each, and the remaining two
make up two beds each; and they aro perfectly enclosed and
secluded secluded on all sides. During the day-time the same compart
ments will afford seats for cighteen passengers. The cars are fitted ments will afford seats for eighteen passengers, The cars are fitted
up with lavatorics for ladies and gentlemen, and an attendant
travels with ench travels with each, and can be summoned by a bell from each bed.
In the beauty and finish of its appointments the car is quite equal to those of the Pullman Company, and it possesses one special con-
venience which is worthy of note. This s a set of small steps in cach compartment, so arranged that they form the support of a
tabbe which can bo unshipped and laid aside, and then they assist passengers to mount into the upper sleeping berths.
When they were first introduced, although the comotro of
their sleeping berths was much apprecianted, we heard complaints of the oscillation due to a righid apprecelinted, we we heare for so long a carrainge. In the car tried lately this oscillation was overome by giving
some lateral play to the whecls, and the travelling was admirable
in its steadiness. The journey of 59 miles to Cambridge was made in 1 hour 27 minutes and the maximum speed attained was at the rate of 60 miles an hour. The car is not of the newest pattern,
and its weight- 14 tons-exceeds by tons that of some which aro now running on the Continent, and which afford equal accommo-
dation for the same number of passengers. lighted with thene new railway lamps of the Silber Light Company, which will afford to the occupants light enough for reading or pur-
suing other ocoupations, and which can be screened when the time comes for retiring to rest. In thus following the good examplo set
by the Midland, the Great Northern Company deserves the thanks
of all who make long journeys by it it and an mon Kinto gencral use on the line, it will be possible to go to bed between

NOTES AND MEMORANDA.

Accondive to the 4 merican Chemist, effervescent baths are now recommended by some French physicinns. A certain amount of
ncid carbonnte of sodium is divsolved in the water, and sufficient hydrochlorio acid nearly to neutraliso the sodium salt is added. Accondrise to the Zeitschrify des Vercins Deutere that for having passed through a wet gas meter, twenty-three litres of
aqueous vapour, or 23 per cent. by volume of the aqueous sapour, taken up by the passage of the gas through the
water. water.
SwzDish newspapers report the discovery of a large deposit of
hematite iron ore in the district of Nordland, Norway, some 15 or 20 miles rrom ore in and and onstrict of out 10 or or 12 miles from m Norwe-
gian port which is oompletely free from ice ore shows that it contains between from ine. The analysis of the
ond 67 per cent. of iron and only a very small percentage of phosphates.
THE Bassind then
THE Bassiret states that new silver and iron mines have been
discovered in the neighbourhood of Batoum, on the Asiatic coast of the Black Sea, but that sufficient is not yet known of them to enabe an opinion to bo formed of their value. The same paper
adds that working of the copper mines of Kure , ear Casta-
mouni, which has been abandoned by the Government, is about to mouni, which has been abandoned by the Government, is about to
be resumed Tre hydrographic office at Paris has begun a process of engraving
on copper which promises by its rapidity and the moderation of its on copper which promises by its rapidity and the moderation of its
price to be very widely useful. It consists in substance, first, in covering a plate of copper with a thin shell of adhering siliver, upon
which is spread a thin layer of coloured varnish; second vid
 precisely as one engraves with a diamond upon stone; third, in
corroding the traced parts by means of the perchloride of iron.
"ONs or twoof our exchanges" says the A merican Manufac-
rer," seem half inclined to doubt the correctness of our statement that iron had been recently rolled in this cotyness of our statethin that it would require 1 ,oron of theets proprietors of the mill, men
thickness. We have the wor ond
who stand high among their fellow-manufacturers and the com who stand high among their fellow-manufacturers and the com-
munity generally. We ehvealso seen a sheet of it ourself. It is
so light that an ordinary expiration of the breath will blow it away, and seems to be about as thin and soft as gold leaf. W A papRR on the gmelting of iron ore with lignite, by R. Von
Reichenbach, will be found in the Berg-und Hucttenmanische Zeitung, No. 24, 1874. The author, after reviewing the projects of
Gerstoff, Wagner, Mietsch, Khern, Siemens, and others, for solving thix problem, goes on to propose the following plan:
(1) For the older lignites, a blast furnaco of moderate heinht with a very hot blast, to provent a sintering of the coal. (2) With the
more recent lignites, to dry them on as to expel all hyroscois more recent lignites, to dry them so as to expel all hygroscopic
and chemically-combined water, and to use these also in low furnaces. (3) To carry on further experiments as to the coking of
the lignites. (4) Where there are large quantities of fin use this in ono shaft tore the reduction of the ore, which is then to
be smelted in another shaft with the coarser coal (5) preceding methods are not successful, to try a partial or tot
treatment treatment of the ores with gas produced from the lignites in Propessor Gladstone, F.R.S., concluded his lectures on
Chemical Force at the Royal Institution, by describing experiments, which haver recently been made by himeself and Mr.
Tribe by means of what is called copper zinc couple. When thin sheets of zine are immersed in a solution of cupric sulphate, copper
is deposited upon it in a minute state of division and metals touch at myriads of points. When this couple is immerse in a binary liquid, the liquid at each point of junction is exposed to
the full chemical or electro-motive force of the metals. It was shown that this obviates the great difficulty there often is in de
composing a liquid on account of the "resistance" which it offers, amporsing a liquid on ancount of the resistance which it offers,
nnd the lecturer exhibited the breaking up in this way of pure
water, in water, iodide of ethyl, ehloroform, and many ot her substances, whi
the production of pure hydrogen, zinc ethyl, hydrides, \&., and
several bodies previously unkown, some of which are spont several bodies pheviously unknown, some of which are spontane-
ously inflammble in the air; ;in fact, one substance which had
never been made befo never been made before was srepared expressly for the lecture, and
was named zinc ethylochloride. The copper zzino couple has been practically applied to the production of certain organic c
and to the determination of nitrates in potable waters.
A VERY curious fact with regard to what may be termed nitro gycernio compounds proper, such as dynamite, lithofracteur, and
others in which the nitroglycerine is not used combined witt another explosive, was brought out by Mr. Nobel, in the paper
recently read by him before the Society of Arts. The power of the in proportion to the per pure nitroglycerine at 100 , he showed that dynamite No. 1, whiel contains 75 per cent. of nitroglycerine, , possessed 74 per cent. of the
power, whilst lithofracteru, with 55 per cent. of nitroglycerine
possessed 53 per cent. of the power of pure nitro possessed 53 per cent. of the power of pure nitroglycerine. The
presence, therefore of the charcoal, sulphur, and barium nitrate,
in addition to the in addition to the kieselguhr in the lithofracteur, adds nothing to
its strength. Compressed gun-cotton is of the same power as dynamite No. 1, the patent cotton gunpowder (which contains no
nitrog n yecrine) is but 12 per cent. weaker. Equal proportions nitrog Iycerine) is but 12 per cent. Weaker. Equal proportions of
nitroglycerine and compressed gun-cotton has a power midway netween puire nitrogiycerine and dynamite No. 1 ; and a mixture of
bet
0 parts nitrogly 20 parts nitroglyeerine, $6 \frac{1}{2}$ parts charcoal, and 80 parts ammonium
nitrate occupies the same position. A mixture of 4 parts mealed nitrato occupies the same nosition. An mat one-half the power pure nitroglycerine: which, in its turn, has 43 times the power of
Curtis and Harve's extra strong blasting-powder exploded with detonator
The report of Mr. T. Vanstavern, executive engineer, D.P.W.,
upon the exploration of Col. Applegath's supposed conl-field in the Kistna district, leaves little doubt, says the Mivining Journal, that there is an entire absence of conl over the whole area which was
believed to contain that mineral. The bore-holes have all been put down until the metamorphic rocks were reached, and no coal nor any combustible substance was met within any, of them. In
addition to this Mr. Vanstavern closely examined the ground over an area of 58 sguare miles, and searched carefully for foosils without success, He remarks that no "coal-bearing rocks nor outcrop
of coal or any combustible matter was met with," and expresses
his opinion that "by the nature of rocks there certainly cannot be his opion that iy he nature or rocks there certainly cannot be
any coal," and in this viow all geologists will probably agre with
him. Col. G. W. Walker, R.E., secretary to Government, ex. presses his regret that he has to concur with Mr. Vanstavern
views, but the oxplorations have been so complete that he feel sure that inc oonplorations have ceen so completo the all in the place some signs of tit teel
hast been discovered. The borings have been made as close possible to the pits dug by Col. Applegath, and in every instance
have been sunk below the bottom of the pits ; in addition to this
Mr. Vanstavern at Col. Walkerisequest Mr. V Vanstavern, at Col. Walker s request, cleared out the horizontal
shaft in which it was understood Co.. Applegath found something with except shale. It appears that Colonn1' Applogath was misted
by a bxek en be supposed to have been taken from the immediate neighbourhoo
of col of coal. It seems that this view was at first entertained by Col.
Walker and Mr. Vanstavern, but systematic exploration has ontirely dispelled the ill Aplegath may congratulate himsolf that
the Kistna district. Col. Appor the entirg subject has been thoroughly investigated and settled,
and that although it has been proved that no coal exists, the similarity of the shales met with to thoso found near coal relieves
him from any roproach for having anticipated the existence of conl.

MISCELLANEA.

SLats shelving has been adopted in the library of the Greenwich Oservatory or bound manuscripts.
The new Sassoon wet dock at Bombay was successfully opened on Tuesday, the steamer Caridoc being the first vessel to enter it.
At the dijeaner which followed Mr. Donald Graham proposed a E.

ElEcrnic science occupies a place of no mean importance in the new opera house in Panis, A secial room is set apart as a battery
room, in which 360 Bunsen's cells, arranged in sets of 00 on rough phate gass tables, are manipulated to pass a current to any part of
the stane, so as to direct the electric light upon any point of tho The new cable about to be laid between Australia and New
Zealand, in connection with the Eastern Extension Telegraph Company's system, will receive specinl guarantees as to rates from
the New Zealland Government. The contract for the now cable will be undertaken by the Telegraph Construction and MaintenThe New British Iron Company distributed, on Tuesday night,
to miners who some time ago displayed not a little brivery in restoring the workings of the Wymnstay pit, belonging to the com-
pany, which had taken fire and was for a time closed up, gifts of pany, whinh hind taken fire and was for a time closed up, gifts of
money and silver medals; and to each of the various colliery ars a piece of plate was presented.
AN American establishment, the Portsmouth Foundry and works which will weigh 40 tons and will clip 1 jin. plate, the knives
clearig 10 It clearing 10 ft , every revolution. Mr. A. M. Boal, an old Pitts-
burgher, is superintendent of the works. The foundry is said to be burgher, is superintendent of the works
the finest building of the kind in the State
Those who feel anxious regarding the safety from firo of the
Greenwich Observatory, will be reassured by the Astronomer Royal, from which it appears that there are on the observatory grounds three fire-plugs, always charged with water at
a pressure of about 100 ft , and that the observatory is provided with 220 ft of large efie-hose. The assistants are periodically
The Agricultural Society of France has organised a competitive trinl of reaping machines, to take place at Versailles, in July. Tho
prizes offered for those of French manufacture are, first, 500f. and a gold medal ; seoond, 200f. and a silver medal; , and various honourable mentions; , and next, for those of foreign countries
similar rewards , hastl, , ofoof. offerd by the council-geneal of the
Oise for a trial between the two principal winning machines, French Oise for a trín
and foreign.
a correspondent of a German paper, writing from Yokohama, and shiploads are received from America. Japan, however, possesses naphthan springs in her own territory, and some time mation relating to the process of provucution and d peparation. His
son is still in the States purchasing the necessry on is still in the States purchasing, the necessary machines and
perfecting his studies of the subject." AT Liverpool the George's Landing-stage has had another narrow escape from destruction by fre. The stage is now in the graving-
dock at the Canda Works, Birkenhead, and on Mondyy afternoon
there was a fire on these there was a fire on these premises. The fire broke out in tho
mortarmill yard, and a quantity of timber beame ignited; but the flames were soon extinguished by a hose from a Pacific steamer in which it was moored, otherwise it would most likely have been set on fire.
to ascertain whether the neighbourhood is underlaid by coal-mea sures, previous attempts of the kind having been abandoned
through fear of too the experiments. The site of the present operations is near Mill has long been regarded by the public, and mof the town. The spo tific men, as one likely to yield coal. It is intended to sink a
 this way some eighteen yards have already been sun
gentlemen are uniting their capital in the undertaking.
THE work of repair to the Brazilian ironclad turret ship Independencia, now ying in the Royal dockyard at Woolwich at the
cost of her builders, ITessrs. Dudgeon and Sons, of Cubitt Town, has, after a rather long delay, been resumed. She has been
thoroughly examined by the Admiralty surveyors, and it is under-
stood the the ship is to be cut awny amidships, where the damage lies, an that portion rebuilt, by which course it is expected that the ship will be set up as strong as she was before her unfortunate mishap
on the launching way. A months. Nost of the 9in, armour plates around her side e tave bee removed in order to facilitate the work; but the keel of the vessel,
which is uninjured, will not be touched.

ThE City solicitor, Mr. T. J. Nelson, announced on Monday
evening to the Hampton Wick Local Board, over which he presided, that a letter had been reference to the subject of a combination of sanitary authorities in the Thames Valley for the purpose of carrying out a joint scheme during the last week in June, and asking that two or three mem bers of the board might be named as delegates. Messrs. Frere and Co., of Lincoln s-inn-fields, had also written, stating that they were
instructed to take proceedings agninst the Local Board of Hampton Wiick for a disregard of the notice to discontinue the flow of sewago
into the river Thames. Mr. Nelson thought this letter from Mesm. and suggested they should be informed that a commission wa
issued by the Government, and that under the circumstances the bonard wators had better abstain from any proceedings which delegates were appointed to attend the conference.
THE Board of Trade returns for the month of May, which during that period, was $1,231,125$ tons, value eoane, exported
against 1,108, , 42 , tons worth $£ 998,153$ in the same month of last year. Of the former total, the e quantitities taken by various coun-
tries are as follows :- Russii, 88,$312 ;$ Sweden and N

 figures show, a falling off to Russia, Spain, Turkey, Egypt, an
British Indin, but a considerable increase to Sweden and Norway Demmark, Germany, France, Italy, and the States, included in the miscollaneous heading. The value of the hardwares and cutlery
exported during the month fell off by 16,000 , there being a dimi nution with Russia, France, Spain and Canaries, the Spanish We the other hand a slight increaso is apparent with Germany, the
United States, Brazil, and the Argentine Republic In iron and ofel the value of the month's exports is $\$ 800,000$ lower than that being cue to the dimimp perioo of last year, not less than Lition of the demand for rails from all parts
of the world, with the sole excentions of Conad whence a slight, but very slight, addititoonal inquairy has set in.
Pig iron has been exported in augmented quantities, as also have bars and anglos, wire, shects and plates, tinplates, and unwrought

LAVATER'S HORIZONTAL DRILLING MACHINE.

WF represent in the above engraving a horizontal radial drilling machine constructed and executed by D. Lavater, of Fluntern, near Zurich. Radial drilling machines are very successfully used for boring holes in large pieces of machinery which it is often
difficult to move. To this effect the radial arm supporting the drill is moyable around a vertical axis, and the drill itself can be radially moved on the movable arm. The height of the movable arm above the foundation plate limits the dimensions of the articles which can be worked under such a machine, and it often becomes necessary to make large excavations in the floor to gain the necessary height for large pieces of machinery. This limitation in space caused horizontal drilling machines to be constructed, as with them a piece of any dimensions can be as easily worked as the smallest articles. These horizontal drilling machines are simply common radial drilling machines, which instead of being put up vertically are placed horizontally against
the wall. The radial swinging arm remained, and in consequence some difficulty is met with in keeping it in position Mr . D. Lavater has therefore constructed a horizontal drilling machine which obviates the above-named difficulties. The entire weight of the machine is materially reduced, whereby the price has been lessened. The machine as represented in the accompanying woodcut consists of a fixed mandril stock with double gear for the drilling motion. A radial arm is movable in the mandril stock through the entire periphery by means of a wormwheel. The drill spindle has a diameter of $2 \frac{1}{2} \mathrm{in}$., and is worked by an automatic gear. The machine can bore holes to a depth of 16 in , and the distance of the drill from the axis can be altered
from 6 in . up to 3 ft . While the weight of the horizontal drilling from bines up constructed until now was 120 cwt to 130 cwt Lavater's machine only weighs 63 cwt . The construction of the machine is very substantial, and all the disturbing oscillations of the drill have been hereby avoided.

LETTERS TO THE EDITOR

(We do not hold ourselves responsible for the opinions of our correspondents.)

friction clutches.

Sir, - In looking over last week's Engrneer, my attention was SIR, - In looking over last week's Engineer, my attention was
particularly attracted to the "friction clutch steam hoist" there depicted, and manufactured by the Risdon Ironworks Company, California.
At the first glance it appeared to me the principle there involved might cause me to be again accused of having utilised the ideas of others in the designing, some months past, of a "self-contained
friction reversing clutch," in which I also called into requisition a brake and a series of pinions carried by studs fixed on the face of a wheel or disc, my object being to get a reversing arrangement within as little width as possible and producing no retarding power.
I incl
I inclose a drawing of the clutch as I designed it, and you may possibly think it wou.d prove sufficiently interesting to
of the readers of THE ENOLNEER to WMrrapt its publication.

The driving shaft F revolves in the direction of the arrows, shown
on the sectional plan, and is supported in bearings A on either side of the sectional plan, and is supported in bearings A on either side
of the clutch. The bevel wheels E and W run loose on this shaft and gear with the bevel wheel K keyed to the shaft S. By clamping either the wheel E or the wheel W to the shaft F the desired motion is given to the shaft S. G and V are two gunmetal, O and Y two cast iron carrier dises, these four discs being screwed and keyed fast to the shaft F so as to be immovable
thereon and consequently continually revolve with it. I and U

are two wrought iron clamping or nipping discs, riding on and keyed to the carrier discs G and V so as to permit of an easy sliding motion laterally, but enforced to continually revolve with separately in elevation, and it will be readily perceived that the ${ }^{\text {sepojections }} \mathrm{H}$ on the diso I drop into the recesses X of the disc G , or in other words, the discs I and E and also the discs U and \bar{V}
thread together. P is a gun-metal nut riding on the screwed portion Q of the shaft F and it is also a pinion, seeing it has teeth
O cast round its circumference. D and X are two cast iron friction discs partly faced with copper and riding on the carrier dises C and Y to which they are keyed, so as to allow of an easy lateral movement whilst compelled to revolve with the shaft F . B and B^{2} are two gun-metal nuts riding on the sorewed portions of the carriers C and \mathbf{Y}, and determining the positions
thereon of the friction discs D and \mathbf{X}. Now if by means of the
nut P we foree the nipping disc U against the wheel W , which will, in its turn, be pressed against the friction plate X , we shall grasp the wheel, between the two discs U and X , and, as these discs are
revolving with the shaft, and must carry the wheel with them, the revolving of the wheel is attained; at the same time the nipping disc I is free to move laterally, and consequently the wheel E free to be driven by the wheel K in the contrary direction to the shaft

F．Agnin，by setting the nut \mathbf{P} against tho nipping dise I ，the
wheel E is in like manner brought into play，and the wheel W released；or，by placing the nut P midway between the two
niping discs I and U ，both wheels are released and remain at rest．
． Mpping discs
The prosserere brought into play，for producing the ene necessiry
friction for clutching the wheels，is not thrown on to the bearing friction for clutching the wheels，is not thrown on to the bearings
A as in the ordinary friction cone，but is absorbed in the nut shaft
and carrier diso C or Y ，and，as these are revolving with the shaft， and carrier diso C or \mathbf{Y} ，and，as thess are revolving with the shaft，
there is no retarding power brought into play during the time the
clutch is in action，other than that necessary to overcome the wheel K ． R is a cast iron brake－disc riding on the nut P and nut at the same time as it is compelled to revolve with the brake
dise．Lis one of a series of three steel studs screwed and fixed
dital into the proiecting bosses J cast on the carrier diso G ．Thes
carry steol pinions M g garing into the teeth on the nut P ．
gun－metal brake ring with internal teeth，these teeth gearin sun－metal brake ring with internal teeth，these teeth gearing into
the pinions M ．The brake dise R and brake ring N are braked by friction straps and levers as seen in the sectional eleakedion，
consequently there are two levers，as seen in the sectional plan for consequently there are two levers，as seen in the eectional plan for
Working the coutch，one for throwing it into gear，the other for
throwing it out of gear．As shown in the druwn the nut P is pressing against the nipping diso U，and the wheel W is in gear，
the wheel Erunning loose，and ans obth brake elever rest on their
trackets the brake disc brackets the brake diss R ，and brake ring N are free from their
respective friction straps，the whole clutch apparatus revolving with respective friction straps，the whole elutch apparatus revolving with
the shatf F ．When necessary to throw the wheel W out of gear， the right－hand brake lever the lirted，causing its friction strap to the nut P from revolving with the shaft F ，consequently the
shaft in revolving inside the stationary nut carries the nut to the left，thus releasing the nipping disc U and wheel W．As soon as the
wheelis released the leveris dropped，and the friction strap freed from discs，the whole apparatus revolves freely with the shaft whilist the two wheels remain stationary．To throw the wheel E E into gear the same process is gone through，the nut being carried still
more to the left until its pressure against the nipping dise I causes the whole revolves freely，carrying the wheel \mathbf{E} with it．Now order to release the wheel E ，the nut P must bo carried to the
right，and to effect this it must be cansed to revolve quicker than
and in the same direction as the shaft．Therefore to throw the wheel E out of gear，the left－hand brake lever is lifted，thus caus－
 the carrier ring N are stationary，these pinions must revolve in the
direction of the arrow，thus forcing the nut P round in the same direction，but at a quicker speed than the shaft；hence，the nut
is carried to the right，and the theel Ebeing released，the trake
lever is dropped，and the whole revolves frecly lever is dropped，and the whole revolves freely．To throw the
wheel W into gear，the left．hand brake lever is Yifted for running $_{\text {the }}$（he nut still more to the right，and dropped na soon as the neces－ sary pressurce cis attained for running theped whel soound the Thus it is
seen the right－hand lever throws the wheel E into and the seen the right－hand dever throws the wheel E into and the wheel
Wout of gear，whilst the eleft－hand lever throws the wheel W into
and the wheel E and the wheel E out of gear．The brake diso R is provided with
holes T around its proriphery，by which it can be pinched round in
either direction，should it be necessary to move the nut when the shape F is nt rost．The wear of the friction discs D and X is occa－
sionaly forlowed up by the nuts B and B^{B} ，so that the wheels may
be kept properly in gear at their pitch

Horten Cottage，Ripon－road，Shooter＇s－hill，May 28 th．

Berry． fireproof structures
 elements of our arrangeements omitted，and as all matters having
reference to a construction of really fireproof buildings are of such
universal importance，we venture to ask your kind insertion of these also．
We would first speak of the fact that under the mode of
use of our patent which wo recommend，all water expended in arresting a fire is put to double purpose．It not only renders the
floor above unheatable beyond 212 deg．of Fah．，but the evolved steam passes down into the burning chamber and，stiftes the e flame．
Again，in cases where water is procurable in free amount，a single watchman is enabled under the same arrangement to place any
portion－oven the whole floor of a warehouse－under a continuous quenching downpour．We would next point to the importance of
our fireproof galleries．Where situated externally，these carry all flame away from the walls，and render every vertical division of the building equally accessible as the ground floor during a confla－
gration for the pouring of water or removal of gooss．Externally
 speciality，our power，in midst of the hotest fire，of perfect protec－
tion of ald cosing aparatus of openings，whether in walls and
floor，and however working floor，and however working，equally with that of all columns of
support．The circumstance again that under our system no extra
thickness of wall is necessry thickness of wrulls is neceesary beyond that of of ordinarar unppro－
tected builings of simiar height and loading，we hold to be
of material eons of material economic advantage．Again，we would point further to
our arrangement of resting our systems upon continuous corbels in our arrangement or resting oor systems upon continuous corbels in
lieu of any insertions into walls，as a matter of great import where
alterations of temperature stance that the subdivivional character of our floors form separately
ald stance taat tured tanks and box girders，enarbles us to construct
manufact
thoroughly watertight systems，and renders the alteration of any thoroughly water－tight systens，and renders the alteration of any
portion easy without disturbance of the rest，will also be seen to be
n matter of practical importance．We may remark again that a matter of practicice importannec．We may remark again that systens，and floors ceiled and decorated as completely as in any
ordinarily built house．Even the power of utilising our systems for ventilation，or warming，or drying goods，will also often prove
usueful．We may add that the composition with which we propose
to felt，both preserves the elasticity of the latter，is unacted upon by ncid or alkaline waters，and unalterabe by time．We would lastly
state that but slight calculation will show to practical men the
economy of our patents in respect of strength，space，and light． economy of our patents in respect of strength，space，and light
Messs space for pance．
nester
2，St．John－square，Clerkenwell．

[^0]＂groaning＂again．I then had a guide length fitted on the piston－
rod working through a brass bushed casting fixed to the wall noise has，berieve，not been heard since；but there always has variation in the water pressure，viz， 201 lb ．to 70 lb ．per square
inch，when the full organ is used and the engine put on its mettle，it runs rathor fant，is very apt to bump，and therefore
requires a very nico adjustment of the valve cock tappets to pre vent the cylinder covers being knocked off，and yet get sufficient
length of stroke．A foreman orcan builder inform lengll ongine he fitted up apemanays bumped when working hard，and they could not prevent it．This，I think，is not the fault
altogether of the engine，but of the organ builder in not providing sufficient feeder power，and thereby requiring the engine to wor
too fast；but independently of these few defects．which too fast，but independently of these few defects，which are all
easily overcome when foreseen， I am strongly in favour of
rotative shank．Cockoo and French feeders are not so suitable for reasons．
stated hereafter．Looking at the matter both from the organist＇ and organ builder＇s point of view，there is a calmness，steadines and uniformity of wind pressure from crank worked feeders which
is not to be obtained with the direct system，particularly in times iike the present，when high pressure wind is so largely used for Tneumatio actions and reed stops．
The difticuly has always been the want of a really simple and
efficient rotative water engine，and when asked for advice upo efficient rotative water engine，and when asked for advice upon
the matter，Ihave always hasitated from this want in recom．
nending anything but nothing but a bad imitation of Joy＇s engine．Within the last nonnt，howver，a three－cyinder steam engine withour waves had
come under my notice，whinh，when ppoportioned for water and
fitted up with due regard to the requirements of organ building，i everything that can be desired；the crank shaft for the feeders can
be fixed on the end of the engine shaft The be fixed on the end of the engine shaft．The engine has only seven
moving parts，including the shaft，is entirely enclosed in its own
case，the pressure on the moving parts is all in one direction case，the pressure on the moving parts is all in one direction and
continuous． immediately over or under their crank shaft，falling by their own
weight and raised by the cranks，there cannot possibly be knocking． beigning，vibration，or noise，A three－cylinder engine gives
uniform motion which either a single or doublecylinder engin cannot be made to give；it cannot stop，stick on centres，or refuse
to start，and continues to work with the most perfect smoothness and regularity，however slow its motion may be．The importance jerk and with such a movement，which can onily be obtained by the crank or cam，cannot be over－estimated．H．A．O．MackevziE，
Dickleburgh Scole，Norfolk，May 10th．
Assoc．Inst．C．E．

Sir，－With reference to the Long ships．
Professor Osborne Reynolds＇paper thereon，I trust I shall not be considered presumptuous in stiting in support of his
views，that some years ago while passing through the Suez Canal as a passenger in a long ship，upon several occasions when speed
was slackened to turn a corner，or for any other cause，she ran aground，notwithstanding all the efforts of the helmsman．The pilot stated that all long ships did so at times．I at that cimal
pointed out to those on board that a ship passing throug a a canal drew a great rush of water after her，and that，if suddenly eased，
that water would rush past her from the rear，and so act upon her rudder，that port would have to be given for starboard，and
starboard for port to make the ship steer，until such time as the water censed to pass her from the rear．
Guernsey，June 7th．
Tweedie，Major Royal Artillery．
grease in feed－water．
SIB，－I have been much interested in the feed－water heater
ontroversy which has been going on in your columns lately either for or against the exhaust steam fecd－water heater by any of your correspondents，but，with your permission，will simp
state my experience with the above－named heater I have at
 pipe．The waters is heated by exhausted steam from a horizontal engine，48in．diameter of cylinder．I mays state here that thin
engine uses very litlle tallow．Tho feed－water is drawn principaly
from the magnesian limestone 130 ft．below the surface ；the quan－ from the magnesian limestone i30ft．below the surface，，the quan
tity of lime held in suspension in this water is very great，so much so always a large quantity of coarser panticles of lime lying at the bottom of the heater．The finer particles are found in a spongy
state adhering to the sides，the thickness deposited on the sides averaging nearly an inch each week，which is easily scraped off
with a shovel．The feedpump，which is a doble Comeron donkey，has its valves cleane thice or thrice a．week before com－
mencing to use the heater；the boilers were fed with cold wite each boiler being sludged once in twelve hoors．Yet，with hall this，
there was always a large euantity of limy deposit left in th there was always a large quantity of limy deposit left in the
boiler when unplugged．The effect of this was the boilers could not be kept from leaking over the fires，the rivet holes were con－
tinually splitting out to the edges of the plates．Since the heater
 doubt，to the largequantity of lime that is thrown down in the heater．
There is less hard incrustation on the boiler plate，and less loose deposit，and a saving of fuel to the extent of twenty－five per cent．
I must say that I fail to see how such combination of carbonate of lime sayd tallow can be found，as some of your correspondents profess to find，in boilers．I have never seen anything of the kind Cornish boilers．Nevertheless，such may be the case，and I for one would be very glad to know how and why．I would suggest that
some of your correspondents who have found those spongy combi－ some of your correspondents
nations in their boilers should have them examined by a practical
chemal tant discovery．
Bishop Middeham Colliery，June 8th．
SRB，－In your issue of June 4 ＂Boiler Minder，＂in his reply to
my letter published May 21 ，says he has no my leiter published May 21 ，says he has no pecuniary interest in a
heater．For one whose only interest is to disseminate knowlege， he has most pertinaciously tried to evade facts which have been already so fully demonstrated．In my letter， 1 gave undisguisca
and reliable authority，which he was unable to refute，and hence he has endeavoured to cover his defeat by only referring to the least
important parts of my letter．I am no surprised at his quoting Bents have so little to sustain them the fact that some of his state． ing man he gladly grasps at a straw．＂If I required other evidence
than what Ican prove from my personal connection with the work－ than what I can prove from my personal connection with the work－
ing of steam boilers，I think your readers would agree with me that such testimony as given by Mr．Robert Wilson in your issue of thing yet adduced by＂Boiler Doctor．＂
Ihiave some cause to be interested in the class of henters to
which＂Boiler Minder＂refers，as some years since I patented in weveral countries one which only partially mixed the exhaust steam
with the feed－water，and I know it has no equal in Birkenhead， where 1 am acquainted with the various modes of heating water ample proof that the system is ontirely wrong，ando one I I could not
conscientionsly recommend．I therefore abandoned it without having made a hecommer．Ind．further proore that any system of heat．
ino feed－water that admits feed－water that admits grease into steam boilers is injurious， 1 will mention some facts that havelcome under my own observation，
One was a cose of three drop flue boilers in which the grease and
deposits amalgamated to an extent that compelled them to clean the boilers once in twree weeks，and even use sledges to drive back the man－hole plates，and compress the deposits into space that
would permit of getting them out ；these boilers had surface blow that were used，but this did not keep the bottom blow cocks from being made useless by choking up，in spite of their efforts to keep them open，without great waste of fuel，by constant blowing．In
this case there had not been any trouble in blowing prior to their adopting a patent feed－water heater，which mixed the grease with the deposits．They soon replaced it with a tubular heater that
heats their water to 212 deg．，and is also so constructed that thi temperature is maintained while the blowing is now done from the three months，and this only done to fulfil their system，as no deposits are found of any note，and their coal bill is considerably
reduced．When recently in Newceastle－on－Tyne，I visited a well known works where I saw a heater that mixed the exhaust stean and feed water which had been disconnected and replaced by a
tubular heater of modern construction．While I can name many such cases，＂Boiler Minder＂cannot cite one where a heater this construction has been changed for one that mixes the exhaust
steam with the feed－water．In reference to his remarks about the increasing sales being a proof of merit，I question whether he cai produce as aist of sales within the past two years to wuull one．fourth
the sales of a certain tubular heater which has among its purchaser the nes of a certain tubular heater which has among its purchaser the names of some of tho best engineers in the country．＂Boiler
Minder＂says I have＂betrayed a weak point by admitting that
burning can be avoided by regularly cleaning the boilers＂ ＂here is a remedy of＇Amateur＇s own showing．I cannot under stand why feeding with water heated by mixing the exhaust steam
should meet with so much objection．＂ Perhaps if I substitute the word frequently instead of regularly the objections may be more
readily perceived．It has already been proved that new boilers bave readily perceivec．It has already been proved that newouns bave
been burned in two months，and as examining and cleansing boiler necessitates a stoppage of the works，this in most establishment many＂dione except at a great disadvantage and loss．I know year，hence it follows that the＂remedy＂would be a very ex pensive one，and consequently steam users naturally prefer a
system of water heating which prevents the dangers of burning and does away with the loss and inconvenience arising from
frequent and unnecessary boiler cleaning．With reference to his remarks about grease forming into＂balls and honeycomb＂pieces
I may add that this formation depends altogether on the thay add that this formation dipends ratogether on the quality of
the feed－water and the quantity of grease with which it becomes impregnated．In some boilers whose construction allows good cir－ cuation such balls are formed，but this requires time，and so long as
now supply of grease is being constantly admitted into the boiler， it will in any event cause a waste of fuel to generate steam from such water．When bad water is used，I know it hascaused results a
already explained in my reply to＂Boiler Doctor＂in your last iss arready explained in my reply to boiler Doctor in your last issue，
I have had to cut a piece out of the crown plate of a locomotive Yype of boirer owned by one of my friends；it was burned by
tyxing grease with the feed－water．During a late visit in York－ shire，the principal of a firm of well－known locomotive buildera
informed me that he had heard of some portable engines that ent，and two of the boilers wer have seen a number of pieces cut from the crown plates of variou classes of stationary boilers，and although 1 amp partiat to any theory
that can be proved a true one I havenot taken up＂Boiler 1 Inder statements altogether on＂theory＂or unadvisedly ；I therefor he stated that he got＂pure water＂from his soo－ealled＂properly constructed hatater＂＂upon inquiry we learn that the words were means something less than pure Again，he says that＂water
 that＂whatever quantity of grease remains in the heater with
other deposit other deposit，must inevitably leave the water more pure befor entering the boilers，＂thus acknowledging the correctness of my
statements，for if it is better for the boilers when only a small portion of the grease is prevented from entering them，is it not a
sufficient proof that the system of heating feed－water by exhaust steam，which entirely avoius grease，is the best and safest one
adoptl
Helensburgh，N．B．，June 8tl

the brindley memoria

SIR，－Last January I requested you kindly to insert a letter from
me about the Brindley memorinl，which you kindly did．May I ask you to again say a few words upon this subject？On the 18th inst．We are going to loy the foundation stone of this Brindley
memorial，which is a fountain in the midst of the village．Th freemasons of Buxton are going to lay the stone．We have still and require at least $£ 80$ more to put a proper and becoming stone
fence round it，and to place trees and shrubs to surroundings．May I venture to hope your powerful aid will enisted to help this most truly acceptable．My great anxiety is to make the memori，
such that the Civil Engineers will，when they visit Buxton， pleased with the work．
Wormhill Vicarage，Buxton，Derbyshire．

Sis，－In reference to the assertions published in the correspond
ence columns of your valuable journal of the 2 lst of May last，will you kindy allow us to place tings in their proper light，so thit your readers may be guarded against forming erroneous mprea
siong about the relative merits of the Ferroux and the McKea解列，working at the St．Gothard tunnel Informatio reaching us from a reliable source makes us aware that it is not
the intention of the contractor for the caryin Mesprentions at the St．Gothard works to pledge himself to u Messrs．McKean＇s machines exclasively．＇Moreover，in the com
parative trials whero Messrs．Mckean＇s machine should have signally triumphed，it must be stated that，although it was well able to reciprocate under a pressure below one and a half atmo spheres，yet it could not，with this low pressure，either effectivel
strike the tool to its wrrk the advantage over the Ferroux machine competing with it in order，while the Ferroux was one of the first，and hastily made machines of its kind，and had been，morevever，at least a year in information upon the relative merits of each system of borer em ployed at the St．Gothard tunnel without prejudice，he can sear of the working at the St．Gothard tunnel，and read at page nine the following statements ：－＂Besides the machines employed at the borings of the headings gallery，a few only were employed for the exaavation．On the nortrs side of the tunnel，six Dubise－On the
machines worked together in the emuette of the strope．On the south side either Sommellier＇s or McKean＇s machines were em－ ployed，as well for the enlarging as for the deepening of the thanne＇
ground．From the tth of December on（sic），Messrs．McKean＇ machines，mounted on a frame，were working at the lengthening
of the emuette of the strope．Though the use of mechnical borers of the emuette of the strope．Though the use of mechanical boren
for the widening of the tunnels section was mostly a single trial yet it permitted a comparative trial to be made of the respective yesultto obtained by the different systems employed．The time
resed by each machine for bering a hole one metre in depth may used by each machine for boring a hole one metre in
also comprised all the delays occasioned by the change of the boring
tools，$\$ c$ ，
heading works of Goeschenen，it was proved by observations made
on a length of 6352 metres of holes bored，that a Ferroux
machine, used for making a hole of one metre in depth, occupied
in doing so one hour anil nine minutes. It has ulso been observed in the emuette of the strope at Goeschicnen, that on 4222 metrei of hooes, a Duboia Frrancoip smechine took a time of one hour thirity-
ne minutes to bore a hole one metre in depth. At Airolo, obser one minutes to bore a hole one metre in depth. At Airolo, obser-
vations made in the heading gallery on a length of 2617 metres hoores pierecd, gave a mean result tor the samo machines of one
hour twenty four minutes for one metre of hole sunk. For the widening of the heading gallery at Airolo, Sommellier's machines have been used, but from some unfavourable circumstances the
work performed by these machines was minimum ; the mean time oceupiped by any of these machines was two hours twenty four a length of 623 metres of holes bored. Wo must still mention the McKean's machines, which have been employed in the emuette of the strope at Airelo, only yince the midemploof December, and, aftee
observations made on a length of 205 metres of holes bored, used a observations made on a length of 205 metres of holes bored, used
mean time of two hours and one minute per metre of hole pierced, hese data prove sufficiently that Sommellier's and McKean erroux or Dubois. Frangois. The Ferroux machine is the besi of all rock drills tried till now on tenacious rook. For less har specially where a great quantity of compressed aise cannot be dia oset of. Moreover, the question of the expenses occasioned by It was noknowledged during this trial (semestre) that the cost of repairing amounted in Goeschenon to 243 , francs per running
metere of bored holes for Ferroux machines and to 4.27 francs
for Dubois. proportion of four to seven. The Ferroux machine is then also preferablo
pairing.
Vevey,
$\underset{\substack{\text { maing } \\ \text { Vevey, June } \\ \text { 2nd. }}}{ }$

Tuse Welis.-With reference to our report of the Bath and West of England Show in our last number, we are requested by
Mr. George Hawksley, of Crutched Friars, to state that his ha also

Sociert or Evgrsergs. - At a meeting of the Society of En-
gineers held on Monday evening in the Society's Hall, West ninster-chambers, Victoria-stree. "Coe president, Mr. J. H ddams, in the chair, a paper on "Continuous Brakes" was read
by Mr. St. John , V . Day, C.E. The author, in the first thace,
pointed out eighteen conditions essential to a perfect brake, and pointed out eighteen conditions essential to a perfect brake, and
then proceeded to conside the several sysems of brakes which
had been practically tested. Clark's chain brake, and his more had been practically tested. Clark's chain brake, and his more
recent hydraulico brake operated by the edmission of steam below piston in an cylinder, forcing up the piston and thereby communi
cating pressure to the several brake cylinders throughout the tring, were noticec, together with the most recent results obtained
with Clark's chain brake. The Heberlecin brake was then described with the results obtained in trinls with it in Bavaria,
after which continuous brakes operated both by vacuum as well as a plenum of compressed air were dealt with, the former on the
ystem of Du Trembley and Martin, as well as the Smith, West inghouse, and Sanders vacuum brakes, the latter according to the
reaction systems of Westinghouse and that of Messrs. Steel and McInnes, us runuing on the Caledonian Rai way betcen Clasgo
and Etinburgh. The author stated the results of experiment witit the different brakes mentioned, from which he concludeden that neither the chain nor vacuum brakes were capable of fulfilling the
conditions essential to a perfect brake, that excepting the Sanders vacuum brake, the other brakes operated by a vacuum could act
ns trainstoppers merely, unless the recent proposal to apply an
han exhauster in the guard's yan was found stop both parts of a rrain in the event of a portion breaking away.
The gencril conclusion at which the autlior arrived was that.
 experimentach results at present at disposal, it was impossible to
estimate the relative efficiency of the several brakes which had been tried. It was to be topped that the deficiency of our know-
thed in that respect would soon be removed by the enper
ledge ledge in that respect would soon be removed by the experiments
now being conducted by the Accilents Commission. The paper

GREAT EASTERN RAILWAY COMPANY'S NEW STATION AT LIVERPOOL STREET.
Tus rapid development of the railway system, in immediate connection with the metropolis, has caused many alterationk to o made in various termini; in some cases, has compelled a complete rebuilding, and in the room of small, inconvenient, and commodation almost palatial in their character.
The terminus of the Great Eastern Railway Company a Liverpoolstreet, if not partaking altogether of the palatial, will be unmistakeably a great improvement upon many of the London
termini, and will be one of the largest ; the area comprised ermini, and will be one of the largest ; the area comprised
vithin the retaining walls-this being a low-level station-is ore than ten acres in extent, and is some 2000ft. in its entire ength. The general character of the design is Gothic, broadly eated in the several elevations,
New Broad-street with Livere well seen from the junction ronches leading from Liverpool-street to the booking-offices. Being as we have said, a low-level station, the approach to the main line booking-office is on a descending gradient of 1 in 25 . At the same time, great care has been taken to secure speedy
thention to passengers and their luggage arriving in carriages large level space on the level of the platforms has been pre derved in front of the booking-offices for carringes, and it is so arranged that, as soon as they are freed of their occupants, they
go out by an independent road from the station into Liverpool. treet, thus avoiding all confusion.
The west elevation is about 320 ft. in length, and has an agree contral feature, rising to a height of 90 ft , the remainder of the devation being 67 tt. in height, with the exception of the block at the south end faeing Liverpool-street, which is uniform in
height with the centre. The windows of the second floor are he most striking in the extent and character of their treatment They are lofty pointed two-light whdows, united under one ch, with plate tracery in the head.
There is also a wing at the northern extremity of the west point, rumning westwards, which is about $146 \mathrm{ft}$. long and 67 ft .
igh,, with an ornamental clock-tower adjoining the suburban ighl-level booking-office tower, which is utilised by being made vailable to support a reservoir in case of fire ; fire mains are laid rom the reservoir, so that any part of the vast building could be deluged with water in a few minutes.
The materials used are stock bricks with Bath stone in
cornices, arches, and dressings generally. The main line booking office, as becomes its use, is one of the finest apartments within he station buildings, being 90ft. long, 50ft. wide, and 49ft. high the ceiling being on a level with those of the second floor. At
the level of the second floor a gallery is carried round the arious offices. The ceiling is panelled into deep coffers, and finished with white and gray plaster. On either side of thin
booking-office there are respectively first and second-class waiting rooms, with ladies' waiting rooms attached, adjoining
which is the refreshment-room, $40 f t$. by 28 fft , and 29 ft . in height, which is the refreshment-room, 40 tt , by 28 ft ,, and 29 itt. in height.
Attached to which, and reached from the exchange galleries running across the station on the suburban In In various pertion
are harge general and ladies' dining rooms. of the suing are lifts worked by hydraulic powe
The business of the company will be transacted in the office (hell, along a corridor 10ft. wide, leading to the principal stair case 20 ft square, from which access is obtained to all the offices
by corridors fft wide. The offices for the principal officers of the company are on the second floor, and comprise chairman's, deputy-chairman's, general manager's, secretary's, superinten
ent's, engineer's, together with the board, comsitter lents, engineers, The board room is situate in the south wing, nd ceiling. There are no less than 150 rooms throughout th building.
The aren occupied by the various lines of platform is covered in by a roof in four spans, the two central ones being 109ft. each,
and the side spans 46 ft and 44 tit . The whole width covered in is 314 ft .
The roof trusses are principally comprised of wrought iron veasing. The columns are double in the centre, and have aly leasing. Thwn as down for the conveyance of water from the roof to act as downpipes for the conveyance of water from the roof,
The covering is chiefly glass, with a small proportion of boarding and slates. The length of the roof over the main line on the oast side is 730 ft , and that over the local platforms 450 ft . long
and 76 ft above platform level. The platforms are arranged so that the advantages of the end-on system as at Charing Cross,
is well as those of the " sidelong" as at King's Cross is well as those of the "sidelong" as at King's Cross, are
retained. The main line phatforms are 1000ft. long and 32tt. in width, while the local platiorms are 550f. in length, and vary in platform, connected with each by a subway and hydraulic lift. The arrangements for traversing carriages across and along the main line, and the whole of the turntables, eleven in number, are worked by hydraulic power. by a junution with the railways, besides subways from the plat.
forms under Liverpool-street for passengers. The whole of the ignalling and multifarious working of the points is connected at Primrose-street, into one box, which contains more than 100
evers for the purpose of interlocking and other arrangements. Wilson, C.E.. the company's engineer, and executed by the well known firm of Messrs. Lucas Brothers

PERKINS' BOILERS.

WE stated recently that one of Mr. Perkins' high-pressur ships. The following is n copy of the report of the Committee on
Boilers appointed by the Admiralty, dated the 19th day of Septem eer, 1874 , on the propriety of constructing egnes and boilers on
Mr. Perkins' phan for marine purposes, which has resulted in the rder above referred to being given. The
tate Admiralty, that they have carefully and funly considered the pro priety, or otherwise, of constructing engines and boilers on Mr.
Perkins' plan for marine purposes. From the official papers which have been placed before the committee, it is found tenders for engines on Perkins' system for vessels of the Daring and Mosquito classes of 720 and 360 indicated horse-power,
respectively. In May, 1873, tenders were forwarded accordingly, respectively. In May, 1873 , tenders were forwarded accordingly,
and after a careful examination of the dexigns nas submitted by the Yorkshire Engine Company, the engineer.in-chief of the navy con were much greater first cost, greater weight, greater complexity o
engines, greater cost of maintenance, and the necessity of having
pure water in boilers. The matter then remained in abeyance for
some months, but in May last attention was ngain called to this some months, but in May last attention was again called to thí
subjeot, and it appeared from the Yorkshire Engine Company letter, that they had in their former tender for engines misunder stood the power to be given; and consequently had prepared and orwarded a design for engines of a greater maximum power tha revised tender and drawings for engines of 720 indichated power for a vessel of the Fantome class, in which the space became necessary to obtain engines of the power referred to, they
hould be invited to tender for them. Thus the matter stood unti July be invica to tender for them. hus the matter stood until July last, when a letter from Mr. Bailey, containing printed when convenient the matter should be fully considere in alists bearings, and that as much evidence as possible, for and Welve of their letter of the 7th August last as follows:he plan of engines and boilers on the system proposed by Mr. board the Kmily, a small yacht, while under weigh; and the Filga, a tug, as well as the engines which are now at work in his
factory. The committee have examined Mr. Perkins, and have pplied to him for more specific information relating thereto ; and on receiving Mr. Per
Since that date the committee, with a view to a more searching
nvestigation of the condition of the boiler and cylinders of the land engine at Mr. Perkins' works, induced him to open out the oiler, and cut open three of the tubes from different levels ; and as done in the presence of the committee, and a strict eramination was made of all the working surfaces and the state of the in this boiler had been in use, it was alleged, nearly thirteen ; and they were found to be in a remarkable state of preser ation; and the piston, packing, and valve rings of the engine, and sixteen parts of copper, and which were stated to have been place, and at work without lubrication eighteen months since ast examined, were found to be in a similar condition. Bearing se of soft frech water, or rainfwater, over and over again, the waste being supplied by water obtained from a double distilling apparauas, the committee have directed their attention to some other
engines using fresh water, with a view to obtaining as much information as possible on the point referred to. They have accordingly號 is used observing that it is the general practice to have fresh water in land boilers, viz, :-(1) A land gine at Messrs. Gwynne s works, Essex-street, Strand ; (2) a ogs, Blackwall; (3) a land engine . Nosst and Co., Isle of Lambeth; (4) the fire engine boilers at Messrs. Merryweather' and at Messrs. Shand, Mason, and Co.'s; (5) the boilers used for
producing steam for warming the Houses of Parliament ; (6) and lso cases in which attempts have been made to use fresh water at sea in marine boilers. The committee visited these different and obtained on the spot as much information as possible.
Although it does not appear that'any of the systems at present in ase are worked exactly on the same principle as Mr. Perkins adopts, yet the committee are of opinion that there is an advantage in
asing soft fresh water in boilers generally; and the favourable opinion which they have formed with regard to the Perkins kystem has thus been so far confirmed. The committee, then, are of opinion that evidence sufficiently satisfactory has been obtained
of the working of Perkins' system to enable them to propose to heir herefore recommend, with the view to thoroughly testing the system in a practical manner, the under-mentioned engines, ne of her Majesty's dockyards ; (2) a pair of marine 'engines and vessels, such as one of the oing man-of-war, as proposed by Mr. Wright, engineer-in-chie he navy ; (4) also that some vessel at present fitted with com hould be fitted with a surface condenser on Perkins' principle, in order to test its applicability to that description of boiler. In all these trials the system, as pursued by Mr. Perkins in his land engine, which the commitue have examned, should be most closely adhered to; and his metal applied wherever requisite to avoid the when that metal is used. In consideration of the circumstances in which Mr. Perkins is placed with regard to the Yorkshire Engine company have hitherto supplied marine engines or boilers for her Majesty's service or the merchant service; and looking to the eneral circumstances attending the application of a new invention
to engines of a larger size, and of different construction to those which have hitherto been tried under Perkins' system, the committee would suggest the propriety of constructing these engines and boilers in one of her Majestys dockyards under the superin endence of Mr. Perkins, if their lordships should under the would heir lordships arriving at this decision, the committe would suggest that the drawings for the engines, boilers, and conAdmiralty for approval; and that for this purpose Mr. Perkin might have the assistance of a draughtsman, but he should take truction in the ordinary manner as an engineer. It is the intention of the committee to keep the question of the use of soft fresh
water in view ; and they expect to obtain still further evidence water in view; and they expect obtain still further evidence during their visits to the different seaports and manufacturing
towns of the country; yet they have considered it advisable that they should at this time state their views upon this question, so ar as they are enabled to do so; reserving their detailed and more for marine boilers generally, until their final

THE UTILISATION OF PEAT

In our impression for May 28, we concluded our report of the cry able and elaborate report on the utilisation of peat, prepare
y Ir. F.A. Paget,C.E., for the British Commissioners' " Reports on the Vienna Exhibition." To this paper Mr. Paget has appended wo synoptical tables, showing at a glance the results which have een obtained in practice from different systems of utilising pent. whese tables an them an early impression. The tables are so complete that they re uire no explanation other than that which we have just given.

> South Kessington Museva.- Visitors during the week ending June 5th:-On Monday, Tuesday, and Saturday, free, from collections, 1294. On Wednesday, mercantile marine and other sion 6 d.) from $10 \mathrm{a} . \mathrm{m}$. to 6 p p.m., Museum, 2394 ; mercantile
marine and other collections, 125. Total 13,895 corresponding week in former years, 13,570 . Total fram the
opening of the Museum, $14,292,912$. Patent Office Mum then 12th May, 1858), $3,188,279$.

foreign agents for the sale of the engineer PARIS,-Madame Boyven, Rue do la Banque
BERLIN. - Amen and Co., B3, Mohere-strace

TO CORRESPONDENTS.

\because We cannot undertake to return drawings or manus
must therefore request our correspondents to kep copis. In order to avoid trouble and confusion, we fopd it inecessary to
inform correpondects that letters of inquiry addresed to the
public and intedded for inertion in this tum pustic, and intended for insertion in this column, must, in all
cast, be acompanied by a arrye envelope lopilily directed by the
writer to himsecf, and bearing a woriter to to himsif, and bearing a 2 e. postagas stamp, in order that
ansoers received by us may be forvarded to their destination. No ansiors receivad by us may be forvarded wheir destixation, No
notice woill be taken of communications which do not comply with
these instructions.
Anl letters intended for insertion in THE Exarnere, or contain-
ing questions, must be accompanied by the name and addreas of ing quetions, must be accompanied b by the name and addras of
the uriter, not necasarily for publication, but as a proof of
good faith. No notice whatever vill be taken of anonymous good faith. No
communications.

The folooving Volumes of Ture Exainkrn can be had, price 18s, ecch:-Vols. \therefore The charge for Advertienvents of four lines and

MEETINGS NEXT WEEK

THE ENGINEER

FRIDAY, JUNE 11, 1875.

RIVER POLLUTION.
WE are not about to return here to the general principles which, as it appears to us, govern the relations
between rivers as sources of water supply for man and between rivers as sources of water supply for man and
beast and as the great drains or channels of defecation for all the refuse educts of animal and vegetable life. In former articles we have indicated the conditions which nature has prescribed for these relations, and pointed out
that when their balance is destroyed beyond a certain limit by the adventitious circumstances of what we may call civilisation, concomitant with a dense population, the channels of our streams and the waters of our rivers can be
no longer our natural drains and our drinking fountains; no longer our natural drains and our drinking fountains;
that we must choose one or the other function to be fulfilled by the river, and that we shall find that that function must remain what nature always intends it to be-that of
universal main drainage, and that we must look elsewhere for our water supplies. Further, that these supplies must in general be sought in our islunds, at least by impounding water in partly natural, partly artificial reservoirs upon the upper streams and their catchments which feed our rivers, mination. These and other general conditions of this ertainly important national problem we have pointed out in some detail and with sufficient lucidity in former articles in this journal.* The principles contained in those articles are equally applicable to the most Arcadian state of population in which the refuse of animal and vegetable life orm the refuse for drainage, or to that far more formid efuse of countless manufactures, organic and inorganic in solution or in suspension, are poured into our streams o be dealt with as they may by the decomposing action of air and water on their way to streams of greater volume or to the sea. We might ask here what it is that legislators
propose to themselves as the chief aim and benefit to be sbtained by the penal statutes now aimed against rive pollution.
We can easily see that by a sufficiently cumbrous, costly and irritating system of interference the appearance to the eye or nose of many of our streams whose banks are thickly ross abuses, such as making the chanels of such streame lust bins and cinder-tips, or other solid rubbish deposi taries upon a great scale, may be prevented; but we
apprehend that the law as it already stands affords ample pprevision for redressing this latter class of evils, if only the riparian inhabitants were of a mind to have them re dressed. But granting that future legislation shall have done all that can reasonably be expected of it, and much more than is ever likely to come from the sort of legisla tion proposed, we ask, what is to be the ultimate upshot
of it all? What is to be the benefit derived when all the dispollution possible upon our manufacturing streams ha uch ected Irwell the ane seriously expect that stream its midde Irwell, the Aire, the Calder, or the Clyde in its midul coure ther We dir do drik, or in which lish can litte an he may gradually make them look a less foul hey must continue while ever the vast industries concenobliged to confess this had we not better make up our obliged to confess this, had we not better make up our
minds at once to treat them as main drains and legislate upon this basis, which would vastly simplify the subject, upon this basis, which would vastly simplify the subject
and render needless much official interference that here and render needless much official interference
after must prove as vexatious as will be useless.
after must prove as vexatious as will be useless.
Our present object is to point out that the results o many of our great national industries must for ever continue to pollute, more or less, the natural waters of all the streais are lead notwinstanding any legislation impotently intended to the
contrary, and even though those most intimately interested in those great industries were the most earnest in their desire to prevent such results. Let us illustrate this by an example or two:-Upon the banks of the Clyde, the Tyne, flourish those enormons manufactories of soda Lancashire which form the basis for all subsequent and minor chemical manufactures, and supply materials employed in countless industries not chemical, such as paper-making, \&c. Around these manufactories are to be seen mountainous heaps of the refuse of the "lixiviated salt cake," consisting mainly
of difficulty soluble lime and soda. compounds, matter, and many complex combinations of sulphur, some of the older refuse heaps being so rich in the latter that methods have been devised, and to a certain extent employed, for recovering some of the sulphur from them. These heaps cover acres of ground ; they are freely exposed easily see the brown, discoloured liquids ooze from them at many points. These, having a supply as perennial as the rains of heaven, find their way inevitably into the river. We shall not pause to consider to what extent these washings of the alkali refuse heaps are deleterious; it is sufficient to say that, even in minute quantity, they render water undrinkable. Again, let us cast an extended glance oldest of thour great coal districts, such as that nearly the we see them, commonly called the Black Country. Here heaps of refuse, mainly from ollieries and ironworks, but with many other industries interspersed. The natural drainage channels of the original surface have been hopelessly blocked or perverted. The rain which falls penetrates every porous and ill-compacted "tip," whether of coal or of iron refuse, and, after soaking through and
dissolving in its progress whatever is soluble in aerated dissolving in its progress whatever is soluble in aerated water, festers in pits and gullies amongst the heaps, and often joined by waters pumped from the shafts, slowly
finds its way to the natural outfalls as they now exist. finds its way to the natural outfalls as they now exist. The water that has percolated these coal tips is always
more or less rich in sulphate of iron, as well as other more or less rich in sulphate of iron, as well as other
salts, and that from the furnace tips in silicates of the alkalies and earths, as well as in dissolved iron compounds, which ultimately oxidise into the rusty slime which lines the drainage channels of such places. Poured into the
adjoining rivers these dissolved matters may not be highly adjoining rivers these dissolved matters may not be highly
poisonous, or at all so, but they render the water more or poisonous, or at all so, but they render the water more or
less unfit for drink or fish to swim in. Let us pass to some of the rivers in our great mining districts. There are streams in Cornwall, on either bank of which for
miles in length the ground is covered with heaps of miles in length the ground is covered with heaps of
mine debris, or of the refuse of washed ores. These mermeable heaps, varied in their materials, amongst
perme or or which are to be found, thinly disseminated, portions of the poisonous metals, continuously discharge the
oozings of the rain that falls upon them into the adoozings of the rain that falls upon them into the ad-
joining river. In some places these are joined by the waters pumped from mine shafts at considerable distances from the stream; these waters are occasionally rich enough
in sulphate of copper in solution to be worth depriving of
Amongat thooso wo may ofor to that entitled "Rivers and Citities"

that metal in "precipitating pits" before being let loose into the river; the sulphate of copper, or "bluestone," highly poisonous salt, is, indeed, thus got rid of, but only by its conversion into sulphate of iron or "green copperas, a salt not poisonous, indeed, but even in very small quantity rendering water unpotable and destructive to fish.
It is pronounced with much boldness that at least no solid material must under any circumstances be passed into any stream, and, as we have already said, so far as throwing dry rubbish of any sort into the bed of a stream, we entirely concur in this; but if this rule is also to apply o all solid matter if suspended in water, we should find that its being insisted upon would interfere with or extinguish some of our greatest mining or mineral industries. If we visit Dalcoath, formerly a copper mine, but now, at a greater depth, the greatest tin mine in England, the oxide of tin which constitutes the ore is diffused in microscopic crystals through a relatively enormous mass of rock, which has to be crushed, stamped, buddled and washed again and again, until the heavier tin oxide is got out from the relatively enormous mass of tine mud produced from the ground-up rock. Water in great volumes is che essentia nstracer in those miming operations, and this refuse mud is got rid of in the only way in which it can be, by turning the main stream of already more or less muday water, after it has done all its other work, in upon these deposits of refuse silt, and transporting them away to the nearest river course and towards the sea. So also in the preparation of the china-clays, which form so rich an element in the wealth of Cornwall, vast quantities of mud must be dealt with in the same way o compel, by law, the owners of these industries to preserve helr reluse in enormois herpe, wities, be pal to raise the price of the respective commodities, or perhaps destroy them alogen her, and, let us ask oil bono, the till only fit for whealy no beter th it it wefore, still only fit for what navure intended it, maia drain Nor do these remarks apply only to mining and metalurgic asd lis. trate if the water that pered bes from "fly, mas" is by a ${ }^{2}$. dams is by any means to be stopped of she difficit way hed thi brai of our subet are only lnownties those 0 ilir with the olvern hose far the with of and we have not stances of the north of
There is but one thing that legislation can do-prevent gross and unneighbourly abuses of the river channels, some of which we have above pointed out ; so also there i but one thing that engineering skill can effect, namely, to ncrease and equalise the volume of the water flowing through these rivers, by impounding the rainfall of the wet seasons upon their upper forks and tributaries utterly insufficient very materially to improve the condition of rivers such as the Irwell, and others here mentioned.
public works in egypt
Ir is only within the last half century that engineering works in Egypt have been promoted and constructed in : and the real interests of the country, Long previous to the time alluded to engeering works long previous to tude rivalling those constructed in India during the dynasties of the Abdallahs and the Aurengzebes existed in Egypt, but with the exception of the Pyramids but little remains of either their former grandeur or utility. With the decadence of the cities, the pleasures and wants of whose inhabitants they were intended to minister to, they fell into disuse, and shared in the general destruction and desolation which ages ago swept over that portion of the African continent. But although the nature and extent o these great works of construction can now be but guessed and their successors bear but little resemblance to them in either design or execution, yet the physical condition of the country remains unaltered. Rightly or wrongly, the origin of surveying-one of the branches of our profession boundaries which were not liable to be obliterated by their annual natural floods.
As of old, so at present, the ever-recurring periodical overflowing of the Nile constitutes the natural phenomenon
of the country. From time immemorial the efforts of the monarchs and the peopime immemorial thected towards the one great object-viz, that of reculating and rendering uniform, and turning to the best advantage, the fertilising inundations of this mighty and mysterious river. Probably the idea and attempt also to umite the waters of the Mediterranean and the Red Sea may boast of the same degree of antiquity. The Nile being thus the most important and, in a great measure, the sole source of the prosperity and wealth of the country, it is evident that works of irrigation, and others undertaken with the object of improving the course and condition of the river, must constitute a promiment feature in Egyptian engineering. In Upper Egypt some extensive works of this character were carried out by the father of the present ruler. They comprised canals, banks, and roads, and some idea of the extent of the undertaking may be gathered from the fact that in one year the amount of the earthwork reached to nearly seventy million cubic yards. As may be expected in a country in which skilled labour is both scarce and expensive, the use of earthwork instead of masonry or brickwork will, in all cases to which it is applicable, be adopted. It forms not only the cheapest, but, when of good quality and sufficiently plentiful to render the maximum dimenfor thion consequence, he best description of material for that particular class of work.
A glance at the physical contours of that portion of Egypt which lies between the mountains of Libya on the
west and those of Arabia west and those of Arabia on the east, will demonstrate in what manner, and the reason why, it became affected by
the inundations of the Nile. If two sections be made of the inundations of the Nile. If two sections be made of
this part of the country nearly at right angles with one this part of the country nearly at right angles with one
another, it will be found that one, which may be termed
the longitudinal section, has a gradient or slope which is practically identical with that of the river itself during from the river banks towards the desert, so that when that from the river banks ars sers poitween 13ft. and 14ft. The nature of the soil of Egypt renders these periodical inundations indispensable to its permanent fertility. A geological section shows an upper layer of ooze resting upon sand. The substratum, moreover, is impregnated with various salts, to such a degree that if the land be not overflowed feless for purposes of cultivation,
salted as to be perfectly usel salted as to be perfectly useless for purposes of cultivation,
and remains so until it is thoroughly washed by another inundation. In addition to the duty already marked out for the future irrigation works of Egypt, they have other functions to fulfil. Among these are the sistruction of ouly to prevent the salting of the land, but also to raise the water so as to enable it to command land situated at a higher level. One of the oldest works of this kind was undertaken to preserve the city of Memphis. It was in the early part of the present century that the great work
was commenced of forming throughout the whole of Upper and Middle Egypt a series of basins in which the floods might be successively and thoroughly utilised. In order for the latter part of the country, it will be necessary to the line of which has been determined
It has been recently proposed by a well-known authority -M. Linant Bey-to restore the ancient lake Mreris which Herodotus states was an artificial lake formed to store the waters of the inumdation, and distribute them as
required during a season of drought, or when the floods were insufficient to irrigate the neighbouring country. It is not worth while investigating the cause of the destruction
of this lake, but we may briefly notice the advantages of this lake, but we may arid accrue from its re-establishment. It appears that by the formation of the necessary tanks forty-two
thousind acres of fertile land would be lost to cultivation; housind theres of fertile land would be lost to cultivation;
but, on the other hand, by converting this land into water, so to speak, it would be possible to irrigate or bring into
cultivation during drought, or seasons of insufficient floods nearly seven hundred thousand acres. Against this increased nearly seven hundred thousand acres. Against thisincrease necessary banks, sluices, channels, and other works. This the present bed of the ancient lake is nearly 27 ft . higher than it orignally was. M. Linant Bey estimates that
nearly thirty million cubic yards of earthwork would nearly thirty million cubic yards of earthwork would be
required to construct the works. Provided the result would recoup the outlay, there would be no difficulty either in finding the necessary capital or in carrying out the undertaking.
structed down to our own times, the public works conwell for the future prosperity of the country which speaks be regarded as intended to promote the fertility of the soil, the increase of intercommunication, or the interests of comEgypt will constitute, as it does now, the shortest route to our Indian possessions and to the East generally - a route Canal. Twenty years ago there was no railway across the
desert, either from Cairo to Suez or from Alexandria to Cairo. At present there is comparatively a good port at been provided at Alexandria, and recently very much furnished with waterworks. Under the present ruler the railway system has been greatly extended, especially in the
Soudan district. Sugar and other manufactories have been established, and no efforts seem to be spared to promote the welfare of a country which is renowned for its antiquity and former magnificence. A point worth adverting to in
connection with our subject is whether it will be found advisable in future to resort to other means to irrigate the land than that of simply raising embankments of various
heights. It is not improbable that when all the land situated at the lower and consequently more favourable level be brought into cultivation, the aid of machinery may
be called in to raise the water to a height sufficient to combe called in to raise the water to a height
mand the land placed at a greater altitude.

LITERATURE

Minutes of Proceedings of the Institution of Civil Enyinecrs, with
other Selected and Abstracted Papers. Vol. xxxix. Session other Selected a
1874.75. Part I

[skcond notice.]

In our previous notice of the volume now before us, we reved the principal portion of one of the former similar
tuted publications. The present issue, however, marks the com-
mencement ef an entirely new réqime with respect to the mencement ef an entirely new régime with respect to the
publications of the Institution, For the future, instead of publications of the Institution, For the future, instead of
two volumes per annum, four will be published. The gra-
dual extension of the "Minutes" is thus referred to in the last annual report:-"A few years ago the proceedings were contained in one annual volume of 540 pages, after-
wards expanded into two volumes together of 944 pages. Now it is proposed to issue one volume of about 350 pages is early in each quarter as cis this permit." It ture, some fresh additions, must be introduced. These paspers, which, although not read at the meetings, are con-
per papers, which, although not read at the meetings, are conthem to a place in the publications of the Institution.
Occasionally, but rarely, communications have been published in previous volumes which had not been read at was mue nearly always to the abstruse character of the was due nearly always to the abstruse character of the
paper, which rendered it impossible for the auditor to
follow it with any exact idea of its object or signification. Many communications, both professional and scientific, are
not adapted for being read to an audience, but dem
study and reflection to be even partially comprehended Thy and reflection tobected
"E first of three selected papers gives a succinct account thousand miles of mixed heavy and light railways are either opened for traffic or in progress of construction in hat country, which was somewhat slow to adopt steam provided with water communication. A curious point comnected with the iron trade existing between Sweden an! England is the large exchange in that commodity which takes place between the two countries. The exports and imports are about equal, and at first sight it appears very strange that Sweden should export so large a quantity of iron to England, and import so much in return, instead of supplying her own wants. The explanation of this apparent anomaly is due to the fact that the iron exported from Sweden is smelted with charcoal, and is too uperior and too expensive a raw material for conversion hand, the English iron, which is smelted with coke and coal, is quite good enough for the purposes above menioned, but not of a sufficiently pure character for the steel. The reason why the Swedish of wrought iron and with charcoal is simply the want of coal. The comparative value of the two descriptions of iron, deduced from the verage during the last twenty years, is $£ 7$ per ton for the
English and $£ 1210 \mathrm{~s}$. per ton for the Swedish. The com munication on "The Consolidation of Earthworks" will be found very interesting, especially to railway engineers. It construction of deep cuttings and high embankments, points ont the precautions to be observed in treacherous and yielding ground, and describes the remedies to be adopted numerous practical examples of railways, both in this which showed unquestionable signs of failure bankment secure by the adoption of proper measures. These include briefly, drainage, longitudinal and transverse strutting, both overhead and underneath, retaining walls, piling, of the works in some of the examples of cuttings, it would have been more economical to have in the first instance constructed a tumnel
Among the names in the "Memoirs" will be found those Charles Fox, Mr. John Grantham, Mr. T. Marr Johnson, and Sir John Renuie. A perusal of the brief biographies Their professional brethren, of whom it may be truly said concluding section of our volume, comprising, "Abstracts of Papers in Foreign Transactions and Periodicals." A the publications of the Institution, we have a few words to say about it. The object is to afford to the members o the Institution, in a clear and condensed form, a descrip tion of the most important engineering works calried on ments and researches which are likely to be read with interest by the profession generally. Articles descriptiv perations, of treatises of a theoretical character, are treated of in this new section. The more prominent portions of their con practical results and bearings-have been abstracted with as much brevity as is consistent with clearness, so that each separate communication is at once readily comprehensible ords definite information on the subject of which reats, and is, so far as an abstract can be, a complet pilation which will anal article. The advantage of a comen rapport with what is doing in the whole of the engi ing out works is distant especially to chose whd are unab to avail themselves of the benefit of our scientific journals. either hat nearly all engineering works of importance fully ill home or abroad are descrived and, when we are not of the opinion of those who imagine that our previous pub "ication will detract from the value or utility of the Recapitulation in a modified repetition, and besides, no single scientific jouurnal can cover the whole range of engineering science completely. We are certain that the 120 pages or so which are devoted to the constitute and will be to the future sections, wil addition to the minutes of proceedings. We congratulate the Institution on the issue of so substantial its have little doubt, the members, at the end of the fourth volume, will possess a record of the encineering of the yea throughout the world which it would be impossible to find in any publication of a similar character. The volume is Mr. Forrest, the able secretary of the Institation, least impaired by the additional responsibility and labour which he has undertaken.

PRIVATE BILLS IN PARLIAMENT.

Vkry little business has been done during the past week. The Burgh Extension and the Glasgow Municipnl Extension Bills has at length been concluded in favour of the former. The Glasgow Bill has been rejected. The Prudential Assurance and the also the South Devon Railway Bill, which was unopposed. Before the referees a locus standi, subject to slight conditions, has been allowed in respect of the petitions of Mr. Postlethwaite and the London and North-Western Railway against the White Borough of Wicklow gagainst the Dablin, Wicklow, and Wexford Borough of Wicklow against the
Railway Bill has been disallowed.

The Bridgwater Railway Bill has been withdrawn. Lord Rederdale has entered a protest to the following effect against
the Sligo Leitrim, and Northern Counties Railway Bill :-Because in this bill it is for the first time proposed to create preference capital for making a new railway by a new company. Becaus the capital is to be $\ell 200,000$ in shares and $\ell 100,000$ in borrowe money.
baronies and landowners on $£ 72,800$, and of the remaining $\ell 127,200, £ 50,000$ is to be issued with a preference, leaving receive anything until the full dividends agreed on have been paid from the net income of the concern on $£ 222,800$. Because the estimate for the construction of the line being $£ 243,000$ Because the sum will be insufficient to complete the same it necessary to start it by issuing part of its capital with a prelittle expectation of finding customers for ordinary share capital and, consequently, that when the preference capital has been exhausted they will have to apply to Parlinment for new powers this can only be done by a prant of pre-preferential share capital this can only be done by a grant of pre-preferential share capita
or by extended borrowing powers, the dividends on which must take precedence over those which the bill professes to secure to the preference shares created under it. Because, under these
circumstances, the capital which persons will have been induced to take believing it to have a preference secured to it will no of such shares in a first bill, will have deluded persons into subscribing to an investment under a deceptive name. Because, as
this preference capital is to have priority over that which is to be guaranteed by the baronies and landowners, any capital created by pre-preference shares or alditional borrowed money
must also have precedence over that so guaranteed, or it will have no preference over anything, and the baronies and land y the by them when they agreed to the guarantee. Because Parlia
ment ought not to sanction any measure for the construction of a railway whel pleting the same, and the provisions of this bill to secure sub The following Bills have been read in the Lords:-For the second time, the Midland Railway, the Longwood Gas, the Marl Bills. For the third time, the East London Railway, the Sutton Bridge Dock, the Glasgow (City) Street Improvement, the Stapenhill Bridge, the Plymouth, Devonport, and Stonetouse
Cemetery the Truro Water the Millom Gas and Water, the Portishead District Water, the Pontefract Borough Extension, and the Bralford Water and Improvement Bill
In the Commons the following bills bave been read a third Lancashire Railway, the Blackburn Water, the Glasgow and Yoker road, the Lymington Harbour and Docks, the Whitby, Redcar, and Midalesbrough Uniou Railway ; the London Tunbridge Railway ; the Lymington Harbour and Docks, and the Ryde and Newport and Cowes and Newport Railways bills
while the Cornwall Minerals Railway Bill and the Greenock while the Cornwall Minerals Railway
Police Bill bave been read a second time.

DOVER HARBOUR.

THE report of the select committee to whom the Dover Pier and the advantages which the proposed harbour, if successfully conEuncted, may afford to the defence of the country in the case of European war, and for purposes of refuge and Channel comma
nication, has just been publish=d. It states that there is no room to doubt that, in the case of this country being obliged to engage in warlike ooperations, the proposed harbour would be of the greatest
value and importance, both in a naval and military point of view. At the present moment it may be said that there is no place between sheerness and Portssmouth at which vessels of her
Majesty's navy can obtain a supply of coal if rexuired. The
Dows are no doubt an adminable naval station, both in point of security and convenience of position, but coaling there would have
to be carried on from sea-going vessels or tloating depots which in time of war would be exposed to attack by the enemy, unless pro tceted by works which at present do not exist. If the proposed
harbour is successfully constructed, ironclads of the larget can be moored alongside the existing Admiralty pier, or the East. ern pier, if modified with that view ; coals from any part of
England or Wales may be brought by railway in trucks direet to the side of vessels, and shipped with facility, safety, and despatch. In a mitary point of veew, the advantages of the proposed
harbour in time of war are not less apparent. Hitherto no proper acilities have been provided either at Woolwich, Chatham, or
Sheerness for the embarkation of troops, while at Portmmouth the length of wharf in the dockyard is quite insufficient, and in time of war would probably be required by the Admiralty yor naval pur-
poses. On the other hand, Dover is in communication by two railways with the military stations of Canterbury, Maidstone, and Shorncliffe ; and, as the lines of rail come down to the pier,
alongside of which the transports would be lyiow, a very alongside of which the transports would be lying, a very short iderations must be added the important fact that the proposed harourwill be under protection of great military works, which it would haval and military purposes could be constructed. With regard o its capabilities as a harbour of refuge, the committee, while of mercial marine in this respect, yet do not wish to lay too much wress upon this advantage, and were that the only object
Lastly, with regard to the advantige of the proposed harbour, convenience of embarking and disembarking in any weather in the smooth water of a sheltered harbour is of great public importance. That this is fully appreciated by the great companies which carry
the postal and passenger traffic from the port of Dover to the Continent, is sufficiently evidenced by the proposals which have in past years been made by them for the co
In conclusion, the committee desire to draw the attention of the
House to the evidence which has been submitted to them, and by which they have been much impressed, to the effect that a coniderably insreased extent of deep water space might be secured cost of moderate amount. It appears, however, to the conmittee that it would be beyond their functions to recommend such an with bringing the evidence referred to specially to the notice of

A further trial of the engines of the Bessemer was made on
Saturday. They are reported to have done well. The cabin was not worked.
A Great Russian Bridge.--A great bridge 3600ft. in length commence
Company.

SOCIETY OF ENGINEERS May 3rd, 1875.
Mr. John Hemiy Adass, President, in the chair. The following paper "On the Use of Paint as an Engineoring
Material," by Mr. Ernest Spon, was read:- After questions of form, strength, construetive materinal and similar matters have been duly
settled in conneetion with any engineering work metal, the ongineer has to consider the best method of maintaining that work in good condition. Apart from working masuantioes.
the material of which the particular work is constructed is exposed to atmospheric and chemical influences which tend more or resse to
modify and corrode its surface, and an artificial surface is therefore modify and corrode its surface, and an artificial surface is therefore
formed by applying paint. Most of the paints usecl for ordinary
work are composed of the colouring matter, then of a quantity of white lead, with which and a a particular or oil they ore a quantity of paste of the shade required, and are anterwards trimered intown
with oil and turpentine when used. The white lead which thus
whe withoil and turpentine when usod. The white lead which thus
forms the basis of most paints, and is by itself a colour, is the
basic carbonate of lead, a heavy earthy masid carbonate of lead, a hoon becoming ofy earthy powdor, white when frirst
may tint
when exposed to the nir, from the action of sulphuretted hydrogen. It it insooluble in water chloride of lead, whish crystallises in needles on cooling. Dilite
nitric acid easily dissolves white lead, with effervescence caused by
the escape of cubor nitric acid easily dissolves white lead, with effervescence caused by
the escape of carbonic acid gas. When heated on a kine or slip
of gassit tecomes yellow. It is not very generally known that
whitelead and oil white lead and oil combine with suoh energyy that if ifinsedn oil is
poured upon a very large quantity of white lead, and the mass allowed to stand for a fow hours, toin of temperature becomes so high
that the oil is carbonised and colours the whole a black. We may impair its avoid mighing with white lead substances which
 add to it variablo proportions of chalk, sulphate of lead, pand the
like, and it is often mixed with that sulphate of baryta which is
called baryta white, and which is prepared from the native sulph
 when the manufacturer makes the composition known, as it is of a handsome white colour, entiroly innocuous, fast and resisting most
reagents; its great defect being that it possesses but little body or
covering power. The manufacturers sell various qualities of white lead, sometimes in powder or in lumps, as genuine dry white lead,
or flake white, but the greater portion is n a paste holding from 7 to 9 per cent of oil. Kreess, Nottinghan and Newastle whitem sare
pure lead differing only in the way in which they are made, Venice waite is a mixture of equal parts of white lead and sulphate of
baryta. Hamburg, Holland, and other whites contain from 3 to 60 per cent. of sulphateo of baryta, and inferior quadities harge pro-
portionsof chalk. White lead paint is solid and durable, but two
piagreable valk diagreeable vapours given off by the leed exerecise a dangerous effect
upon the health of the workmen who are engaged either upon its
manuacecurb or its use.
Many substitutes have been tried to obviate the employment
of white elead zinc white in particular has recived considerable
attention it has not such a bad effect upon the health attention, it has not such a bad effect upon the health, having no
smell of itself. and doocs not impurt any to the liquids with which it
may be mixed so that any place frestly may be mixed, so that any place freshly painted with it may be at
onee inhabited without fear of its injuring the occupants. Zine
white
 of carbonic acid, which oxide of zinc absorbs from the arir.
When heated, oxide of zinc becomes yellow, but resumes its white colour on cooling. It is as brilliant, white and fine as white lead, and
beoomes on drying so hard that it wwill take a bright polish, it does gas with equal weights, it covers a harger surface than carbonate of
lead, but it is very dry under the brush, and therefore requires more labour in applying it, which to a great extent explainn the It also takes longer in drying, and when adulterated is very liable Red Iead, so largely used by engineers, is an oxide of lead,
Runally in the form of a bright red powder, which is not affected usunlly in the form of a bright red powder, which is not affected
by water, ,ut evolves the smell of chlorino when boiled with
hydrochloric aeid, and ha slowly converted into chloride of lead. hydrochloric aecid, and is slowly converted into chloride of lead.
Dilute nitric acid only partly dissolves it, leaning a brown powder.
On account of its durability, it is frequently wsed as the On account of its durability, it it frequently used as the priming
coat, often the only coaty given, on uronwork. Care should be
taken that no salt is preesent, otherwise a chemical action comtaken that no sald
mences, blisters are formed, and the lead is reduced to the metallic
condition condition. It has been proposed to substitute for red lead a red
obtained from a sulphide of antimony, termed antimony vermillion, which is sold in a state of very fine powder, without taste or smell, but little acted on by acids, and foreign engineers state that when ground in oil it acquires great intensity or brightness of colour, that
ithas a good booly, is unalterable by an or light, and may be freely
mixed with white lead ducts obtained in distilling coal and shale oils are the residual profor rough work, They combine readily with drying oils, and and give
an intense and handsome black, which is at the same time very economical. Native oxide of iron has of late years supplied us
with a paint whinh pussesses may of the good qualities of red
lead wibout its inconsent on pants are mosit dency to change or affect the surface of the metal An analysis
of one of these paints gave- peroxide of iron, 68.95 ; aluminous earth (clay), 1 '48; burnt clay, 2957 ; totan, 10000 . The purple-
brown oxide is a hydrated peroxide of iron, Grant's black is rande of shale containing iron, and the well-known Torbay paint is a protoxide of iron. Under equal volumes iron paints cover more
than those from leed mixed with one-third of white lead it forms
mand an excellent mastic, similar to that made from red lead, and which
becomes very hard after drying for some time. As the iron oxide paint resists a strong heat it is advantageously employed for paintpaith ihalf the of equantity parts bery weight of whiting and white lead,
withd or road dust, with colours at pleasure. The mixture being made with water can be used as a
water-colour, but it is usually applied as an oil paint. The preparation of oil recommended for this purpose is twelve parts by weight
of linseed oil raw, one part of boiled linseed oil, and three parts of
sulphat of prepared is used to 7 lb . of the paint. Paints containing silica have been used for both wood and metal; theys give a hard surface
which is very durable: it is stated that when mixed with proper which is very durable: it it stated that when mixed with proper
oils they will resist the action of salt water or acids better than
iron iron or lead paints, that they cover well, and that in the case of
wood they form a considerable protection against fire. In addition to the pigments mentioned, which are in themselves colours, various
tints are produced by additions of -ochres, earths naturally coloured by iron; chromes or yellows, consisting of oxide of
lead and chromio acid; blues, such as Prussian blue, from animal rofuse burnt with potash and iron ; smalts, from oxide of
cobalt; ultramarine blue, from carbonate of soda, silica, alum, and sulphur; or greens, from oxides, carbonates, and arsenates of copper.
The oils employed in engineering painting are linseed oil, nut
oil, and poppy oil, which in common with a few other vegetable oil, and poppy oil, which in common with a few other vegetable
oils and some resionoumatters,posess the property of drying, after
being placed upon the surface of a substance, into a resinous compound. Of these oils, linseed is by far the most important,
and its characteristics deserve careful study, ne it alone eminently the valuable qualitites of great strength and flexibility.
It is by far the strongest oil, and the one that dries best and
firmest, It has also great body, rexists the inclemencies of the
weather well, and is least affected by the ntmosphere Good linseed oil is of a pale transparent amber colour, very limpid, with
little smell, and comparatively lighter than impure oil, and dries quickly and firmly. This oil is more viscous or glitinous than other oils, and can be easily
recognised by its peculiar oolour and taste. Linseed oil improvea greatly in quality by age, and ought to be kept at least six months
after it has quality can be given to the oil by boiling it eether with or without
the addition of other substances. The substances thus added are very various, the principan being litharge, acetate or sugar of lead,
red lead, and oxide of man of the e anint is to be zinco white. The most simple method of pre any addition, and drying oil can be propared for common work by
mixing $1 \& \mathrm{lb}$. of red lead with one gallon of linseed oil, boiling mixing 1 Ihb. of red lead with one gallon of linseed oil, boiling
them together, nad afterwards letting the oil stand for a few day may be given to linseed oil and the colour much improved, without its being boiled, by mixing about 1 lb . of white lead to the gallon
of oil, and letting it stand a week feculent parts of the oil have sunk to the bottom of the vessel in
which the oil is placed. This is likewise a cheap way of purifying oil, as the lead can always be used for common purposes. Other
 additions, is yet to be desired in the oil itself, as the effect of some
pigments is sometimes such as to counteract the strongest drier nd occasion great trouble and delay from the work remaining wet qualities than either linseed or poppy oil, and is frequently a long
time drying. When of good quality it is very limpid, of an agree. able taste, sweet smelling, and free from rancidity, or sediment.
Poppy oil is extructed by pressure from the seeds of the plant, and shourd be white or very slight yellow in colour, sweet, and without
smell, Both nut and poppy oils are far inferior in strength,
tenacity, and drying qualititis to linseed, but have the reputation of keeping colour better, and are on this aceount sometimee
employed in interior work, for thinning paints used for ornamental purposes, and which require to be very white or carefully
executed.
Driers for hastening the drying of colours are much ased, in addition to the drying oils, Those most approved are
sugar of lead and lithrge. These when ground, and mixed in small quantities with praints, very much assist them in drying;
indeed, some colours will not dry without them. Red lead is also an excelent drier, and in cases where its colour is not objection-
ablo is much employed. Sugar of lead is ho however, the best drier,
theil finishing coats of light colours driers are generally avoided, as they have a slight tendency to injure e the colour. The sporitits of turpen-
tine for thinning the colours should be of good quality, which may be ascertained by weighing equal quantities and comparing the
weights, the lightest being the best. The goodness of spirits of
turientine
 are familiarly called, will tell by the smell their good or
bad qualities, for good turpentine has a pungent smell, the bad a very disagreable one, and not so powerful. Painting
when properly executed wwill not present a shining, smooth, and glossy appearance, as if it formed a film or skin, but will show
a fine and regular grain, ax if the surface were natural, or hanl ree ceived a mere stain without destroying the texture. For woodwork,
before the paint is applied, the surface must be free from moisture
of any kind and seasoned. Dampness, moisture for substances in woods, stopped in or covered over with paint, willed in
all probsbility tend to their destruction The surfce is then freed from anything which may prevent the puint from becoming identi-
fied with the material. Thus in painting pine-woods of any kind, the resin contained in the knots which appear on the surface must done by killing the knots with two or more coats of red lear Gs patent knatting and mixed with size; a preparation know
and much used, it is conmosee
of shellac, noththa, and some other dryise of nails having been carefully punched in all nail holes, cracks,
or other defects are stopped and filled up with putty or wood The surface of the wood isthen rubbed smooth with sandpaper or pumice stone. The number of coats usually given to new woodwork is four
The first, or priming coat, need have very little, if any, of the fina colouring matter in it. After priming, all nail holes or othe
superfioil defects are carefully stopped up before the next coat is applied. The conts are laid on as the previous coats become dry, ne wing after every two or three years, when but two coats are
usually required. For fine work such coat is rubbed with pumice or san paper and well dusted b the next is added.
In repainting old work, all dirt is carefully removed with the
stopping knife and duster, those places that are rough are rubbed
witp pumicestone New patches and decayed parts are then brought forward withe. coat of priming, all defects stopped and made good with putty, and
the first coat or second colour proceeded with in turpentine. The quality of the next coat will entirely depend upon the manner in
which it is to be finished. If it is to be painted twice in oil ani flatted, the next coat or third colour should be mixed up chiefly in oin, and inted ike the finishing colour, to form a ground for the
flatting.
the finishe greater the shine of the ground, the more dead will
coat or flatting be likewise the more dead the the finishing coat or flatting be; ; likewise the more dead the
ground the better will the finishong cont shine; thereore it is a
general rule that for finishing in oil the undercoat should be general rule that for finishing in oil the undercoat should be
turpentine, and for finishing flat the undercoati, or ground colour,
should be oil but it is is to be observed that nil turpentine under shound be oil, but it is to boe observed that alit turpentine under-
conts have a little oil with them, and all oil undercoats, except the priming or first cont on new work, have a little turpentine with
them. When ironwork has to be painted the engineer has a very different task to perform. Cast and wrought iron behave very differently under atmospheric influences, and therefure require somewhat different treatment. The decay of iron becomes very portion to the depteth to which it hans penetrated; and although
where the metal is in quantity this is not very appreciable, it really becore the mo when ine the quantity mety is under sin. in thichess. The
natural surface of cast iron is very much harder thin the interior
nat occasioned no doubt by its becoming chilled, or byin it contantining a
large quantity of silicn, and affords an excellent protection, but large quantitity of silica, and affords an excellent protection, sut
should this surface be at all broken, rust immediately attuck sthe
metal, and soon destroys it metal, and soon destroys it. It is very desirable that the casting ep protected as soon after it leaves the mould as possibe, and a
priming coat of oil or paint should be applied for this purpose, the other coats thought requisite can be given at leisure.
The following is the process to which all cast iron water pipes
should be summitted. It was introduced by Dr. Smith and is equaly applicable to any other kind of casting that can be mani-
pulated :- Each costing is thoroughly dressed, and made clean and free from the earth or sand which clings to the iron in the moulds, dust. Every casting must be likewise free from rust when the paint is applied. If the casting cannot be dipped presently after
beipg oleansed, the surface must be oiled with linseed oil to preserve it untilit it is ready to be dipped ; no casting is on any a acount
to be dipped after rust has set in. The ooal tar pitch used as a paint in this process is made from coal tar distilled until the naphth distililed urtilit the pitch is about the consistence of wax. The mix-
ture of 5 or 6 per cent. of linseed oil is recommended by Dr. Smith Pitoh whioh beoemest hard inseed ond brittle when oold will not nanswe
for this use. Pitch of the proper quality having been obtained it Pitoh whioh becomes hard and brittle when cold will not answe
for this use. Pitch of the proper quality having been obtained, it
must be carefully heated in a suitable vessel to a temperature of
300 deg. Fahh, and must be maintained at not less than this temperature during the time of dipping. The material will thicken pitch must, therefore, be frequently alded, and occasionally the vessel must be entirely emptied of its old contents and refilled with Tresh pitch. The refuse will be hard and brittle like common pitch,
and consequently worthless for the purpose, Every casting must nttain a temperature of 300 deg. Fah. before being removed from
and he vessel of hot pitch. It may then be slowly removed, and
upon skids to drip. In the case of water pires, all those of 20in. damneter and upwards will have to remain at least thirty minutes in
the hot fluid to attain thisis temperature. The coating when cold shoold be tough and tenacious, and not brittle, nor have the In considering the printing of wrought iron it must be noticed
that when iron is oxidised by heating in contact with the atmo sphere two or three distinct layers of scale form on the surface, and unlike the skin upon cast iron, can be readily detached, as by benang or by hammering the metal. The outer layer of this scalo tinge from the presence of a variable excess of ferric oxide over ongly magnetic, and
 and, and non-metalic in iustre, less britlle, and also less power-
fully mannetic. It will be seen that the iron has a tendency to
rust from the moment it lenves the thammer or rolls, seale above described must come away. One of the plans to pre-
serve the iron has been to coat it with paint when still hot at the mill; and although this answers for a while, it is a very troublesome method which ironmasters cannot be persuaded to adopt, and the
subsequent cutting processes to which it is submitted leave many parts of the iron bare Beesides, a good deal of the scale remains over it will be of little value. The only effectual way of preparing
wrought iron is to effect a thorough and chemical cleansing of the urface of the metal upon which the paint is to be applied, that is, mom 1 to 2 per cent. of sulphuric acid. The metal is afterwards
fromer nto the acid bather, and if necessary scoured with sand, put again
nick and then well rinsed. If it is desired o keep iron, alrendy cleansed, for a short time before painting, it
is necessary to preserve it in a liquor rendered alkaline by caustic lime, potash, soda, or their carbonates. Treatment with caustic ron which has remained in it for some hours will not rust by a slight exposure to a damp atmosphere. Although desirable, this
method of cleansing the surface is impracticable in the majority of cases, and recourso must he had to scrapers and hard broshes to question arises what paint should be used upon iron? Bituminous paints, as well as those containing variable quantities of Iead, were
formerly considered as solely available, but their failure was made painfully apparent when the structures to which they were applied hai to iron oxide itself, and with very sativfotory reculte, bee oxide paints are made of two qualities. The first quality is the
best adapted for iron work, and is made by purifying the oxide nd placing th with them. They nee altogether submitted to seven distinct pro-
cesses in the course of manufacture. To insure large surfacing qualities, or the power of covering a large area with a small pable powder before they are mixed with the oil, and, after mixture in first quality paint, they are ground for seven or eight
hours. The second quality have their colours chemically combined y mixture, and are not so carefully prepared, although they are
excellent for common mixed ready for use in the proportions of two-thirds oxide to one-
third linseed oil, with careful work, should cover twenty-one quare yards of sheet iron, which is more than is obtained with
lead compounds. Oxide of iron paint endures a very great heat athout material alteration, and keeps both its colour and preser
antive qualities well. The author is of opinion that, when use under proper supervision, no better protection can be found for
iron structures than oxide of iron paints. There is this difference o be noticed between the painting of iron and wood, that with the removed, he hhould endeavour to incorponate thiem with the paint carefully washing down and removing all dust, dirt, and so on
from the entire sufface, every particle of rust being scraped and from the entire surface, every particle of rust being scraped and
chipped off, the work reeeving from two to four coats in oil, the real value of any paint depends upon the quality of the
linseed oil, the quality and charicter of the pigment, and the care bestowed on the griinding and mixing, and as all this is entirely a
mattec of expense, cheap paints are not to be relied upon. $H e$ is natter of expense, cheap pmints are not to be relied upon. He is
convinced that the superioity of most esteemed pains is due to omployed in the manufacture, and their comparatively high price
crroborates this opinion.

The Latg Mr. Thoins Wersirg, Q.C.- We regret to have to
record the death, on Thursdny evening last week, of Mr. Thomas Webster, Q.C. He was the eldest son of the Rev. Thomas
Webster, vicar of Oakington, in the county of Cambride He Webster, vicar of Oakington, in the county of Cambridge. He was
born on the 16th of October, 1810 , and was educated at the Charterhouse. Thence he proceeded to Trinity College, Cambridge, and
graduated as 14th Wrangler. He was for several years secretary to the Institution of Civil Engineera. He was called to the Bar His scientific knowledge brought him into notice in connection with patent cases, in which he soon acquired a very large practice. In
1851, during the preparations for the Great Exhibition, Mr Webster assisted in procuring the provisional protection to onven-
tions exhibited, which led the way to the Patent Law Amendmen Act of 1852 . In 1865 Mr. Webster was sppointed one of her
Majesty's Counsel. He was elected a Fellow of the Royal Society Thactron Esarises ox Roans.-The Larne traction engine nui-
sance case has occupied a great deal of time in its hearing, and a sance case has occupieo a great deal of time in its hearing, and a
very considerable nount of our space. We do not say that either the time or the space was wasted; but we feel sure that even our
ood friends in the neighbourhood of Larne must be gratified that good friends in the neighbourhood of Larne must be gratified that
the case has at last been concluded. The magistrates gave their the cese has at last been concluded. The magistrntes gave their
deoision yesterday. It was adverse to the plaintifts, as the court
 and their engines might practically be regarded as forming nuisance equally with traction engines, supposing these were
nuisances ; but railways run under Ants of Parliament, and could not be prosecuted as nuisances. The magistrates held that traction that in this particular instance a nuisance had been proved. In particular, it was remarked that though the engine was regularly come forward to complain of it. The charge was, therefore, dis. Insed, and we think there is substantial justice in the decision.
It is no doubt, very annoying to owners of horses to bave them frightened on the public road; but the evidence on this point was not particularly strong, and without a very strong case indeed, the
court would not have been justified in giving a judgment which would have hat the effeot of prodinibiting a audgment which
engines altogether.-- Northern Whige, Beffast.

THE MANCHESTER EXHIBITION
(From our special Correspondent.)
Messns. G. L. Scott axd Co. (Limited) have a good selection of wheel moulding machinery, comprising several improvements. The "Standard" machine, the invention of Mr. W. E. Hayes, has the trammel in one piece instead of two, the radius of the
mould is adjusted by a serew passing over the centre of the machine, and the dividing wheel is placed below the trammel. The weight of the machine being considerably reduced, the centre of gravity being brought lower down and increased bearing surface being provided, the result is a much more stable and compact tool than those previously manufactured by this firm. The
"Box" machine, also the invention of Mr. W. E. Hayes, is "Box" machine, also the invention of Mr. W. E. Hayes, is
designed for moulding wheels, \&o., in boxes. In this machine designed for moulding wheels, \&o., in boxes. In this machine
the dividing wheel is larger than the wheel to be moulded, thus the dividing wheel is larger than the wheel to be moulded, thus
insuring the greatest accuracy in the pitch of the teeth. The insuring the greatest accuracy in the pitch of the teeth. The
moulding box is stationary and forms the foundation of the machine, which revolves in it and can be readily transforred to another box. There can be no doubt that this machine will proize of the wheel produced is limited by the size of the box.
Messrs. Scott and Co. arealso the exhibitors of one of Browett power hammers. The usual standard is dispensed with, the hammer block forming the sole base, and carrying the mechanism for imparting the vertical reciprocating motion to a croshead
within the block; the ends of the crosshead project through
varieties of hammers contained in this case. It would form an interesting study to trace out the gradual development of form in so simple an article as a hammer, and the variety and even able, but no doubt experience has proved that each form is the best for the particular purpose for which it is used.
best for the particular purpose for which it is used.
Two of Tweddell's hydraulic riveting machines are exhibited by Messrs. Rees and Gledhill. The portable one is shown slung in a frame with a screw movement to enable the instrument to be held in any desired position. The stationary riveter is a good strong machine. One of Sholl's pneumatic power hammers is shown by the same firm.
One of the most complete stands in the exhibition is that of Messrs. Henry Pooley and Son, who exhibit fourteen varieties of their well-known weighing machines, all of which are worthy of notice from the accuracy of the registering apparatus and the bridge comprises a platform measuring 12 ft by 7 ft fitted with cast iron walls, which reduce the expense of fixing and preserve the working parts in their true relative positions. The steel knife edges ase exceedingly long, and the fulcra are suspended in links and protected from any water that may find its way into the pit. The steelyard is so arranged that all loose weights are dispensed with, any weight of any load up to 12 tons can be ascertained with great ease and accuracy. A small weight placed upon a prolongation of the steelyard, and moved by means of a
key, provides for the adjustment of the weighbridge. A smaller
is lifted over this table by means of the fork E , and thus transferred to the squeezing rollers F, F, with the least possible delay. These rollers are weighted by means of strong spring levers, on and equal pressure when unevenly fed thus aftording an easy wool is carried by an endless band G of webbing over an opening fan H , revolving at the rate of 250 revolutions per minute. The fan H, revolving at the rate of 250 revolutions per minute. The
liquor squeezed out of the wool by the rollers falls into a tank I , with a perforated bottom, from which it is pumped back into the scouring tank by means of a peculiar pump, into which it is hardly possible for the wool to get, but if it did so, the clacks are specially designed to allow it to pass, and are very easy of access for cleaning, as there are no bolted clack doors to be removed to get at them. The liquor is heated by steam, and the whole machine is well designed and finished, and all the parts readily accessible.
Class VIII., for apparatus for the manufacture of gas and sanitary appliances, is almost entirely monopolised by Messrs,
G. Waller and Co., who have a very piscellaneous collection, the Q. Waller and Co., who have a very piscellaneous collection, the
most important, some small engines and gas exhausters. One most important, some small engines and gas exhausters. One
combined oscillating cylinder engine and 1000 ft . per hour exhauster is very compact, and suitable for small works. All these machines are exceedingly well finished, and the miscellaneous exhibits of the firm comprise many useful articles. In the same section there is a model of a sewage gas works, invented by Mr. H. Bray, and in full operation. The liquid sewage is put in at H. Bray, and in fulpoperation. The liquid sewage is put in at
one end of the apparatus and a light is exhibited on the stand,

petries wool washing machine
slots in the sides of the block, and are connected by rods to two tubes closed at each end and containing loosely fitted pistons, to Which are secured the ends of the crosshead carrying the tup, the pistous there are chambers filled with air under pressure ;

browetrs hammer.
during the up stroke the tup is lifted by means of the expansion of the air in the lower chambers to a greater height chan is due the elastic impact of the upper chambers now on their down stroke, causing the blow of the hammer to be rapid and dead The hammer is very compact, and free from much vibration. The tup weighs 20 lb ,, and the hammer is run at 250 blows per minute.
Mr. J. Nelson has a very neat little instrument for cutting off a number of Oct. 9,1874 . It cuts all bolt ends to precisely the same length and radius, giving them a very neat appearance, and the work is done easily and expeditiously by hand. Mr. Nelson has also a handy handle can be fixed in any convenient position. and quarry and mason's tools, exhibited by Mr. Benjamin from the smooth stone of the primitive savage alluded to by Dr. Anderson in his opening address, and the origin of the many
machine on the same principle will only receive one pair of cart wheels, and weighs up to four tons, but as this machine leaves
greater scope for ingenuity in weighing and tareing it is not reliable as one that receives the entire weight of the cart and horse. A most useful article for collieries, blast furnaces, foundries, \&c., is a weighing machine, the platform of which forms a turntable for small trucks, the weight being shown by a revolving card, graduated up to 15 cwt . The tare of the tubs or trucks having been once ascertained, a sliding weight on the steelyard can be fixed in the proper position, when the indicator will only show the net weight. The vibration of the indicator is checked by means of a loose piston suspended in water, and the action of
the machine is so rapid that it is stated that twelve tubs can be weighed per minute. A machine for weighing passengers' lug. gage has the platform roughed so that it can be placed without inconvenience in a railway station. The principle novelty in this machine is the mode of throwing it in and out of gear, which is exceedingly neat, and the total absence of loose weights makes its indications extremely rapid. A furnace barrow weighing machine is made extremely strong to resist the rough usage to
which such articles are subjected, while the jar of passing loads which such articles are subjected, while the jar of passing loads
is taken off the knife edges by means of a spring platform. Now is taken off the knife edges by means of a spring platiorm. Now
that Portland cement is being so extensively used on engineering works, both engineers and contractors require reliab aices for testing the quality of the cement, the variation in which is
one great drawback to its use. Messrs. Pooley show a neat machine for this purpose. The steelyard is graduated up to 1300 lb ., and the sliding weight is worked by an endless cord running on pulleys, a clip to grasp the brick to be tested is suspended from the short arm of the steelyard, and a corresponding clip attached to a screw underneath the frame can be adjusted to suit the length of the brick to be tested. The clips are arranged to prevent any torsional strain from coming on to the sample. The remaining articles exhibited by Messrs Pooley and Son, comprising smal weighing machines of warious patterns The Hydraulic Engineering Cosciption
the adaptation to various purposes of Brotherhood's three-cylinder engine their speciality. One machine exhibited at Manchester con sists of a three-cylinder steam engine driving a three-cylinder pump, and supplying a differential accumulator of a novel construction. In this accumulator the ram is stationary, and is of two diameters, viz., 7 in . for the lower half of its length and 6 in . for the upper half. The cylinder has two stuffing boxes, one at either end, andis loaded with cast rings to the desired extent. If the ram were of the area of the top of the cylinder, under pressure, being greater than the area of the bottom, owing to the reduction in the diameter of the ram, the pressure causes the cylinder to ascend height. An hydraulic accumulator is and does not require any great is very compact, and all the working parts are well protected, great advantage on board ship. The same firm also exhibited some good cranes and punching and riveting machinery.
In an out-of-the-way corner, dignified by the name of "annexe," I found a very compact and well finished machine made by Mr John Petrie, jun., for scouring and washing wool. The raw wooller or dasher A, of a peculiar shape, by which it is submerged in a tank containing the pot liquor, furnished with submerged bottom and a sludge chamber 6 in. deep. In the tank are thre inclined rakes B, B, B, capable of yielding, if necessary, to the passage of the wool, and resuming their original positions. Four movable balanced rakes C C C C, cause the wool to pass from one end of the tank to the other, the last rake having a longer
stroke than the previous ones, and delivering the wool on to a slightly incliped table D, furnished with fixed teeth. The wool
and stated to be the remilt of the process, but I could not obtain any satififactory explanation roppectiong the mode of working or heary oil was put into the retort, therefore the gas is not pro. duced from sewage alone.

Irox and Strel Tegts is Ahrrica.- We have reeeived the
 who ina octively promoting the guceess of the above testa. He wiil
be glad to reeeve niv intormation which our readers may bo able be ghad to reeeive any information which our readers may be ablo,
to ifford him. The Thited Statese Board to toest Iron, Steel, \&e., appointed by the President of the United States, in accordance with section 4 of the Act of Congress, making appropriation for 1875, has assumed, as a part of its work, the investigation of the methods and effects of abrasion and wear of metals in engineering and mechanical operations. This committee is instructed to take such information as it may acquire by experiment or from other observers, in such form that it may be readily collated and made useful to the Government, the public, and the engineering pro-
fession. The committee would be pleased to receive from any fession. The committee would be pleased to receive from any
reliable source such precise data and such information as enable the secretary to compile, in as concise and exact form as possible, a statement of the mode of deformation, the rapidity of abrasion, and the laws governing wear in any important typical or exceptional cases. The executive officers of all lines of railway may render
valuable aid by furnishing statements of the wear of rails per ton valuable aid by furnishing statements of the wear of rails per ton
of transportation, specifying with care the original weight, the make, and character of the rail, the total amount of transporta tion, the length of time occupied, and stating whether the rail finally broke or was removed. Specimens of rails remarkable either Or endurance or for a lack of this quality, if sent to the committee
will be of use in assisting is the determination of the chemical and other properties which most affect the value of the material under the stated conditions of use. Similar statistics and information in regard to the wear of wheels, axles, and other parts of rolling stock and machinery will be equally valuable. Engineers having in any instance noted and accurately recorded such data, are requested to
transmit to this committee copies of their memoranda. The wear of journals under heavy loads, or at high velocities, as well as under ordinary conditions, is an important branch of this subject. When possible it is desired that the dimensions of the journal, the maxi mum, the minimum and the mean weight sustained, and the given. The nature of the lubricant is an essential element, and its composition should be stated, the method and frequency of application and the quantity used should be given. When known, or readily ascertained, the coefficient of friction should be given. It should also be noted whether heating occurs, and under what
circumstances of pressure and velocity of rubbing surfaces circumstances of pressure and velocity of rubbing surfaces,
Peculiar instances of the behaviour or unusual expedients in the management of bearings, if described accurately and concisely will be accepted with thanks. The wear of tools, under the various conditions of workshop practice, is another subject o investigation. Weighing the tools carefully before and after use,
and werghing the amount of metal removed will, perhaps, be found he mot sourate methain romod win, perhaps, be found The area of surface finished, and the area of the surface cut by the tool should be accurately ascertained and stated. The description of the tool, its shape, method of operation, the kind of metal used in the too, the temper adopted, the character of the meta cut by it, the velocity of the tool, and where peculiarities of
behaviour were noted, a careful statement of them ahould be iven. This information will be still more valuable if the too power required to drive the tool can sometimes be readily deter mined, and such information is of great value. The recent inves igations of M. Tresca-Memoir sur le Rabotage des Metaux, \&c.
is an excellent sample of such research. For all information which may properly fall within the limits of their investigation, this com mittee will returp suitable acknowledgment.".

SYNOPTICAL TABLE OF DIFFERENT MECHANICAL SYSTEMS OF CONDENSING PEAT ACTUALLY BEING wORKED.

THE PATENT JOURNAL.

Condensed from the Journal of the Commissioners of Patents.

Grants and Dates of Provisional Protection for Six Months 1831. Improvements in Siutries for Loons, James Wilson, Kilmarnock, 1832. Improvements in Prooseters, Robert James Wood, Glasgow,
Ianarkshicre, N.B. 183. Improvements. in the manufacturo of CLorn known as "Indian such manufacture, John Edward Simpson and Christopher Cross, Man chestor. Or, Francenents in Forniture Castons, Etionno Lasnior, Dijon, Coto
 or other surfinees, embossed or otherwiso figured, Henry Loewenberg

 sitreet, Improstminaster. in Ranway Canossixses, Alfred Vincent Nowton,

 U.S. Improvemonts in Honse-Hoss, parts of which improvements render them applicabbo to other purposes, John Thomas Milison Hircock,
Upwell, Cambridgoshiro, and Robert Hempsted, Grantham, Lincoln-

 FLows, and proventing the escape and waste of the same, Alfred Tylor Sb9. Improvements in Bortuss, and in the SToprens for the same,
Willimm Notherwood and Benjamin Shaw, Huddersfield, Yorkshire.20th May, 1875.
bank, Montgomery-road, Acton Green, Middleseox. -97 Th Jonurury, 187 ,

 from Jean Baptiste David, Saint Etienne, Lotre, France.- $1441 /$ May
 1886. ITproverenents in the construction of Bedsteads and Culdres's 1838. Improvements in the mechanism for HoLDivo and Anvostixa the
Fhax Wicks of LAMrs, William Froderick Lotz, Carter-lane, St. Pauls

 Pricard, Leeds, Yorkshire
 1847. Improvements in apparatus for the manufacture of EARTuENwARE
Pires, Honry Doulton, Highstroet, Lambeth, Burrey.
 the same to various purposes, Alexander Melville Clark, Chancery
hane, London. - A communication from Honri (Fellx Louis Worms de
Ros. An An improved machine for Mirnekio,

 Christorhe Ungor, 'Liego, Belgium.

1858 Improvements in Trucks for conveging cattle and horses, Arthur
Honry Beavan, Leadenhall-street, London.- $204 h$ and Pyosphides, Joseeph Townsend, Ghe

Improvements in Rotiny Exorses and other similar rotary
apparatus, mad in machinory or applifances emploged in their
manu-

 received by tram way ear and omnitbus conductors and other persons,
Heonry Thomas Davis, St. Donatterond, New Cross, Surroy. -2 Ste May,
1873.
 . Improvoments in Covens for TEA-pors and other articles, Louis
 1878. Improvements in the construction of Jacquard MAcuinss, John
Bailey, Fairfeld, near Manchester 1880. Improvements in machinery for Dressina Stose, william Young,
Vulcan Foundry, Ayr, N.B.

whole or in part to othrir purposes, Androw Barclay Walker, Gateacre Grawge, LLiverpool

 Clark, Chancery lano, Londen

Stowe, Muments in machinery and tools for Cuttrixa or Dnessisa
 shiro, N.B.
189. 1891. Improvements in the means of and apparatus for the Punircactiox
of GA, Corbet Woodall, Phonix Gasworks, Vauxhall, Surrey, und
Theme
 1s0. omprove
1883. Imiro
Improv
and Thomasements in maxechnery for Corriva Woon, Thomans Noweom

 1850. Imp
 Improvements in apparatus for Coouso A1R and for applying the
same for cooling and refrigerating, Jacob Googhegan Willans, saint
Stan
 Snovels, Spades in the manufacturo, of Cast Metal blanks for therefor, Charles Denton Abel Southampton-buildings, Chancery-lane Condon-A communication from Edward Binns and Elmore Barnes
 vant, Paris
1900. Improvements in the manufacture of Artipicial FUEL, Falle Geary,
Great Winchester-street-buildinge, London, -24 h , May ditch Sprovements in Brecch-LoADINo SmalL-ARus, willim Middle 1903, Improvements in apparatus for Supporrisa Ra^cuer Daiuiva
Bnacks and other Toous, Henry James Hogk King, Nailsworth,
Gion 1900. Improvements in Pipss and Pipg Bowss for Sworiva, Leopold
Mans, Monkwell-street, London. - A communication from F. Kast,
 Cass Inow, willitim Edward Gedge, Wellington-streot, strand, London
 Lowis Morgan, Stockton-on-Tes, Durram
and Improvements in machinery for ELEVATINo, Shoorivo, LoAdiso and UNLosDixo Scks , when Hiled with corn, produce, or orther
merchandise, also applicable for other boisting and loading purposes
Gill Giibert Sinkwell and Edwin Honrry Tooley, Dinstable, Bodfordshire
loog. Improvements in the manuficture of CHIOLIE, Henry Deacon
 mumication from General Hiram Berdan, Paris. GRAIN, James Higeinmottom nind Edward Hutcchinson, Biver, or other 19212. Improvements in FURXACE BARs, Thomas samuel Dobson, Notting haim improvements in Latrus, chieffy designed for turning shafts or
baus, Frederick Foster Burlock, Coventry, Warwickshire. A com munication from Aurin Wood, Worcester,', Massacchusetts, U.S. -254 May, 1875.
 RLxas, Honry Charles Taylor, Birmingham,
Cos. Improvementa in Hoistixa APRARATw, Chanceryy.lane, London.-A communication, Alfred Vineont Nowton,
Andreww, Brookhaven, New York Willium Draper 1027. Improvements in STEMA Exaisss, John Henry Sohnson, Lincoln's.
inn-fied

 Ivocoviditios, part of which himprovemonts are applicable to tho preser
vatton vatoon of metal, wood, and other substances, Donald Nicoin, Clement b-
 43. Imp Wents in Toie Stoppens for Bollers, John Jordan, Liver
 of Siontuax and other Repohrs, Notes, and MEMoRANDA, Joseph
Laddler, South Stockton Yorkshire. Io49. Improvements in the construction of $\mathrm{S} A$ Frxv 1 ,
Edward Pinchifg, Gravesend, Kent. $-27{ }^{2} h$ May, 1875 .

Inventions Protected for Six Months on the Deposit of
Complete
Speciflcations.

 Chelsea, suffoik, Massachusetts, U. $.8 .-28$ eth Mrom, 1875

Patents on which the Stamp Duty of $£ 50$ has been Pald. 1066. Seviso MAcmses, Charles Raymond, Guelph, Ontario, Canadn.

 buildings, London.-.-3nt June, 1872.

 1690. Paptre Nut, do., willinm Riddell, Crosby Hall-chambers, Bishops.
 buildings, Chancery-lane, London. -th Juve, 1 B72. 1708 GASA, Charles Woightman Harrison and Alfred Horatio Harrison,
High Hilom, Jondon - Shl

Patents on which the Stamp Duty of $£ 100$ has been Pald 1790. Alus, de., Charles Denton Abel, Southampton-buildings, Chancery-
lane, London-1 193ne, London-1 Int June, 1808 ,

121 h Jenc, 1868.

Notices of Intention to Proceed with Patents.

 279. Treativo Oniceand and iliskrive, Benjamin Tanner, Dublin, Iroland.
 Nicholkon, Farnworth. 326. CAsinowary, 1857 . and Samuel Isherwoon 328. Iositivo and Holdisa Matculss, Hon, Georgo Cadogan, Park-phace,
Westminster.

 50. Foo and other siosus, John Richardson Wigham, Capel-street S7. Roilers for Texturs Fannuss, \&e., Edmund Edwards, Southampton.
buildings, Chancery-lane, London - A communication from Etnost ${ }^{361 .}$ Felurze Fabries, Louis Ferdilnand Tavernier and John Pyper Matheson, Perseeverance Millk, Dewsbury-road, Leeds.

 Wo6. Coominised Seal and WAtch-key, Matthew Wilcox, Birmingham.
 Cis Qalitem, jun. Godge, Wellithgton-street, strand, London.-A communication from Co. Blow Giso GLuss, Waiter Smith, Salford.

 Ms.

 18th Fecruary, 1875.

 LondorfoLD Pours, willimn Robert Lake, Southampton-buildings,
March, 1877. A .

 147 Brezch-Loadino Small-ARMs, John Williams, Liverpool-6th April,
1875.
S82. Reoulativo and Woriviva the Supip Valves of Steam and other

 crombie. - 13th Mayl 1875.
14th Moy, 1875. ${ }^{1834 . \text { CLorin, John Edward Simpson and Christopher Cross, Manchester. }}$ 1853. Hackuivo Frixx, \&ec, William Cunningham, Dundeo, N.B.
1858. TRucks, Arthur Henry Beavan, Leadonhali-street, Lond
 1886. MActinvery and PLANT of Bewweniss, \&e., Androw Barchay Walker,
 1890. May inivery and Toous for Cutrixo or Dressiro STons, \&c, Andrew

 1909. Cnionink, Honrry Deacon, Aplleton House, Widnee
190. RAsor Fispres, de. for Mesunisa Distancr

Johnson, Lincolnts-imn fieldd, London. - A communication from General 1912. Funamace Bars, Thomas Samuel Dobson, Nottingham. - 25 th Maty,

 All persons having an interest in opposing any one of such applications
should leave particulars in writing of theirobjections to such applications should leave particulars in writing of their objections to such applications
it the ofico of the Commixsioners of Patents within twonty-one days of
its date.

ABSTRACTS OF SPECIFICATIONS.

4078

 hating plater: : xom

Tho foatures of noverty which comstituto this invention consist in puase

 Tho faturase of noverty yn thit invention ouxsith in tho formation of

 Tus.

 Thut in yontlon ypostting and forming mechino and dieat to wuo in thit

 to mom general result

 4014 ,
This Invention consists of a peculitar combination of brake blocks and
chanins acting upoon friction discs mounted upon soihe or all of the axico
 4018. Firrous Substances, T. S. Koundy, Leeds,-Datal 23 rel Nocember,

 tho hukk kur airectiy yibo

m025.

Thair reltest to forming a comporitton of fingredilints such an hibulphuret

When tho otove to in Hhen tho stove ot in opartion tho impura ari ovolved by byo combus

 4028. GLLess Funxacis

Thic reatures of noverty which constitut this fivvention are tho wateo
 4029. Leatien Cloth, \&c., T. Thompson, Glasgore-Dated 24th Noerm-

 $\substack{\text { tharrea } \\ 4031 \\ \text { Nio }}$ Oin mocidifisation of the tmproved apparatus in andupted for the uno of

 ans to preasent t freab portunn theroof to the action of the atylo or othe
4033. Lermaiso ong Gartran Boor, J. Plant, Bimmingham.-Datel 24u Thisinivention consitst in combining tho logzing and tho boot in one

 conpong ovtrome the
ho values drect
4038. Meters Yon Liquids, F. W. Brooks, Nao Fork--Dated $24 t$ This invoition rolteses First to manas whereby any ditholoration

 This spocilication doserribos apparatitus for foedng forward the fuel upon
tho furnaes
from chinker
4041 Cotrox Bues Tivas, P,

 4044. Guards or Suields mon The feature of novelty constituting this invention consists in construet-
ng the guards or shields of tramway cars and similar vehicles in the form a box partly covering the wheols and mounted on a small wheel o
intifriction rollor, and so attached to the car frame as to maintain their position with respect to the rail irreapective of tho amount of vertical osillation of the car, and thus may bo placed so close to the nils as to
effoctually provent contact botwcon the wheols of the car and any obstacle human or otherwiso, which may obstruct the track, and alaso provent the
mutilation thercof consequent on the helght of the guards or shlelds 4045
This invention relates to the construction of all taps or valves employed In soam, wate, or otser purposes whorein a valve or clack fits on to or
into a seating. It consiss principaly in providing taps or valven of thit
description with loose seatings, the principal object befng to aford facility ocessity for a new tap or valve altogether, and thus to effect a cont the 046
4046. Repinina salmetre, O. Haycrafl, Favershian,-Dated 25th NovemThis invention relates, First, to the arrangoment of the vessels in which the soveral stages of the refining procoss are performed, in such a manner
hast the sultpetro will becaused to pass bygravitation alono from vessel to
vossel, whereby hand labour and the vossel, whereby hand labour and the use of pumps for lifting the saltpectro
from one lovel to another in dispecsed with. Alo, to the method of
boiling the grough saltpetro by introducing stcam amone the mase with boiling the prough saltpetro by introducing stcam among the mess, with
or without the use of a stean cont Aliso, to tho method of recovering salt
petre from the mother petre from the mothor liguor which drains from the refined saltpetro,
Alko, to the method of coolng the oaltpotre during crastallisation, as well an
to the construction of tho bolling and reducing vats, the agitators, and the o the construction of the boiling and reducing
arrangoment of gearing for driving the same.
 A neans of compensating for derangement of pitch in musical string

 roned on only the other sile at one autemantico popention. Aleo , nox thi

 which carries the ifoning and clothed rollers that act on the other side of
the article. Also, in the combination of two or moro ironing rollors,
with mad 4055. Tools yor Drilling, Shapino, or Plasing, E. Weild and J. G First, it relates to radial drilling machinos, and consista in arrangin
he pillar for the radial arm to slide up and down in tho box bed or base
 the cone or speed pulleys being placed upon a shaft projecting from th
box bed or bose part. Socondyy it relhtes to machines more cspectall desfigned for shaping or planing the sides of screw nuts, and consists in
arranging and combining soveral nams in a horizontal position upon th
 This consists in the use of a single endless travelling band or chain an
buckets supported by a pulley in the warchouse or dischar two pulleys over the hatehway, one of which acts as driving pulloy, ini the descending portion of the travelling collectar, and is formed like trundle wheol or lantern pinion. A weighted frimework and pulloy is
provided at the collecting ond to keop tho endes travelling carrier
strecthed. Parts of the framework teloscopes to allow the endless band
or chanin to dip into the hold
4058. Carridoe Shrles, E. T. Hugher, Chancery-lane, London,- - com-
mumication from W. F. Parker, Meriden, U.S.-Deted 20th Notembe
1874 This invention consists, First, in a cartridge shell mado from paper, with
a metallic head, constructed with a central recess for the primer, and with radial grooves leding into the eaid recess for the purposo of ox
tracting the primer. Scecondly, a cartridge sholl composed of paper sides,
and a metallic head, the said head constructed with a contral which is a permannent anvil, upoun which to explode the primmer. Thirdly
in forming the radinl grooves leading to the central or primer recees in thi in forming the radial grooves eading to the central or primer reces in the
hean of a cartridge shell by indenting or "striking up the metal forming
substantially radial corrugations in the head, whereby the resisting powor 4059. Cansyive Pite

Thisi invontion roltate to mandino or anparatus for carrying hawo oo

 4062 Circular Knitiso Macminkay, W. T. Roielet, Leicater:-Deted This invention relates to a mode of manufucturing on circular knitting
machincs ribbed and plain knitting, with the view of forming on one and the samo machine, by one continuous oporation, sooks with r ribbod tops,
or stockingo with tinn and ribbed work, the same being relatively dis:
posed in any desired manner. 4063. Automatic Curacta

The present invention reltates to a new and improved system of auto
matic chemical telegraphs, comprising transmitting and recelving instru-
 This consists mainly in forming a cover of two thicknesses of material,
air becing supplied under prensure to uncemented parto to keop the cover
extended 4088. Twist Lace Macmines, G. J. Neoton, old Radford-Dated 276 h
Novenier, 1874.

 And

 nyinnin

 4083 Contual orbt

最

 410.

最

 4122.

 432 Gmem

 and

(vat, Paris.-Dated 22nd March,

annular wick. Socondly, in an argand lamp burner, the combination of
tho following instrumentalities, namely, two or more indepondent wick

may p
$\mathbf{1 9 3 7}$
Pa

 1945. Reountusa Watcomes and Clocks, L. Eaton, Worceater.-Dated

 An7. 18 . Improved sail hank. The object of this invention is to provide

3836 Toors pon Cortixa Stows, \&c., B. Munro, Forfar:-Dated $6 t h$
November, 1874 .

THE IRON, COAL, AND GENERAL TRADES OF BLRMTNGHAM, WOLVERHAMPTON, AND
OTHER DISTRICTS.

(From our own Correspondent.)

BEcADSE of the cheapening rates at which Scotch pig iron is to
be got, and the weakening influenco produced thereby upon the Cleveland product, which, practically shut out of Sootland, is now Thursday-in Birmingham, much pressed upon the market a
prices more in favour of consumers than have before for some time
been noted
 long weight delivered at the mills and forges in the district. There
were slight sales of almost tall classes, but the orders represented scarcely more than insignificant lots. The quantities which now
regulate transactions were spoken of by agents in terms of much disappointment.
Good boiler pl that figure the mills of the firms most known for the excellence of the quality they produce are proportionately better employed than
are the mills at
shiceets tried hard thich an inferior plate gauge iron, but they could not get a quotation from such producer
under $£ 1115 s$, A very attractive specification been entertained at $£ 1112$ s. Gd., and it may be $£ 11110 \mathrm{los}$; but no
order would induce such firms to accept less. Still there is a class
or

 smithy bar at under $\ell 9$ 10s., there yet were a few men who would
accept a small bar order at 887 s . 6 d ; and South Wales merchant accept a small bar order at E 87 s . 6 d . ; and South Wales merchant
bars were freely upon offer at ES 2 s . d. , which is 2 s . 6 d . reduction ${ }^{\text {upon previous quotations. }}$ The Pelsall Iron and they intend to present to the next hall- yearly meeting of their share-
holders. It reeownde holders. It recommends, upon the half. year's working a dividend at
the rate of $2 \downarrow$ per cent. per annum ; but it makes no allowance for depreciation of ironworks plant. There were suggestions for in-
creasing the value of the property in respect of an extension of the
valuable mineral possessions of the
holders will no doubt readily concur. The ironworkers are deliberating the nature of the reply which they believe it will be best for them
to make to the ironmasters pronounce upon the employers' offer as to 8s.' 6 d . instead of 9 s , 6 d . being the minimum of the proposed new sliding scale for the regu-
lating of the wages in the mills and forges as asso in relation to the extension of the notice for any change in the scale. The men in Bromwich, on Monday, when certain propositions were agreed upon
whin which it was determined should be submitted to the votes of the
several lod loes. The auestion will therefore be settled by the men apon the democratic principle by which they have hitherto been mostly guided.
Most mill are giving considerable attention to the best method of puddling
iron Satisfa minimum of labour and fuel cost.
Dormoy cory accounts are given about the working of the CassonDudley. In ang furnace at the Round Oak works of the Earl of even when an tod iron. The double furnace is more economica only a double furnace but possesses a Dandy, or chamber in which
the cold chamber, and where the iron is stirred thawn into the pudding rabble upon a concave bottom, kept cool by underlying water, the
economy in conomy in fuel is so considerable thant a ton of iron can be made,
it is olammed, at a consumption of no more, perhaps, than from
13 cwt to The Siemens-Martin process keeps in full operation at the iron-
works at Wellington, where Messrs, Nettleford, of Birmingham Works at Wellington, where Messrs. Nettleford, of Birmingbam,
produce the metal of which they make their celebrated wood process wenty-seven furnaces are there worked by gas, which the is secured. Taking the works throughout, much unecrantand quite as
much coal is burned as though gas were not the ultimate heating power. Certainly the heat is much hercer, and greater purity considerable expense in repairs because of the intensity of the
her heat. The workmen deserve commendation for the sturdiness with which they labour. They go on in three relays, and work five heats
apiece, but because of the mistake not, pride as if they worked six heats apo the old plan.
A wide difference still prevails in the low a price ar ssence is being prevaled by byeme vendions of forge coal,
whilst 18s. is still the price quoted west of Dudley for the best thick coal of that district, 13 s. for furnace coal, and 4s. 6d. for
slack. The reduction for which consumers are looking is still retarded by the Warwickshire strike
men who are working pits but seldom for is again heard by makers who have to buy everything they require, and have neither
pits nor blast furnaces. were the natural resources of Staffordshire more promising. Success is attending the reopening of old pits and the sinking of new
ones upon almost all hands. Last August a new company, with
the title of the South Staft to re-work certain pits at Lyndon, in the West Bromwich district. Here, on Tuesday hast, the workmenen came upon a a seam of heathen
coal seven yards thick, which it is believed is, in a maiden state, exten over a
owners and the miners of North Staffordstlire, Mr. John Son Mrown,
of Hednesford, and Mr. John of Hednesford, and Mr. John Adamson, of Manchester, have been
nominated by the employers, and Mr. Burt, M.P., and Mr. miners.
Of the foreign competition now going on, plonty was made in Birmingham to-day by those traders who were interested in bringng down prices. The producers of charcoal iron had the hear
of the trade which is being done by the Round Mountain Co., of Alabama, in particular, who are still senaing from hies it must not be forgotten-charcoal iron to Liverpool,
furnace, where they sell it at $£ 7$ per ton, which at present exchanges and
ballast freights is more money by about half-a-dollar than can be got for the same iron at Cincinnati.
The American tranasctions in
Birre American transactions in no way affected the quotations in the small shipments of the Alabama product compete. Their
chief customers, who are the chilled roll founders the makers of mowing machines, and the producers of high class thin sheets, take all they can turn out; whilst the consumers on their part complain that the supply is much too restricted. As to the mower,
it is in the making of the somewhat massive bar, to which the
cutterre cutters are attached, that the charcoal iron is being used.
Amoongst the hardware anakers, who, on Birmingham Exchange, quoted the comperition of foreigners in the finished article, as a
reason why they should get finished iron at lower prices, were the reason why they should get finished iron at lower prices, were the
makers this time of padlocks and curry-combs It in makers this time of padiocks and curry-combs. It is no new thing
for the Americans to make curry-combs, and in so dong to beat even the firms of Willenhall, where, till the Americans began to make them, almost every carry-comb used anywhere in the worlo
was produced. Alike as to metal curry-comb is superior to the English highe class article ;
and now that dear labour and materinls have increased the and now that dear labour and matermis have increased the
cost of the low-class goods, the Americans are running this district hard in that class of comb likewise. But to have padlocks of turned out by the noted locksmiths of South Staffordshire should disturb the repose of even George e the Fourth, who entertnined the
highest opinion of the trade skill of the Black Country locksmithbased, it is said in a whisper, upon his cleverness in pieking the prison
him from returning to his cups.
Orders for machinery
ronders for machinery and bridges, girders, and other constructive ironwork for Spain, are being executed at local foundries, and at
the edge tool and implement forges the workpeople are well mployed upon plantation hoes, and other similar edge tools for ounders are well supplied with orders for mill gearing and for seasonabhele horticultural implements there is also an active
home demand. There was an interesting meeting on Monday, at Dudley, of the
South Staffordshire Institute of Mining Engineers, when Mr South Staffordshire Institute of Mining Engineers, when Mr.
Alexander Smith, C.E., the secretary, read a paper on "Neuss' Sitter, and Suggestions for the Immed inte Treatment of Accident
Cases." The secretary explained that he had reently received Sce to the introd of St. into that institute and to the general mining population of a new
and improved litter for the conveyance of injured persons. He had obtained the loan of one of the litters, and he submitted it to the inspection of the members. It need hardly be described
here, inasmuch as its construction is well known, because of the publicity given to it during its extensive use throughout the
Franco-German war It immediately presentel itself to the engineers as of great merit, and, after a discussion, it was deter-
mined that the secretary should bring the matter under the notice mined thant the secretary shơd bring the matter under
of the thasters, and that the best thanks of the meeting should be litter under the notice of the institute.

NOTES FROM LANCASHIRE

(From our oun Correspondent.)

Towards the end of last week there was rather a tendency
owards some improvement in the ircn trade of this district ; there
were more inquiries, with an apparent disposition for business on
the part of conssumers. This, however, has proved to be only a temporary revival, and the metal market is again excessively flat. Beyond one or two speculative tranaactions, at prices considerabl
under the current rates, there has been very little legitima business doing, and, led by the Scotch market, the price of pig
iron here is steadily falling. Consumers are still olding baok thio
orders in the hope of toult orders in the hope of touccing the market at its lowest point, but
there is little doubt that there is a large quantity of iron whish must be placed, and it is simpl
withheld
from the

ton,
mak
own
lin
${ }^{\mathrm{Hio}}$
delivered ing the Mon the nomingl out mome of the furnaces. In
quations for No. 3 foundry

stoo rath

 within thrge inquiries for manufactured iron have been put forth ery little last few days, but the terms of delivery were such that very fair demand for ordinary iron bars, and some of the works are now tolemandy bury, but many of the forges are only poorrysupplied with orders, and generally the finished iron trade is dull The nominal quotations for ordinary bars delivered are about E8 10s. per ton, but Middlesbrough makes have given way a trifle
during the week, and concessions are neeessary to secure good

orders.

has been trade continues quiet, and prices are weak, but there the Manchester district they are some thousands of tons below what they were at this time last year, and in the large coal-pro ducing districts of West Lancashire there has been almost a
geneal stoppage of the pits for the Newton races. Both men and masters seem to be fully alive to the necessity of restricting the to be maintained, and there is a prospect that during the next few weeks there will be a continual interference with work by holidays. So far as the larger irms are concerned there is no material altera lion in prices, but the smaller proprietors continue to push in the
market, and common coal has now been reduced to so low a point that it scarcely pays for the raising; and I am informed that in one or two cases colliery proprietors are seriously contemplating
turning off their common seams altogether for the present. In turning off their common seams altogether for the present. In
gas-making coal there is atolerably good inquiry, and as prices
may now bo considered low, good screened Wigan 4ft. being quoted 11s. 6d. per ton at the pit, contracts are being given out
rather freely. Cond its price. The shipping trade continues dull ; consumers will not
buy for more than a month, and only then at reduced prices, and beadily booght at 111 s . 6 . pere ton.
For coke there is a steady inquiry at late rates.
The wages question causes some perplexity in the West Lanca-
shire district. On_{n} all hands, it is admitted that a reduction of wages is necessary, and the smaller colliery proprietors, who have
been underselling the are very anxious that some step should be taken, as they are, in some cases, raising coal at an absolute loss. The leading coalowners, however, show no signs of making a move, and I under-
stand they are influenced in this by the action some of the smaller stand they are influenced in this by the action some of the smaller
concerns took when the last reduction was made, the large houses beaped the to fight the battlo with the men, whilst the other rally, the large coalowners do not care to enter into another
struggle, which would be almost inevitable, in which they might strugin be which wourted, and they sey seem determined to leane the
agititiane in the present case to be taken by the smaller collieries.
initan

THE SHEFFIELD DISTRICT.

As was announced in a portion of last week's issue of THE that week as to what the probable result of the London und other failures might be. It was well known, as stated in my last week's letter, that a local concern, the Phonix Bessemer Steel Company,
Limited, was a ereditor for a large amount in the estate of Gilead Smith and Cimited shares of the Phanyix Company began to be "knocked out" on the Stock Exchange, and so roughly treated that from 29 dis. they fell to 43 dis., the amount actually paid up being £40 per
In the afternoon of the day named the directors, after In the afternoon of the day named the directors, after several liquidation. A dirular was got out the same evening for issue to the creditors next day stating this fact, and that owing to the heavy re-construction, which was nearly complete, could not be carried through. The creditors consequently met at sheleld on Wedneswill meet on Friday at Rotherham. The capital of the company is $\begin{aligned} & \text { were } \\ & \text { in }\end{aligned}$ E100,000. The works have been stopped in a great measure, 400 to 700 men being employed. At the meeting of creditors on Wed necounts was given. Mr. Josiah Smith, manager of the Barrow-in-
nen Furness Steel and Hematite Company, was voted to the chair, there being also present Mr. Jackson, Solway Iron Company, Maryport,
Mr. Buckton, Leeds, Mr. Robinson, London, and gentlemen from Darlington, Manchester, Liverpool and other towns. The report and in addition that Gilead Smith and Co.'s order was for 5000 tons of rails, 4500 of which had been sent off. The arrangement for in cish and-two-fifths in acceptances. Warrants had been issued or the quanthicelivered, or held as per arrangement, and these
had got into third lhands, the present holders claiming that they had a lien upon them surperior to to that of the vendors. This will of course have to be decided by the court:
submitted gave the following details :

Open accounts G Smith and Co.'s aeceptances, under discount Mortgages and debentures ..	
Total	ع139,421 18 4
Book debts ${ }^{\text {so }}$	
Stock and tools.:	50,2e7 0
Cash and sundries Uncalled up eapital, estimnätel	$\begin{array}{llll}570 & 0 \\ 17,000 & 0 & 0 \\ 0\end{array}$
Deduct for secure creditors ..	13,000 00

After considerable discussion it was resolved that the affairs of the company would supervision of the Court of Chancery.
tion under the
In addition to the case of the Phenix Company, th
In addition to the case of the Phonix Company, there were very
ominous rumours in circulation here, on Friday and Saturday last, ominous rumours in circulation here, on Friday and Saturday last,
as to the credit of certain other firms and persons said to have been involved in the recent failures, or by other circumstances. I
have some pleasure, however, in stating that, although some con.
cerns in this vicinity were creditors for heary amounts with one London house a fortnight or so since, they "backed out" in time,
having had early warnings from their London agents. Had this having had early warnings from their London agents. Had this
backward movement not been accomplished, the result would, I am afraid, have been far more disastrous than in the case of the Phenix. I can also state, on most eexcellent authority, that the
rumours which have for some time been in circulation here, may, rumours which have for some time been in circulation here, may,
and ought to, cease, seeing that there is no longer any ground for whispering in the one particular instance to which I allude. I also
believe that in two or three other directions unfair suspicions are believe that in two or three other directions unfair suspicions are
being entertained there being very little reason indeed for their propagation or existence
A somewhat sensational story having been circulated by the newspapers as to an alleged very serious fire having taken place at the new collieries of the Barrow Steel Company, at Worsboro',
South Yorkshire, Mr. George E. Chapman, the company's colliery South Yorkshire, Mr. George E. Chapman, the company's colliery
manager, writes to make several corrections. He states that the pit in which the fire took place is 324 yards deep, not 325 ft , and that during the last tweelve days, prior to Thurd, hay, the sinkings
had passed through thin beds of Cannel coal which held gas, necessitating the use of safety lamps. On reaching hard spavin the shaft was bricked up and the Hiues were collected above the seams where the gas lodged in three 6in. pipes, 24 ft . up the back
side of the brattice boards. After firing a sump shot on Thursday morning, however, a flash of light was seen and a slight concussion
felt, the lowest length of brattice being observed to be on fire. Water was at once pumped in, promptly extinguishing the blaze and on Friday water drawing was commenced. Mr. Chapman
believes that the fire was caused by a splinter from the spavin sent up by the shot striking and breaking one of the pipes, the liberated gas being ignited by ocoming in contact with the burning fuse.
at the Rockingham colliery of Messrs. Newton, Chambers, and
At Co., great progress has been made since March last, when the
shatt got on fire a depth of 290 yards having now been reached. Taken as a whole, trade remains in a very quiet condition, but The transactions on record are not numerous, and the lots of iron changing hands are not large, so far as pig and merchant irons are concerned, despite the downward tendency of prices. Hema-
tite pig irons are nominally quoted at the following figures :tite pig irons are nominally quoted at the following figures:-
Maryport hematite, No. 3, 82s. 6d.; No. 4, 82s.; mottled and

 5, 87s. 6 d ; to 90 s .; mottled, 93 s .; and white, 8 s s. per ton on the
usual terms.
There is a good inquiry for ship, boiler, and armour plates, but been placed locally for steel rails have been at exceedingly bare
prices, one concern being especinlly spoken of in the trade for i ts prices, one concerrn
cutting propensities.
ithe
The cast iron industries are a little busier, there being a fairly
good call for plough plates, wire, tool steel, and crucible steel good call
castings.

NOTES FROM SCOTLAND
 (rom rar Com

Trere has been a further decline in the prices of warrants in out. On Friday only a small business was done at 59s. 6d. cash Mand 59s. 3 di . one month fixed. The market was ver quiet on
Mondy, with few transactions, and these were effected at from 3d. to is. 3 d . below the rates with which the previous week closed.
On Tuesday prices further receeded from 58s. 6d. at the opening to 58s., with buyers offering 578.9.d., and business was inactive.
To.day (Thursday) the Glasgow warrant marke throughout. There was only one transaction in the forenoon, 58s. 11d. month open, sellers 58 s .3 d . The reduced price of No. 3 .
G. M. B. enables founders to take this quality instead of English iron, so that the demand seems about to improve.
Makers' prices also show a fresh reduction this seen from the following quotations:- G.m.b. at Gek, as will b

 Kinneil, at Boness, No. 1, 62 s , No. . 3, 59s.
The shipments of pig iron from Scotch ports for the week ending
the 5 th inst. amounted to 8708 tons, showing an increase of 3348 the compared. with thoses of the corresponowing week of 1 174. The
shioment shipments of Middlesbrough pigs at Grangemouth for the week were
1221 tons, being 1160 tons less than in the corresponding week of last year.
Though
quickly grow in activity Some sorts of manufactured iron have been considerably reduced in price within the past few days, bars and
nail rods to the extent of 10 s . per ton, their respective prices now being $£ 810 \mathrm{~s}$, and $£ 9$.
The demand for coal in the western Scotch markets has
materially contracted during the last two weeks, and the markets for both home and foreign supply have been dull. Attempts have been made by holders of large stocks to press their sale at a reduc-
tion, which has induced some amount of speculation on foreign account. The foreign shipments last week were less than those of the corresponding week of 1874. Stocks are nearly everywhere on
the increase. Household coals are selling in Glasgow from 8 s.
Gd
 the pit bank, conl dross is selling as low as 1 s . per ton. It is
expected that in a ahort time the output will be greatly lessened
by the large number of miners who are leaving the collieries by the large number of miners who are leaving the collieries, and
engaging in other employments. I have heard it stated, engating in 30 per cent.. of the miners have left the pits in
this about since the present low wages were paid, and I am
that inclined to believe that the statement is not very much
exaggerated. This will, of course, tell upon the trade in a little time, though as yet its effeets have not, in the slightest degree,
been felt. Boys are now prevented from entering the mines before been fert. Boys are now prevented from entering the mines before
they are twelve years of age ; and, as the children of the miners practicable, before they have attained that age, the number of pitmen will, no doubt, be also reduced in this way. In the eastern
mining counties prices have a downward tendency. There is a slight improvement in the demand for shipping, but it is com-
pletely neutralised by the backward state of the home trade West Wemyss, in Fife, where a new dock has been erected for vessels, there was an unpreceedentedly large shipment of coal during the month of May, and the Hugo Pit there is being connected west
the harbour by underground tramway. The activity at West Wemyss Colliery is, unfortunately, an exception to the state of things prevailing in many other places.
The Flemington Coal Company, Limited, are about to open two
隹 over so0 acres, and have been leased from the Duke of Hamilton. Machinery of the most approved kind is being obtained for the pits.
At one of them it is estimated that an output of 1000 tons per At one of them it is estimated that an output of 1000 tons per
day will be attained, and the other will not fall much short of the same amo
these collieries.
The miners at Pollock Colliery, near Glasgow, after being on
trike for a fortnght resisting a reduction of 1s. per day in their wages, have been received back to their work at the former rates
of 5 s. and 5 s. 6d. a day. At Balaclava, near Johnstone, where I
informed you last week that Merry and Cuninghame had obtained warrants to eject tho miners from their dwolling-houses, the strike
continues, and the place is well-nigh deserted men remaining. In some of the larger coal producing districts in Ayrshire, notice has been given of a further reduction of 1 s . per day in the colliery' pay. There is an exceetion in the case of the masters resolved not to make any change at present either as to wages or prices.
of about 5000 , that town from the various distrion" at Perth. Proceeding to streets with flags and bands of music, and assembled at noon on the North Inch common, where they held a great public meeting Resolutions were passed in favour of a reform of the laws affectin
labour. Mr. Macdonald, who had come from London to attend the gathering, delivered a long address, in the course of which he predictiod strikes and locks-out as antiquated and barbarous, and of conciliation and arbitration they would be superseded by courts complimented the miners of the two counties on their having so long enjoyed the eight hours' day.
launches on the Clyde.

THE NORTH OF ENGLAND

Anotere fall has taken place in the price of pig iron during the
last week. At Tuesday's market at Middlesbrough, No. 3 wa quoted generally at 54s, but I was able to trace one or two cases in
which this number had actually changed hands at 53s. cash. This is a drop of fully 3s. per ton within a fortnight, and is indica
tive of increased weakness in the demand for the principal brand of Cleveland.
The condition of affairs as here indicated is not prhaps to Thadered at. There has been a slight falling off in the quantity
of pig iron made during the month of May, but still the total in of the 156 blast furnaces built, 131 immediately preceding month been a considerable addition made during the past month to the trade indicates a drooping tendency. To some extent this will no doubt be attributable to the fact that considerably more iron is now being produced in Scotland and Wales, but it is probably still more
due to a commercial and industrial crisis that has almost bordered on panic. the position and discussion takes place in commercial circles as to by gentlemem, who are not insignoincicant authorities in the trade,
that pig iron cannot be made for less than 50 s. to 52 s , and if this
and is true, it follows that the profit now made is miserable in the extreme. It is no secret, indeed, that some firms engaged in this
department of the trade have recently made heary losses, and that department of the trade have recently made heavy losses, and tha fair profit.
ing of uncertainty suation shows signs of improvement. A feel inevitably the contansequence of recent, faill prevesanent, and compositions. A 18th of the month, when acceptances fall due, at a critical time like the present, and I know that some firms are looking forward
to the 1 3th of July with fear and trembling. But the apprehen
But sion may be mud worse than the reality, and I have not heard of any new anures, either accomplished or anticipated.
The annual meeting of shareholders of the We Iron Company, Limited held last week, was a very Hartlepoor one. Owing chiefly to the falure of Messrs. Thos. Richardson and
Sons, the vendors of the works the company have been involved Sons, the vendors of the works, the company have been involved
in pecuniary embarrassments of great maznitude, and things have in peouniary embarrassments of great magnitude, and things have
become os bad that a voluntary winding up was sroposed. Instead mont, M.P., one of the directors, for the resuscitation of the company by means of debenturess
creditors and shareholders of the company, but some time will necessarily elapse before it can be adopted, if it is adopted at all.
The heaviest cloud has its silver lining and it is gratifying at a north is Limited, have made a profit on the operations of the past financial however, be arried forward to meet the deficiency on last year working, and hence the directors are unable to recommend any The Eston Grange Iron Company have now entered upon their new works, near the junction of that name, between Middies
brough and Redcar. The company make refined iron, \&c., and
make use of Mr. Thoms' make use of Mr. Thomas' patent puddling furnace.
A Clasgow firm have commenced the erection of a new iron
foundry at Port Clarence, on the Durham side of the Tees, ner the extensive ironworks of Messrs. Bell Brothers the There is a tolerably stendy business being done in the coal
trade. Sorene North-country coolowners and merchants have been
severely "bit" by the recent heavy failores, and suspensions are in severely "bit" by the recent heavy failures, and suspensions are in some equarters talked of as probable. Hopes, however are enter
tained that the strength of most of the firms engaged in the coal
trade during recent years will be suffiently husbanded to enable them to tide over present difficulties without any absolute stoppage The shipments of coal from the north-east ports are largely in
excess of this time last year. From some ports, indeed, the quantity of coal shipped is more than double what it was at this time in The ironstone miners of Cleveland have wisely determined tha they will not at present pro
a further advance of wages.
Aines of the Rosedale and Ferryhill to
WALES AND ADJOINING COUNTIES.
Much satisfaction has been given by the decision to carry on the
Pymouth and Aberdare properties, and, so far as coal is concerned there is no doubt this can be done at a profit. The Plymouth coal field is in extensive one, but seven to ten years' working would exhaust the celebrated 4 ft . seam, unless other appliances wer brought to bear. The present coal manager, Mr. Howells, has been steadiy increasing the output from the time when the lock
out was brought to an end. He began at a few hundred tons increased this to a thousand, and I expect will soon bring up his total output to 4000 tons per week. The estimated yield total oatput
350,000 tons per annum in the whole cool-field owned by the
companies is under rather than over the mark. I should companies is under rater por andiner 20,000 tons at least. One of the principal firms buying this coal is that of Stephenson, Clarke, an of prosperity which preceded the disastrous strike, the buyers had he best of it by havng the advantage of a long contract. I give it
for what it is worth, but at one colliery in the district, where the output was 3000 tons per week, the owner produced his cov a 10s. and sold at $£ 1$, reaiising $£ 1500$ per week. Those like Mr of course, do so well. The prospective plan of Mr. Fothergill in the Darran Valley would have been developed when the new railway was employed, and a connection made between that line and Penydarran Works, by which this compact little propert
would have been profitably worked

What is now required is that the estate should, if possible, hav works may be restated satisf management. that the concern will degenerate to a colliery estal)lishment. As a coalfield, for extent and resources, that of Plymouth surpasse the one owned by Mr. Crawshay, but it was unfortunate that neither should have taken the new taking hencoforth known as
Merthyr Vale Coliery, which is almost naturally appurtenant to Merthyr Vale Coliery, which is almost naturally appurtenant to Cytarthfa, and could well have been worked by Plymouth
Now that the strike has been brought to an end a good vigour has been infused into the coal departments. Some improve ment and a degree of hopeful prospect can be noticed at Ebbw Vale, Tredegar, Rhymney, and Dowlais; but the much-longed-for turn in the tide of iron affairs yet ingers, Managers cannot see how the manager said lately "T There is no ane orge estabishment works profitably. All that I can see is to work them at the least mount of loss practicable, and recoup themselves by carrying on the coal trade vigorously.
Castle, and Wales institute of Engineers met last week at the banquet, banquets and pleasant gatherings aming as usual with and masters being the order of the day, and it is gratifying to note this as inaugurating the new course of things.
Sirikes now may be confidently assumed as passed, for once basis can be arranged, and masters and men are committed to a
liding scale, all will go on comfortably. But there is much food up, principally in the large towns, to do away with or lessen the
the I shall expect new movements shortly in Cwm Clydach, and in the Monmouthshire district.

PRICES CURRENT OF METALS AND OILS.

Engineering Society, King's College, London.-At a general Mr. E. Samuelson, on rotary furnaces. The author, after giving a brief history of mechanical pnddling, proceeded to describe Danks latter, describing the furnace and water jacket, and showing how the fuel is mixed with a proper proportion of air before it is
ne then pointed out what he con injected into the furnace. He then pointed out what he con ver that of Danks. Specimens of iron and steel rails, \&c., kindly quality of the iron produced by this process.

[^0]:
 rather weak faith I have always had in ur arect system o
 attaching the bellows feeder lever to the piston－rod of a water engine，although to my knowledge this system works well under
 certain circumstances．In the particular caso mentioned the
 have I had to leave my place in the choir to run down and＂see to
 the engine．＂which had a trick of stopping dead at the end of the the engine，which had a trick of stopping dead at the end of nee
 down stroke．This usually happened when the organist was not
 actually playing，although I have known it to ocour in the middle aof a psilm．I remedied the defect by bringing the supply of water
 for working the valve pistons by a small pipe rrom the main beyond
 for the engine cock；this pipe has aiso a cock
 the valve pistons when the organ is not iuse．Then we were
 隹 troubled with a＂groaning noise，＂which Mr．Joy may remember
 wrote to him to explain，and his remedy was to thve a wide oroove
 turned in the piston and to pack it with whipcord，which was

