Testing utility of model - *F***-test**

- Testing the utility of the model to predict y by conducting individual t-tests on each of the β 's is not a good idea.
- Why? Even if we conduct each test at the $\alpha = 0.05$ level, the *overall* probability of incorrectly rejecting H_0 (the probability of a Type I error) is larger than 0.05.
- Even if we begin with an α level of, for example, 0.05 on each individual test for β 's, the overall probability of an error will always be larger than the probability of Type I error on individual tests.
- The larger the number of predictors in the model, the higher the probability that at least one of those hypotheses tests will lead to the wrong conclusion.

• Illustration: suppose we conduct tests on two parameters β_1, β_2 and we use $\alpha = 0.05$ on each test. See what may happen:

	Correct decision for eta_1	Incorrect decision for eta_1
Correct decision for eta_2	0.95×0.95	0.95×0.05
Incorrect decision for β_2	0.95×0.05	0.05×0.05

- The probability of a correct decision on *both parameters* is only 0.95
 × 0.95 = 0.90! So our individual Type I error rate (α) is *eroded* in multiple tests.
- In general, for an individual Type I error rate of α , the overall error rate on k tests is $(1 \alpha)^k$. For example, for k = 4 and $\alpha = 0.05$, the probability that we will reach the correct conclusion for all four β 's is only $0.95^4 = 0.81$, so the experiment-wise α is really 0.19.

• Rather than testing each β individually, we use a *global test* that encompasses all β 's and test the following overall hypothesis:

 $H_0 : \beta_1 = \beta_2 = \dots = \beta_k = 0$ $H_a : \text{ at least one } \beta_j \neq 0.$

• The **test statistic** to test this hypothesis is called *F*-statistic and is calculated as:

$$F = \frac{(SS_{yy} - SSE)/k}{MSE} = \frac{R^2/k}{(1 - R^2)/[n - (k+1)]}$$

- The F statistic is the ratio of
 - the explained variability (as reflected by R^2) and
 - the unexplained variability (as reflected by $1 R^2$),

each divided by the corresponding degrees of freedom.

• The larger the F statistic, the more useful the model.

- <u>Critical value</u> for the test: $F_{\alpha,numdf,denomdf}$ (three subscripts: α , numerator degrees of freedom and denominator degrees of freedom).
- We use an F-table (pages 763-770 in book).
- Each table corresponds to a different α : 0.1, 0.05, 0.025 and 0.01.
- We search the table using the numerator degrees of freedom (column) and the denominator degrees of freedom (rows):

Numerator d.f. = kDenominator d.f. = n - (k + 1)

• For example, if $\alpha = 0.1$, n = 20 and k = 4, $F_{0.1,4,15} = 2.36$.

- Critical region: reject H_0 at level α if $F \geq F_{\alpha,numdf,denomdf}$.
- How do we interpret the result?
 - If we fail to reject H_0 : there is no evidence that any of the predictors are linearly associated to the response.
 - If we reject H_0 : At least one of the predictors is linearly associated to the response.
- Note that if we reject H_0 , all we know is that one of the predictors is associated to y but we do not know which.
- The next step is to conduct individual t-tests on the β 's, but keeping in mind the confidence erosion discussed earlier.

- The F statistic for the model is given by both SAS and JMP directly on the output. SAS calls it "'F Value"' and JMP calls it "'F Ratio"'.
- Both SAS and JMP compute the F-statistic as:

$$F = \frac{\text{Model Mean Square}}{\text{Error Mean Square}}$$

and the degrees of freedom are:

Numerator df = Model df = k
Denominator df = Error df =
$$n - (k + 1)$$
.