
!j;

4

e'. 4R E

MEMORANDUM No. 4543
ROYAL SIGNALS & RADAR

ESTABLISHMENT

THE EVOLUTION OF Tenl5

Authors: D J Tombs & D I Bruce

DTT1

PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE,6

Z RSRE MALVERN,
;2 WORCS.

0

LLJ

Li
w

LM)

, , , UNLIMITED 92- 59g

CONDITIONS (,F RELEASE
0120150 30092

..................... ORIC U

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

..................... DRIC Y

Reports quoted are not necessarily available to members of the public or to commercial
organisations.

L-

Defence Research Agency, Electronics Division
RSRE Memorandum 4543

Title The Evolution of Ten15

Authors D J Tombs Computer Systems Engineering Division
D I Bruce Signal Processing Division

Date November 11, 1991

Abstract
Recently, development of the RSRE intermediate language TenI5 and its
associated demonstration environment was suspended owing to a shortage of
resources. This memorandum describes areas for study and potential
evolution for future projects having similar goals.

A:cesion For

NTIS C, A-D~fC T~e _ I
L a',o"', rcd

- " By

UiAt ibutim/i

a.!a1),_Y Ic

Dist l S 'cl

Copyright ©

Controller HMSO

London 1991

The Evolution of Tenl5

2

The Evolution of Tenl5

Contents
Contents.. 3

1 Introduction... 5
2 The COOTS project .. 5
3 Tenl5 and TDF.. 5
4 State of TeniS development .. 6

4.1 TeniS versions... 6
4.2 The demonstration system.................................... 7
4.3 Enhancement and upgrading.................................. 7

5 Aspects of TeniS... 8
5.1 Method of definition.. 8
5.2 The translator ... 9
5.3 The type system ... 9
5.4 Cyclic structures ... 11
5.5 Procedure closures ... 11
5.6 Interactive working ... 12
5.7 Diagnostics ... 12
5.8 Memory model... 12
5.9 Mainstore ... 13
5.10 Multiple and shared memories.............................. 14
5.11 Persistent datastores ... 15
5.12 Parallelism and networking 15
5.13 Programming languages and TeniS....................... 16

6 Conclusion.. 17
Acknowledgement .. 17
References .. 18

3

The Evolution of Ten15

The Evolution of Ten15

I Introduction

TenlS [1) is a machine-independent intermediate language which has been developed at
RSRE to meet a wide variety of programming requirements; in particular it offers a high
degree of integrity. Owing to a change of emphasis, the Tenl5 programme has presently been
discontinued. Instead, effort has been directed towards TDF, a machine-independent
representation of program developed from the Tenl5 code interface.

This memorandum is intended as a reference for future work programmes which research
into some or all of the problems addressed by TeniS. It describes the state reached by the
Ten15 project and attempts to highlight those areas still under debate, and to discuss the
options for compromise and removal of perceived deficiencies.

The constraints and opportunities for evolution of Tenl5 are outlined in order to extend its
applicability, both for a wider range of programming styles and for a wider range of machine
architectures. The need for evolution is particularly marked with respect to Tenl5 support for
program analysis and parallel architectures.

The design goals of Teni 5 and its relationship with TDF are described in §3. §4 outlines the
state of Tenl5 at the point of its abandonment, and §5 contains detailed discussion on a
number of aspects of Tenl 5 to highlight perceived deficiencies and possible paths of progress.
These latter two sections have been taken more or less verbatim from a paper originally
prepared for the IED COOTS project, described in §2, apart from deletion of material
concerned only with the COOTS work programme, and minor changes which are alterations
to the modal form of the exposition rather than the content.

2 The COOTS project

TenS evolution has been under consideration at RSRE for a number of tasks, but in
particular as part of the DT] IED3/1/1059 COOTS collaboration, in which RSRE, University
College London, and Harlequin Ltd are investigating design and support for object-oriented
programming languages and environments for MIMD parallel machines. As part of the RSRE
eff -rt Tenl 5 would have b .en compared with other implementation techniques; TDF has now
been substituted in this r6le. The Tenl5 work performed under COOTS is described in [2].

In the first phase of the project we had to identify the extent of evolution of Teni5 needed to
provide parallel and object-oriented behaviour. In September 1990, therefore, we prepared a
working paper exploring its prospective developments. This described the state of
development of TenlS as it existed at that time, and how it had to be enhanced, both for
COOTS and more generally. The majority of the content of the present document is taken
from that working paper.

3 TenI5 and TDF

Ten'15 is an algebraically defined abstract machine, designed to provide a formal, integrity-
preserving, yet flexible and efficient framework, within which a wide variety of software
engineering problems can be addressed. One of its major uses is as a common intermediate
language between different programming languages and computing hardwares, with high
level support for program composition and efficient interworking. The efficiency problems
that have bedevilled previous attempts at universal intermediate languages are overcome
here by retention of typing and high level constrcts. Tenl5 is strongly typed, with a uniform

The Evolution of Tenl 5

type system that embraces a wide variety of high-level languages, together with types more
traditionally appropriate to operating system functions. Dynamic type checldng is also
supported, but it is the static type checking for strongly typed languages that provides
efficiency. The ability to choose between dynamic and static typing gives the greatest scope
for combining flexibility with efficiency.

Ten15 code is converted to machine code through a trusted translator that respects the type
rules and other semantic properties of the TenlS formalism. To maintain integrity over the
whole system a TenS machine comes with a user environment which provides support for
programming and system services. These system services are themselves written in Ten15,
via the extended type mechanism. Within the environment one can construct and execute
pieces of Ten15 but nothing else. Thus, provided the translator is correct the system cannot be
perverted and its integrity is preserved.

A few years ago, a machine-independent code interface was introduced to simplify
implementation of Tenl5. This has since been developed into TDF [3), which has found
application as an intermediate representation for a variety of programming languages. At a
lower level than Ten5, it addresses questions of language neutrality and code generation
more directly. Unlike Ten15 it does not exhibit strong typing or data integrity, nor does it
contain explicit OS structures or attempt to be a complete system in its own right.

The twin aims of flexibility and efficiency, within the constraints of formality and consistency
enforcement, parti:,ilarly at the system level, have naturally led to certain compromises and
pragmatic decision taking in the design of TentS. These compromises and decisions need to
be questioned both when considering how to develop the formality, and when considering its
breadth of applicability. The presence of TDF presents an opportunity to refocus TenS more
directly on these integrity and system aspects, with code generation and language neutrality
being downgraded to a certain extent.

Earlier this year further work on Tenl5 in its present form was abandoned, and much
software was left in an incomplete state. However many of its design goals are still valid and
may be addressed by similar projects in future. It is therefore important to preserve the
intellectual effort already put into the project, in such areas as the means of construction, the
principles underlying the type system, integrity considerations, and the mainstore memory
model.

4 State of Tenl5 development

4.1 Tenl5 versions

The present definition of TenS, used in the VAX system and by existing compilers and
translators, is known as Version 0 14), 15). An extension has been defined, called VO-p, which
has added features for pseudoparallelism. VO-p was the original baseline for the COOTS
projectt.

t The Vesion 0 bseline:
D initio of squential VO - complete
VAX tnow for VO - aompite
Exp k ernental Is. and r/sym for VO running on VAX - almost cmnplete
Denition of peudopslhl extesios for VO-p - complete
Extenio n of VAX kernel forVO-p - incomplete

6

The Evolution of Tenl 5

A paper definition, Version 1, irons out oddities in the Tenl5 operations and has some extra
functional power. In particular, in VI there is a more fluent model of integer arithmetic,
mainstore memory can be addressed at finer granularity, and complex operations such as
case-union have a cleaner semantic basis. One improvement is that many operations have an
additional form that, on detecting an error, branches rather than raising an exception. V1 is
far from perfect, but it is not intended that any further work will be done on it. V1 has a
pseudoparallel extension VI-p, which corresponds directly to VO-p.

Ten15 Version 2 is a postulated definition which will have a much morn rigorous semantic
basis, aimed at achieving greater extensibility and ease of transformation. It may be that
several iterations will be needed before we reach our ultimate goal. Much of the research
needed for its definition is continuing.

4.2 The demonstration system

The demonstration system is essentially an updated and improved version of the
environment written for the RSRE FLEX capability architecture [61, transferred into a Teni5
framework. The first prototype system has been implemented on VAX using VMS and
DECwindows, and was in the final stages of development at the point of abandonment. It is
anticipated that this system should port easily to other uniprocessor implementations, given
appropriate device drivers.

The user-interface to the system is an extensible integrated editor. Rather than having
commands and files in the conventional sense, a different, very flexible, style is presented.
The emphasis is on construction and combination of values, where any operations that are
valid on a value may be performed, giving unanticipated use of program and data.

Within this environment there is great potential for program development. Documents are
just another kind of value, and may have arbitrary values embedded within them in addition
to text, which can itself be structured in a variety of ways. A compiler is just a program that
takes such a document as its input, either producing the compiled result or highlighting any
mistakes. A module is an updateable value that contains a compiled unit. The module system
tracks dependencies between modules and can automatically provide minimal recompilation
to ensure that they are kept consistent when components are altered. Compilers exist for a
variety of languages, including Algol68, Pascal, Standard ML and a notation specially
designed for TenS. If a program fails, then the resulting exception value can be diagnosed,
enabling the values known to the program at that time to be examined and, of course,
operated on in any way the user sees fit.

The current situation is that we can transfer fragments of Ten 5 to the VAX and translate and
run them there. We do not have a f, !y usable Tenl5-based operating environment available
for general use, though many of tve components are individually working, such as the
evaluation and examination facilities, and the persistent filestore. The major unfinished
components are the notation compiler and the module system; major problems have been
encountered in bootstrapping this software. Whilst the environment is of significant value, it
cannot be considered a true demonstration of the power of Ten15 without full support for
these features, or while it is based upon Version 0.

4.3 Enhancement and upgrading

Unforeseen future developments will change Tenl5 systems in their breadth of applicability
and semantic basis. Ten5 must therefore be capable of evolution and extension. When

7

The Evolution of TenS

extending Ten15, for example to accommodate a new kind of computer architecture or
programming paradigm, care will always have to be taken that uniformity is preserved as far
as possible. There is the risk of complicating the semantics or compromising the integrity of
TenlS which previously existed. For example, VO-p tasks introduce the requirement of
atomicity in updating shared memory. The intent of the Version 2 basis, which places greater
emphasis on formal semantics, is to encourage unification rather than complication.

5 Aspects of TenIS

This section presents an overview of various aspects of the Ten15 world, with particular
reference to their perceived deficiencies. Some deficiencies are of minor impact; for others any
solution would demand undue effort or seriously compromise some other aspect of Tenl5.

Associated with each aspect is a list of work items to correct the deficiency No attempt is
made in this paper to categorise them in importance or complexity t . Many items are
incidental, but some, especially those intrinsic to Version 2 research and the memory model,
are central to future development and involve studying a great deal of theory, and so must be
considered a high risk. Very little of the proposed work has ever been done. Indeed the
expectation that even the minimal developments discussed would be beyond the resources
available was one reason for discontinuing Tenl5 as it stood.

5.1 Method of definition

Ten1S has been defined as an algebraic signature. It is the target, and sometimes also the
source, for programs which produce other programs, such as compilers, simulators and
optimisers. Apart from Pascal and Algol68 compilers we have hardly demonstrated its power
in this respect; SID [71 is one tool which could be retargetted at Tent5. To operate on a piece of
Ten15, to use it as a source for a transformation, one constructs a homomorphism over the
signature; that is, a set of small operations, one for each constructor of the signature, from
which the complete transform gets built automatically Examples include pretty printers,
encodings formatted for disc, and the translator itself. At the moment few such tools have
been built, so we do not yet know their potential - perhaps the best model is the VAX
translator. The schema for producing homomorphisms has to be delineated better. David
Bruce has developed a proper model for such transformations, initially for a translator for the
transputer, which, given a set of functions to decompose one concrete representation and a
set of encoding routines to construct another, will generate a homomorphism automatically.

Much work remains to be done on the mathematics underlying the Tent5 algebraic
definition. It is largely independent of the outside world, apart from the introduction of
formal tokens and primitive notions like integers and strings. However, the semantics are
described almost entirely n English. To use Ten15 as a formal basis for programming they
must be expressed formally. We expect the semantics of V2 will be so defined. Finding a basis
for V2 has turned out to be much harder than expected. For example, the semantics and result
type of the field selection operator are dependent upon the value of an integer parameter.
Present lines of research have recently taken us into lambda-calculus, functional
programming and Martin-Lbf's intuitionistic type theory.

Should this research yield fruit there would be a large qualitative increase in the means of
construction of Tenl5. Essentially Tenl5 would be self-representable, in the sense that we

t As asented in the original working pape, the work items also contained an analysis of their mrlevance to the

c'cx~s pe~a~8

The Evolution of Tenl5

could build a type system sufficiently powerful to allow construction only of correct Tenl5. It
would be easy to extend a TenlS defined thus, and to produce different variants tailored to
different machine characteristics. Features which are presently incorporated in an ad-hoc
manner, like polymorphism, concurrency and ADTs, could be defined naturally. As a further
benefit, the improvement of the semantic basis would facilitate the automated production
and verification of tools such as interpreters and translators.

Work items:
demonstrate algebraic construction of Tenl5 by programs
demonstrate transformation of Tenl5 to a homomorphic image
Version 2 research

5.2 The translator

The translator is the program that produces directly executable machine code corresponding
to its Tent5 input. It is distinguished in that it is the only program that has the ability to
produce such code. The trust in a Tenl5 system resides solely in the translator, or
equivalently, it is the only program that is permitted to break the integrity of the Ten15
machine, as expressed by the type system. Whilst we do not believe the translator can be
formally proven as yet, we consider that the homomorphic form of construction will aid
greatly in avoiding errors.

In the context of V2 it might be better to consider whether a symbolic interpreter is a more
important program. An interpreter would yield the true operational semantics of Ten15 and
overcome the mental distinction between compilation time and run time. There are also
several methods of automatically generating a full trans:ator directly from such an
interpreter.

Work items:
demonstrate trustworthiness of translator
write an interpreter

5.3 The type system

Underpinning all program and data within a Tenl5 system there is a strong type system. Each
fragment of Tenl5 program delivers a value; the only applicable operations are those
appropriate to its type, which is a homomorphic image derivable in finite time. The available
operations thus define the functionality of the system; by choosing them carefully we have
achieved full data integrity, in the sense that no value can be treated as having a type
incompatible with the one it had when it was first created. The translator guarantees this by
rejecting any Ten5 that does not statically conform to this type regime. With V2 the type
system will become even more powerful, and will demand especial attention to its
implementation.

It is important for several reasons that the type system and primitive operations should be
independent of specific machine characteristics. First, the correctness of a Tenl5 program is
determined by type, and it would be quite unsatisfactory if programs were deemed correct
on one machine, but not on another. For example, in VO the bounds of integer types are
limited by implementation limits (usually the machine word length), and this is reflected in
the types of some operations. A program that is type-correct for one machine may therefore
be type-incorrect for one having different word length; this is clearly an unacceptable state of
affairs.

9

The Evolution of Ten15

Second, it should be feasible to write programs that are truly portable, in the sense that their
run-time behaviour will be the same on any implementation. In both VO and V1, for example,
equality is defined as equality of representation, so that it is extremely difficult, if not
impossible, to reason formally about the behaviour of the program. Clearly, some physical
resource limits, such as the amount of available store, cannot be completely avoided, but it
might be questioned what, if any, machine-given limits are acceptable. When, for example,
the limits of bounded integers are constrained by the implementation, numeric overflow
might occur on one machine but not on one having larger word length, even though their
types are the same. Obviously, the presence of non-determinism in a parallel system means
that we cannaot specify a single behaviour. Instead, it is essential that we can reason sensibly
about non-determinism, for example, to demonstrate that its presence is benign.

Third, the type system places implicit constraints on an implementation, and we should not
casually prescribe any particular representation of its values that might prove g\ ly
unsuitable for some architectures, thus condemning them to poor efficiency. One requirement
that is technically essential is that if one type can be coerced to another, then corresponding
values of the two types must both have the same representation. Another, this time somewhat
spurious, requirement is that integers are virtually required to be two's complement.

The types of the system have been chosen at quite a fine granularity to allow efficient
physical representation and coding of operations, but not at the cost of inordinate compile-
time complexity. For example, integer subranges have been incorporated, but not subsets.
The system also extends beyond the types normally found in programming languages to
describe features that are traditionally associated with operating systems. Other type
primitives, the array for example, are quite high-level, and could be expressed as an abstract
data type. However, the operations on an ADT might not always be as efficient as those on a
built in primitive.

There is also the pragmatic concern that run-time overheads due to the advanced features of
Ten15, such as first-class procedures and garbage collection, should not be too high for
programs that do not use them - including all those derived from languages such as Ada,
Pascal, etc. This has influenced the level of data-abstraction so that, for example, standard
integer arithmetic is defined to be bounded, with an overflow exception if the machine word
length is exceeded, rather than making all integers unlimited.

Ten15 must also be able to support several forms of polymorphism, both on their own merits
and to meet the iequirements of modern functional languages and object systems. No direct
support for ad-hoc variants such as overloading are provided, as they are syntactic niceties
that compilers should deal with before generating TenlS. The present type system includes
universal quantification, so that algorithms can be abstracted away from unnecessarily
concrete instances; existential quantification, which can be used to built ADTs and objects;
and some measure of subtyping (i.e., bounded polymorphism), providing a way of tackling
some forms of inheritance. These features have been added into Ten15 over time, in a
somewhat haphazard manner. We would like to treat this area more uniformly in future, and
are not yet certain of the theoretical bounds to higher-order typing. It is an important part of
the research for Version 2 TenlS.

A particular problem is that no values in the system can be treated in a completely
polymorphic way, in that they cannot be regarded as having completely unknown type.
Polymorphism is restricted to the contents of constructs of known size, such as pointers. This
is because the size of each value must be known at compilation time, in order that sufficient
space can be allocated to hold it. Recently the concept of 'normalization' to a fixed size has
been introduced, with the intention that this will eventually be the only fixed size value.

10

The Evolution of TenI5

Unfortunately, such normalization tends to pervade the whole program, and there are severe
interoperability problems between the non-normalized and the normalized worlds. The
alternative, of implicitly normalizing every value (as in ML, Lisp and functional languages),
is considered by some as contrary to the spirit of fine granularity; it may also be slightly less
efficient.

Work items:
representation-independent semantics for equality, integer types, etc.
consider granularity and breadth of scope of the type system
implement efficient algorithms to manipulate V2 types
decide whether every value should be implicitly normalized

5.4 Cyclic structures

For integrity reasons, every declaration and memory allocation must be properly initialised
with a value of the appropriate type. This can, however, cause difficulties with cyclic
structures, where the item being constructed is needed in order to construct itself! There are
some tightly cyclic types for which there is no satisfactory means of creating any suitable
values at all. We need to develop a general model that will adequately address this problem,
since these types are otherwise perfectly reasonable, and occasionally prove rather useful.

In VO there is an operator, parameterised by a type, which creates a valid value of that type,
thus solving the immediate problem. Unfortunately, we know that this is not a good
solution - especially since, in the more powerful type systems we are interested in for V2,
the existence of such values is undecidable. There is also a special mechanism for the most
important class of cyclic structures, namely mutually recursive procedures, but again this is
not a long term solution. Many functional languages allow totally general recursive
equations, but usually achieve this via lazy evaluation, a technique which is, alas, not without
its limitations. Other languages have evaded the problem by placing strong syntactic
restrictions on the construction of recursive structures.

Work item:
find :) method of constructing general cyclic data

5.5 Procedure closures

One kind of data value in Ten15 is the procedure closure, where a block of code is bound to
non-local data. This is very important since we need it to build systems. The ion is a
generalisation of procedure that has multiple binding times. Procedures and ions are first-
class values just as scalars and vectors are; they can likewise be building blocks in composing
other values. The procedure is the unit of program in Tenl5 - it cannot be broken down to
reveal the code and non-locals from which it was constructed, but only apphed to arguments
to deliver a result. Thus, access to non-locals can be strictly controlled, and is the prime
means of achieving data security (as opposed to integrity) in Tenl5; for example, secure
communication can be implemented using a private non-local as a channel.

We can identify several subclasses of procedure which have particularly simple or useful
analytic properties, such as separability (no non-locals accessible from another procedure),
monomorphism, referential transparency. No such class has been formally identified in
Tenl5. Other properties of a procedure concern whether it is suitable for special methods of
compilation; for example, removing tail recursion, or treating as a simple subroutine. These

11

m mmm m m el m mmmm m m mmll ' ' _ _ -

The Evolution of TenI 5

are essentially compiler optimisations (concerned with such details as the form of the
procedure body or the lifetimes of local and non-local values) rather than an analytic feature.

Work items:
need for multiple binding times
consider level of data security
analysis of non-locals for shared variables
static analysis to find other properties

5.6 Interactive working

We envisage working in a uniform world where the distinction between systems and
applications programs is blurred and any value can be created and used freely and in an
unanticipated manner throughout the environment. We believe that Ten15 could be used to
build such an advanced human-computer interface. Key features of an implementation are a
flexible command interpreter capable of producing any desired TenS fragment, and the type
'typed', a packaging of a value with its type, suitable for use with the interpreter. The
command interpreter has the same integrity as preprogrammed Ten15 in that no operation
can be incorrectly applied.

The FLEX editor and command interpreter 181 together display these precepts, but in a
largely untyped domain. Further study is required into their realisation within a statically
typed framework, and also into the functionality of the command interpreter. In the
demonstration system, the command interpreter, TRUC, is quite primitive in that it does not
provide the full power of the Ten15 machine, and the type system is overridden, although in
a controlled manner, when loading modules.

Work item:
consider functional power of command interpreter

5.7 Diagnostics

On FLEX we have a post-mortem debugger which can relate values in the workspaces of
failed procedures back to source text. This tool can easily be adapted for any single-process
Ten15 system. In the longer term we would like an interactive debugger, particularly when
multiprocessing. Interpretation is one possible approach, but often it is desirable or even
necessary to work with code more closely resembling the normal compiled output. To
develop a good debugger we would have to formalise the notion of break points in Ten15 and
consider carefully the consequences for data security Useful visualisation of the confusing
amount of data available in a fully parallel system will also need much work.

Work items:
write an interactive debugger
devise methods of debugging distributed Tenl 5

5.8 Memory model

The model of memory presented by Ten15 is based on the allocation, on demand, of an
amount of memory sufficient to contain a value of some particular type. Such allocations
deliver a pointer value that allows access to that region of store; such pointers cannot be
forged, and integrity requirements mean that primitive concepts such as 'address' do not
play a part.

12

The Evolution of Ten15

There is no explicit return-to-free operation (it would be neither sound, complete nor
desirable), so for all practical purposes some kind of garbage collector is required in order to
recycle inaccessible storage. There is still the problem of what to do when there really isn't
enough store available. On FLEX the requesting process is failed - this is an unsatisfactory
heuristic that takes no account of how much memory any individual process uses and rarely
yields useful diagnostics. (Worse still, if the process forms a vital part of the system the
consequences are usually disastrous!)

Sequential Ten15 does already admit of more than one store, though to date this aspect has
been treated in a somewhat ad-hoc fashion. There is a single mainstore, which is used to hold
the contents of pointers, vectors or arrays, together with any working space that an
implementation may need. There may also be several persistent datastores, which provide
permanent disc storage. Parallel versions of Ten15 will also have to allow for the presence of
multiple memories, and consider the consequences of sharing a single store between several
processors. The operations on these different kinds of stores are significantly different. We
need to produce coherent models of these kinds of stores, especially in a parallel system
where many mainstores may exist, and consider whether these models can and should be
unified.

In safety-critical and other applications it is important that memory is not dynamically
allocated, or at least that it is known precisely how much heap is needed. We would like to
identify a static subset of Ten15. We believe that the operations which demand heap
allocation can be identified.

Work items:
out of memory exceptions
develop alternative memory models and consider their unificationt
static subsets of TenI5

5.9 Mainstore

The mainstore in Ten] 5 can be considered as serving two major purposes. Most obviously, the
contents of pointers, vectors and arrays are kept here, allowing for mutability, aliassing, etc.
In addition, it is used by an implementation as a working store, to represent values that do
not formally reside in memory, such as types, and in order to realize implicit concepts such as
procedure workspaces. The mainstore is not modelled as a separate store, but is assumed to
be closely attached to some processor, which performs operations on it.

There is a compromise to be found between the need for dynamic management of memory
and the goal of program efficiency. In particular, the garbage collection overhead should not
be intrusive, especially during highly interactive activities, such as editing. The garbage
collector is currently implemented as a variant of the mark/sweep algorithm, which is linear
in all of its parameters; the translator ensures that the run-time representations used are such
that scalars and non-scalars may be readily distinguished. A number of well-known
techniques are used to reduce the amount of memory allocated, and hence the frequency of
collection. Despite these efforts there is a noticeable interruption of processing during
garbage collection (a second or so on FLEX), and with larger memories the interruption could
easily become intolerable.

Work item:
consider on-the-fly garbage collection

+ Initial work on this topic may be found in 19).

13

The Evolution of Ten] 5

5.10Multiple and shared memories

With the introduction of parallelism into Ten15 we have to consider the consequences of
sharing a single store between several processors, and allow for the presence of multiple
memories. Processes can interact only by explicitly communicating some value or by causing
side-effects on some data-structure that has previously been transmitted.

Within a single memory, arbitrarily complex values can be communicated with essentially
infinite bandwidth by passing pointers or side-effecting. Transfers from one store to another
generally involves some physical link of limited bandwidth, so there are significant efficiency
differences.

Communication between distributed memories leads to an important semantic distinction, in
that transferring a value in the same store results in sharing of the same value, whereas
transferring to another store yields only an isomorphic copy (which preserves sharing and
circularities within the value itself, but not with other values). Other significant differences
can result from the transient nature of some kinds of value, or their implicit binding to one
particular location. Device drivers, for example, are obviously attached to some physical
entity. Because of the change of semantics involved, it may not always be appropriate to
transfer such values between memory spaces. For each such kind of value, an ad-hoc decision
has been taken whether to allow the transfer, with its change of meaning, or to forbid it. It is
not always possible to predict whether any particular value will be transferrable, due to
abstractions such as procedure non-locals, so that dynamic tests are needed.

Properties that are true on a uniprocessor can not always be assumed to hold when more than
one processor shares direct access to a memory. The best sequential algorithms are often not
the most appropriate techniques when several processors can access the memory
simultaneously For example, the correctness of many garbage collection algorithms depends
on the store not being altered whilst they are working. Co-operative scheduling on a single
individual processor is often enough to ensure atomicity of critical functions, but the store of
a shared-memory machine is accessed as if the scheduling were pre-emptive.

On the other hand, there are some hard problems associated with distributed memories.
Before complex values can be communicated between stores, they may have to be 'flattened'
to fit through the physical links joining them, and reconstructed at the other end; this is
automatically done by the Ten15 kernel. If a system is homogeneous (i.e., scalar data has the
same representation everywhere), and the same translator resides on each node, then the data
can be sent directly as described. With a heterogeneous network only untranslated TenI5 can
be transmitted, to be translated either at the remote node or by a trusted cross-translator on
the host. We need to study carefully the consequences of such heterogeneity on the
representations we can use.

Furthermore, it is practically essential that there can be cross-store pointers, for otherwise
interaction between processes residing in different memories is nigh impossible. However,
there is then significant difficulty In garbage collection, mostly because of the need to
preserve values that are only referenced from a remote store. It is also useful to be able to
perform operations on values stored remotely; the most important class is to be able to invoke
procedures on another machine with some kind of remote procedure call (RPC) mechanism.
This can be used to maintain consistency across the system by centralising some facility at a
single node.

14

The Evolution of Ten15

Work items:
garbage collection of shared and distributed memory
atomic allocation and access of shared and distributed memory
parallel on-the-fly GC
transfer of untransferrable values
heterogeneous systems
cross-store pointers

5.11 Persistent datastores

Ten] 5 splits memory into two levels: volatile mainstore and persistent filestore (datastores).
In contrast to mainstore, there is an explicit model of datastore as an entity outside the main
processing unit, be it a Winchester disc, CD-ROM, magnetic tape or whatever. There is no
concept of ownership of a datastore - any CPU/mainstore may talk to any number of
datastores. Conversely, datastore values cannot refer to anything in mainstore, nor, at the
moment, to anything on other datastores. This decoupling reflects that datastores have facets
greatly different from mainstores: they can be detached, they hold much more data, but in
larger granules, this data is persistent, and traffic is slow. We nevertheless wish to preserve
the design intent of Tent5 in the datastore model - thus datastore values can have almost
any type and their integrity cannot be corrupted. To simplify this latter goal present
implementations of datastores are non-overwriting. Each value is written to a fresh area of
the store, then the root reference updated atomically. This simple atomic updating model
proved inadequate for database transactions, and a method of updating several disc locations
together, called transactions, has been added.

Some kinds of value cannot be copied onto a persistent store because of their temporal
nature; for example, a transaction cannot be persisted, then resumed at a later date. For each
such kind of value, an ad-hoc decision has been taken whether to allow the transfer, with
change of meaning, or to forbid it.

There are optinisations which cut down on datastore traffic. On reading a value into
mainstore it is effectively cached until the next mainstore garbage collection, thus obviating
any reread of the value.

Datastore garbage collection occurs off line, when the store is full. On-line datastore garbage
collection is presently precluded by inadequate mainstore resources. Our current garbage
collector does not perform compaction, but it would be possible to compact the datastore
without corrupting the data.

Work items:
persistence of unpersistable values
cros-datastore pointers
on-line datastore garbage collection

5.12 Parallelism and networking

TenI 5 VO-p has extensions for pseudoparallelism, but does not explicitly address distribution
of program and data to remote processors. It is hoped that its pseudoparallel operations will
prove suitable for use within a truly parallel programming environment. To map programs
and data onto a parallel architecture, extra operations concerned with distribution remain to
be defined and efficient implementations found.

15

The Evolution of Teni 5

Distribution across a network may be a special case of the implementation of Ten15 on a
distributed memory multi-processor. From FLEX we have experience of transmitting data
between homogeneous machines connected via Ethernet, and of using RPCs.

One extra problem is to communicate information to and from the world outside Ten15. To
preserve the integrity of Ten15, data formatted outside must either be sufficiently primitive
that we know it must be safe (such as a byte stream), or it has to be trusted.

Work items:
distribution across homogeneous close-coupled networks
unification of loose and close-coupled networks
trustworthiness of data
distribution across networks
memory allocation and garbage collection for distributed Teni5

5.13 Programming languages and Ten15

The main use to date of Tenl5 has been as a common target language for compilers. Algol68
and Pascal compilers exist for VO, one for Standard ML is almost complete, and one for Ada
has been partially developed. Full mappings from Ada to VI have also been produced.
Whilst integrity constraints mean that unsafe languages such as C are not suitable sources, it
ought in principle to be possible to compile any strongly typed language to Teni 5. However,
a few language features, such as the first-class continuations found in Scheme, are not well
supported and may cause implementations to be rather inefficient. An important part of our
research will be to evolve so that such features can be realistically provided.

On the other hand, it is not possible to obtain the full power of Teni5 by compilation from
existing languages. An 'assembler' is required so that we can create any specific fragment of
Tenl5, which can then be combined with the output of other compilers. The notation that
originally produced these small fragments has since evolved into a substantial programming
language in its own right. The success of Tenl 5 must surely be linked with that of a language,
or possibly a family of languages, that are capable of harnessing its full power. So those
languages must now be considered an important part of the Tenl5 world, and had better be
good.

Unfortunately, as well as gaining syntactic power, the present notation has garnered a large
range of non-orthogonal historic encrustations which must be cleaned away. We started
producing a new compiler which reformed the worst of these, like the module system. Strict
upward compatibility was not required, but we did wish to salvage as much existing code as
possible. Excepting system problems, this new compiler is largely complete. For the future
we will have to consider the functionality, style and power we want from new languages.

Work items:
evolution to extend scope of language support
complete new notation compiler
consider expressiveness of a new language

16

The Evolution of Tenl 5

6 Conclusion

TenlS addresses a large number of problems in computing, particularly in the fields of data
integrity and systems programming, which are outside the remit of TDF. Nevertheless, in
many respects its structure and functionality is inadequate. Given sufficient time and
resources Tenl5 could no doubt have been extended to cover a much broader spectrum of
programming styles and architectures, and to do so with greater ease and assurance than it
presently does.

The review of the inadequacies and suggested extensions presented in this paper is wide
ranging, and the effort it implies is very high. The language needs to be considered as a
whole; piecemeal extensions, for example the facilities for parallelism added by the COOTS
team, occlude the real goals of the project. Furthermore, technical problems were being
encountered in building the demonstration system. Consequent upon the lack of necessary
resources the development of Tenl5 along that path was abandoned.

We believe that future work programmes will adopt the ideas of Tenl5. In this document, we
have discussed weaknesses in its definition, and consequences, both positive and negative,
resulting from its all-embracing approach. Recognition of these aspects will help future teams
to identify specific problems for investigation. To this extent, at least, the Tenl5 experience
has been valuable.

Acknowledgement

The authors acknowledge the assistance of P W Edwards and I F Currie of the Computer
Systems Engineering Division of RSRE in drafting the original COOTS working paper upon
which the bulk of this memorandum is based.

17

The Evolution of Ten1S

References

I 'The Algebraic Specification of a Target Machine: Ten15"
J M Foster
Published in "High-Integrity Software", ed. C T Sennett
Pitman, 1989

2 "TenI5 Developments to Support Parallelism"
P W Edwards, D J Tombs, D I Bruce
IED 3/1/1059 COOTS deliverable 2.1, June 1991
Republished as RSRE Memorandum 4545, November 1991

3 "TDF Specification"
J M Foster, M Brandreth, P W Core, I F Currie, N E Peeling
RSRE Report 91005, October 1990

4 "Ten] 5 Prototype"
J M Foster, I F Currie, N E Peeling, PW Edwards, M Stanley, P W Core, M Brandreth
RSRE Report 91025, November 1991

5 "The Ten5 Signature: The Definition of Ten5 - Version 0"
D I Bruce
RSRE internal documentation, March 1990

6 "PerqFlex Firmware"
I F Currie, J M Foster, P W Edwards
RSRE Report 85015, December1985

7 "A Syntax Improving Program"
J M Foster
Computer Journal, Vol. 11, No. 1, May 1968, pp 31-34

8 "An Evaluation of the FLEX Programming Support Environment"
M Stanley
RSRE Report 86003, August 1986

9 "A Strongly-Typed Approach to Parallel Systems"
D I Bruce
Proceedings of Workshop on Abstract Machine Models for Highly-Parallel Computers
Vol. 2, pp 57-59
BCS Parallel Processing Specialist Group, Leeds, March 1991

18

REPORT DOCUMENTATION PAGE ORIC Reference N~r~e (if known)

ovisra srt asseonof ~ee UNCLASSIFIED...
(As fairs Possble this ~he shouldl contain only unclasified infomtefion. If If is necessary to enter drnlle informion, ft field oncearned
nmust be marked to icat e lassificaion egi (R). (C) or (S). - MlYe
Originators Reference/Report No.MnhY

MEMO 4543 NOVEMBER 1991

Originators Narne andl Location
RISRE, St Andrews Road
Malvern, Worcs WR14 3PS

Montrng Agenc Niars eand Location

THE EVOLUTION OF Tenl5

Report Secuity Classificabon Tite Classfficstloin (U. R. C or S)
UNCLASSIFIED U

Foreign Language Title (in the case of translationis)

Conference Details

Agency Reference Contract Nurnber arnd Period

Recerntly development of the RSRE intermediate language Tenl15 and its associated demonstration
environment was suspended owing to a shortage of resources. This memorandum describes areas for
study and potential evolution for future projects having similar goals.

AeatClattllitelo (U.R.C or S)

U

Neirftmon Stwe (Eiller any, iiiitsons an fte 5bttutkin of the docnent)

UNLIMITED

INTENTIONALLY BLANK

