Noisy Diffie-Hellman protocols

Carlos Aguilar ${ }^{1}$, Philippe Gaborit ${ }^{1}$, Patrick Lacharme ${ }^{1}$, Julien Schrek ${ }^{1}$ and Gilles Zémor ${ }^{2}$
1 University of Limoges, France,
2 University of Bordeaux, France.

Classical Diffie-Hellman and quantum key distribution

- Classical DH protocol : $g^{a}, g^{b} \rightarrow g^{a b}$ Hard problem : DH problem weaker than Discrete $\log \mathrm{pb}$.

- Quantum key distribution

There exists a quantum channel between A and B, after sending a sequence of bits A and B share a noisy sequence of bits.

2 steps:

- reconciliation : A and B exchange messages from their noisy common sequence and recover a common shared sequence of bits with very high proba
- privacy amplification: to get a larger common sequence.

Security :

- the noisy common sequence is random from quantum arguments
- remaining steps are information security based
\rightarrow considered as sure from a information theory point of view
classical Diffie-Hellman : A and B share a common secret based on computational security
quantum key distribution : A and B share a noisy sequence based on information theory security

Is it possible to mix these ideas and obtain a noisy shared sequence based on computational security and how to use it ?

How could this work?

Noisy DH protocol

Suppose A is commutative ring with ' + ' and ' x ' with a norm |.|.
h : a random element of A
Alice chooses a and α elements of A with small norm
Bob chooses b and β elements of A with small norm
Alice sends \rightarrow Bob : $\sigma(a, \alpha)=a h+\alpha$
Bob sends \rightarrow Alice : $\sigma(b, \beta)=b h+\beta$
From $\sigma(b, \beta)$ Alice computes $a \sigma(b, \beta)=a b h+a \beta$
From $\sigma(a, \alpha)$ Bob computes $b \sigma(a, \alpha)=a b h+b \alpha$
\rightarrow these two quantities differ by $a \beta-b \alpha$ of small norm if a, b, α and β are of small norm!

The previous protocol can work for many rings, in practice one needs :

- recovering a and α from $\sigma(a, \alpha)$ must be hard
- one needs to be able to decode in some way Among many examples of application let us consider :

$$
A=F_{2}[x] /\left(x^{n}-1\right)
$$

with Hamming distance.
In that case recovering a and α from $\sigma(a, \alpha)=a h+\alpha$ corresponds to be able to decode a random double circulant code with parity check matrix $H=(I \mid h): H .(\alpha, a)^{t}=\sigma(a, \alpha)$, with $a \sim \alpha=O(\sqrt{n})$.

Decoding random double circulant codes

- The problem has been around in coding theory for 40 years \rightarrow no general algorithm
- Interest in cryptography: NTRU (15 years), SternDC (5 years), Ring-LWE (this year)
- Decoding a random code for a weight $t=O(\sqrt{n})$, NP-hard (M. Finiasz PhD thesis)
\rightarrow no structural specific attack in the general case except a linear factor.
for weight $(a)=$ weight $(\alpha)=w=O(\sqrt{n})$ best attack in $n 2^{2 w}$

Intractability assumptions

1. Decoding of random double circulant codes for errors of weight w in $O(\sqrt{n})$ is of complexity $n 2^{2 w}$
2. Weak noisy Diffie-Hellman problem

From two syndromes $a h+\alpha$ and $b h+\beta$ it is difficult to recover hab completely.
3. Strong noisy Diffie-Hellman problem

From two syndromes $a h+\alpha$ and $b h+\beta$ it is difficult to recover a large part of the bits of $h a b$ (ie $h a b+e$).

Remark The two first assumptions are equivalent, the third is believed to be as hard as the first one.

A toy protocol

Information sharing step : Alice and Bob exhange syndromes $a h+\alpha$ and $b h+\beta$.

Reconciliation step Alice and Bob agree on a PUBLIC code $\mathrm{C}[\mathrm{n}, \mathrm{k}]$ of matrix G , and Alice sends to Bob $c=m G+a(b h+\beta)$, Bob decodes:
$c+b(a h+\alpha)=m G+a \beta+b \alpha$ in m.
Cannot work!
\rightarrow too much information in the reconciliation step.
Number of unknowns: n (coordinates of $a)+k$ (from m) Number of equations : $n-k$ (size of dual matrix)
\rightarrow easy to solve since a is sparse.

Two possibilities to make the previous system hard :
(1) Decrease the information given in the reconcialition step by using a shorter code
(2) Increasing the number of unknowns by adding an error e to c

Noisy Diffie-Hellman protocol

Noisy Diffie-Hellman protocol

(1) Alice and Bob agree on an integer n and $h \in A={ }_{2}[X] /\left(X^{n}-1\right)$.
(2) Alice and Bob each choose a, α and b, β of weight w, and exchange $s_{A}=\sigma(a, \alpha)=a h+\alpha$ and $s_{B}=\sigma(b, \beta)=b h+\beta$
(3) Alice computes $x^{A}=a s_{B}$ and Bob computes $x^{B}=b s_{A}$.
(9) Alice and Bob agree on $m<\log \binom{n}{w}$ and a publicly known code C of length m and dimension k, which is able to decode enough errors.
(5) Alice and Bob agree on random subset M of $[1, n]$ of cardinality m. Alice chooses a random secret $S \in\{0,1\}^{k}$ and encodes it as a codeword $c \in C$. Alice sends Bob the vector of $\{0,1\}^{m}$

$$
z=c+x_{M}^{A}
$$

where x_{M}^{A} stands for the vector x^{A} restricted to the subset M of coordinate positions.
(0) Bob computes $z+x_{M}^{B}$, applies to it the decoding algorithm for C, and recovers c hence S.

Noisy El Gamal protocol

(1) Key generation Alice chooses an integer n, a random element h of the ring $A={ }_{2}[X] /\left(X^{n}-1\right)$, two rings elements a, α of Hamming weight w and as in a previous protocol an $[m, k]$ code C with generator matrix G and a random subsequence M with m elements of $[1, n]$.
Secret key : the couple (a, α).
Public Key : the syndrome $s_{A}=\sigma(a, \alpha)=a h+\alpha, n, h, G$ and M.
(2) Encryption Bob converts its message into message subsequences of length k. Let μ be a length k message. Bob chooses random elements b, β, all of Hamming weight w and computes $s_{B}=\sigma(b, \beta)=b h+\beta$ and the value $z=\mu G+x_{M}^{B}$, where x_{M}^{B} stands for the vector $x^{B}=b s_{A}$ restricted to the subset M. The encrypted message is the couple: $\left(s_{B}, z\right)$.
(3) Decryption Alice receives $\left(s_{B}, z\right)$, computes $x^{A}=a s_{B}, z^{\prime}=z+x_{M}^{A}$ and decodes z^{\prime} into μG to recover μ.

Security

- When n is prime such that $x^{n}-1=(1+x)\left(1+x+. .+x^{n-1}\right)$ multiplication by random h in A behave like an universal hash function
- If only a small number of position are given (corresponding to the entrpy of the secret) then there is no leaking of information in the reconciliation step
- Classical results of Benett,Brassard et al in information theory :

Theorem

Under the intractability assumption on solving the noisy Diffie-Hellman problem, extracting any information on the shared secret requires from the eavesdropper a computational effort at least equal to $n 2^{2 w-m+k}$
\rightarrow Information theory security reduction \rightarrow NO information leaks in the reconciliation step if an attacker is not able to solve the noisy DH problem.

Noisy DH with errors

Noisy El Gamal with errors protocol

(1) Key generation Alice chooses an integer n, a random element h of the ring $A={ }_{2}[X] /\left(X^{n}-1\right)$, two rings elements a, α of Hamming weight w and as in the previous protocol a $[n, k]$ code C with generator matrix G and a permutation P on the n coordinates.
Secret key : the couple (a, α).
Public Key : the syndrome $s_{A}=\sigma(a, \alpha)=a h+\alpha, n, h, G$ and P.
(2) Encryption Bob converts its message into message subsequences of length k. Let μ be a length k message. Bob chooses random elements b, β, all of Hamming weight w and computes $s_{B}=\sigma(b, \beta)=b h+\beta$ and the value $z=\mu G+x_{P}^{B}+e$, where x_{P}^{B} stands for the permutation P applied to the vector $x^{B}=b S^{A}$ and e is an e rror of weight t. The encrypted message is the couple : $\left(s_{B}, z\right)$.
(3) Decryption Alice receives $\left(s_{B}, z\right)$, computes $x^{A}, z^{\prime}=z+x_{P}^{A}$ and decodes z^{\prime} into μG to recover μ.

Security

If one simply adds errors, no information theory based security, but system to solve with $3 n$ sparse unknowns, $2 n$ equations: Security : decoding of an almost QC random matrix (2% of columns are not random).

$$
H^{\prime \prime}=\left(\begin{array}{ccc}
H & I d_{n} & 0 \\
S_{B}^{t} & 0 & I d_{n}
\end{array}\right)
$$

Size of key : n
Complexity of encryption and decryption : $0(n \sqrt{n}$ (and $0(n \log (n)$ asymptotically)

Parameters with Information theory security

n	w	sb	code C	ϵ	complexity	security
313603	56	78	$b c h(127,15)$	3.10^{-3}	2^{24}	2^{80}
500009	100	131	$b c h(255,37)$	7.10^{-3}	2^{26}	2^{80}

Parameters - Encryption with errors added

n	w	t	sb	code C	ϵ	complexity	securit
4451	33	150	78	bch $(127,51) \otimes \mathbf{1}_{35}$	3.10^{-5}	2^{17}	2^{78}
4877	33	150	131	$b c h(255,37) \otimes \mathbf{1}_{19}$	1.10^{-2}	2^{17}	2^{78}
4877	34	150	91	$b c h(255,51) \otimes \mathbf{1}_{19}$	2.10^{-5}	2^{17}	2^{80}
5387	34	150	131	$b c h(255,37) \otimes \mathbf{1}_{21}$	3.10^{-6}	2^{17}	2^{80}
5387	34	150	91	$b c h(255,51) \otimes \mathbf{1}_{21}$	2.100^{-10}	2^{17}	2^{80}
5869	34	150	131	$b c h(255,51) \otimes \mathbf{1}_{23}$	3.10^{-10}	2^{18}	2^{80}
7829	44	200	131	$b c h(255,37) \otimes \mathbf{1}_{31}$	4.10^{-7}	2^{19}	2^{100}
11483	58	250	131	$b c h(255,37) \otimes \mathbf{1}_{43}$	7.10^{-7}	2^{20}	2^{130}

For decoding one uses a concatenation of fast t decode BCH codes.

Conclusion and future work

(1) Generalization of the DH approach
(2) New approach for code-based crypto
(3) Unveil links between : classical crypto / post-quantum crypto / quantum crypto
(1) Code-based encryption with NO MASKING
(3) Information theoretic reduction to known problem
(0) Very efficient - small size of key for weaker security assumption
(1) Very versatile approach : lattices, rank distance, number theory...

