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Classical Diffie-Hellman and quantum key distribution

• Classical DH protocol : ga, gb → gab

Hard problem : DH problem weaker than Discrete log pb.

• Quantum key distribution
There exists a quantum channel between A and B, after sending a
sequence of bits A and B share a noisy sequence of bits.

2 steps :

- reconciliation :A and B exchange messages from their noisy
common sequence and recover a common shared sequence of bits
with very high proba
- privacy amplification : to get a larger common sequence.

Security :

- the noisy common sequence is random from quantum arguments
- remaining steps are information security based
→ considered as sure from a information theory point of view
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Problematic

classical Diffie-Hellman : A and B share a common secret based
on computational security

quantum key distribution : A and B share a noisy sequence
based on information theory security

Is it possible to mix these ideas and obtain a noisy shared
sequence based on computational security and how to use it ?

How could this work ?
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Noisy DH protocol

Suppose A is commutative ring with ’+’ and ’x’ with a norm |.|.

h : a random element of A

Alice chooses a and α elements of A with small norm

Bob chooses b and β elements of A with small norm

Alice sends → Bob : σ(a, α) = ah + α

Bob sends → Alice : σ(b, β) = bh + β

From σ(b, β) Alice computes aσ(b, β) = abh + aβ

From σ(a, α) Bob computes bσ(a, α) = abh + bα

→ these two quantities differ by aβ − bα of small norm if
a, b, α and β are of small norm !
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Practical example

The previous protocol can work for many rings, in practice one
needs :

- recovering a and α from σ(a, α) must be hard
- one needs to be able to decode in some way Among many

examples of application let us consider :

A = F2[x ]/(xn − 1)

with Hamming distance.
In that case recovering a and α from σ(a, α) = ah + α corresponds
to be able to decode a random double circulant code with parity
check matrix H = (I |h) : H.(α, a)t = σ(a, α), with
a ∼ α = O(

√
n).
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Decoding random double circulant codes

- The problem has been around in coding theory for 40 years → no
general algorithm

- Interest in cryptography : NTRU (15 years), SternDC (5 years),
Ring-LWE (this year)

- Decoding a random code for a weight t = O(
√

n), NP-hard (M.
Finiasz PhD thesis)

→ no structural specific attack in the general case except a
linear factor.

for weight(a) = weight(α) = w = O(
√

n) best attack in n22w
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Intractability assumptions

1. Decoding of random double circulant codes for errors of
weightw in O(

√
n) is of complexity n22w

2. Weak noisy Diffie-Hellman problem
From two syndromes ah + α and bh + β it is difficult to recover
hab completely.

3. Strong noisy Diffie-Hellman problem
From two syndromes ah + α and bh + β it is difficult to recover a
large part of the bits of hab (ie hab + e).

Remark The two first assumptions are equivalent, the third is
believed to be as hard as the first one.
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A toy protocol

Information sharing step : Alice and Bob exhange syndromes
ah + α and bh + β.

Reconciliation step Alice and Bob agree on a PUBLIC code
C[n,k] of matrix G, and Alice sends to Bob c = mG + a(bh + β),
Bob decodes :

c + b(ah + α) = mG + aβ + bα in m.

Cannot work !
→ too much information in the reconciliation step.

Number of unknowns : n (coordinates of a) + k ( from m)
Number of equations : n − k (size of dual matrix)

→ easy to solve since a is sparse.
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Two solutions

Two possibilities to make the previous system hard :

1 Decrease the information given in the reconcialition step by
using a shorter code

2 Increasing the number of unknowns by adding an error e to c
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Noisy Diffie-Hellman protocol

Noisy Diffie-Hellman protocol

1 Alice and Bob agree on an integer n and h ∈ A =2 [X ]/(X n − 1).

2 Alice and Bob each choose a, α and b, β of weight w , and exchange
sA = σ(a, α) = ah + α and sB = σ(b, β) = bh + β

3 Alice computes xA = asB and Bob computes xB = bsA.

4 Alice and Bob agree on m < log
(

n
w

)
and a publicly known code C

of length m and dimension k, which is able to decode enough errors.

5 Alice and Bob agree on random subset M of [1, n] of cardinality m.
Alice chooses a random secret S ∈ {0, 1}k and encodes it as a
codeword c ∈ C . Alice sends Bob the vector of {0, 1}m

z = c + xA
M

where xA
M stands for the vector xA restricted to the subset M of

coordinate positions.

6 Bob computes z + xB
M , applies to it the decoding algorithm for C ,

and recovers c hence S .
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El Gamal like encryption scheme

Noisy El Gamal protocol

1 Key generation Alice chooses an integer n, a random element h of
the ring A =2 [X ]/(X n − 1), two rings elements a, α of Hamming
weight w and as in a previous protocol an [m, k] code C with
generator matrix G and a random subsequence M with m elements
of [1, n].

Secret key : the couple (a, α).

Public Key : the syndrome sA = σ(a, α) = ah + α, n, h, G and M.

2 Encryption Bob converts its message into message subsequences of
length k. Let µ be a length k message. Bob chooses random
elements b, β, all of Hamming weight w and computes
sB = σ(b, β) = bh + β and the value z = µG + xB

M , where xB
M

stands for the vector xB = bsA restricted to the subset M. The
encrypted message is the couple : (sB , z).

3 Decryption Alice receives (sB , z), computes xA = asB , z ′ = z + xA
M

and decodes z ′ into µG to recover µ.
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Security

• When n is prime such that xn − 1 = (1 + x)(1 + x + .. + xn−1)
multiplication by random h in A behave like an universal hash
function
• If only a small number of position are given (corresponding to
the entrpy of the secret) then there is no leaking of information in
the reconciliation step
• Classical results of Benett,Brassard et al in information theory :

Theorem

Under the intractability assumption on solving the noisy
Diffie-Hellman problem, extracting any information on the shared
secret requires from the eavesdropper a computational effort at
least equal to n22w−m+k

→ Information theory security reduction → NO information
leaks in the reconciliation step if an attacker is not able to
solve the noisy DH problem.
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Noisy DH with errors

Noisy El Gamal with errors protocol

1 Key generation Alice chooses an integer n, a random element h of
the ring A =2 [X ]/(X n − 1), two rings elements a, α of Hamming
weight w and as in the previous protocol a [n, k] code C with
generator matrix G and a permutation P on the n coordinates.

Secret key : the couple (a, α).

Public Key : the syndrome sA = σ(a, α) = ah + α, n, h, G and P.

2 Encryption Bob converts its message into message subsequences of
length k. Let µ be a length k message. Bob chooses random
elements b, β, all of Hamming weight w and computes
sB = σ(b, β) = bh + β and the value z = µG + xB

P + e, where xB
P

stands for the permutation P applied to the vector xB = bSA and e
is an e rror of weight t. The encrypted message is the couple :
(sB , z).

3 Decryption Alice receives (sB , z), computes xA, z ′ = z + xA
P and

decodes z ′ into µG to recover µ.
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Security

If one simply adds errors, no information theory based security, but
system to solve with 3n sparse unknowns, 2n equations :
Security : decoding of an almost QC random matrix (2% of
columns are not random).

H ′′ =

(
H Idn 0
S t

B 0 Idn

)
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Parameters and complexity

Size of key : n
Complexity of encryption and decryption : 0(n

√
n (and

0(nlog(n) asymptotically)

Parameters with Information theory security

n w sb code C ε complexity security

313603 56 78 bch(127, 15) 3.10−3 224 280

500009 100 131 bch(255, 37) 7.10−3 226 280
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Parameters - Encryption with errors added

n w t sb code C ε complexity security
4451 33 150 78 bch(127, 51)⊗ 135 3.10−5 217 278

4877 33 150 131 bch(255, 37)⊗ 119 1.10−2 217 278

4877 34 150 91 bch(255, 51)⊗ 119 2.10−5 217 280

5387 34 150 131 bch(255, 37)⊗ 121 3.10−6 217 280

5387 34 150 91 bch(255, 51)⊗ 121 2.10−10 217 280

5869 34 150 131 bch(255, 51)⊗ 123 3.10−10 218 280

7829 44 200 131 bch(255, 37)⊗ 131 4.10−7 219 2100

11483 58 250 131 bch(255, 37)⊗ 143 7.10−7 220 2130

For decoding one uses a concatenation of fast t decode BCH codes.
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Conclusion and future work

1 Generalization of the DH approach

2 New approach for code-based crypto

3 Unveil links between : classical crypto / post-quantum crypto
/ quantum crypto

4 Code-based encryption with NO MASKING

5 Information theoretic reduction to known problem

6 Very efficient - small size of key for weaker security assumption

7 Very versatile approach : lattices, rank distance, number
theory...
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