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We introduce a plan toward a perfect list of convex pentagons that can tile the whole plane in edge-to-edge
manner. Our strategy is based on Bagina’s Proposition, and is direct and primitive: Generating all candidates of
pentagonal tiles (several hundreds in number), classify them into the known 14 types, geometrically impossible
cases, the cases that do not generate an edge-to-edge pentagonal tiling, and tentatively uncertain cases. At present,
still 34 uncertain cases remain, but these case will be settled in near future. Some other results are also presented.
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1. Introduction
Tiling by polygons is to cover the whole plane with poly-

gons without gaps or overlaps. If all tiles in a tiling are of
the same size and shape, then the tiling is called monohe-
dral, and the polygon in the monohedral tiling is called the
prototile of monohedral tiling (Grünbaum and Shephard,
1987), or simply, the polygonal tile. In the classification
problem of convex polygonal tiles, only the pentagonal case
remains unsettled. At present, known convex pentagonal
tiles are classified into 14 types (see Fig. 1). However, it is
not known whether the list of known types is perfect or not
(Kershner, 1968; Gardner, 1975; Grünbaum and Shephard,
1987; Hallard, Kenneth and Richard, 1991; Wells, 1991;
Sugimoto and Ogawa, 2005, 2006, 2009b).

Tiling by convex polygons is called edge-to-edge if any
two convex polygons are either disjoint or share only one
vertex or only one edge in common. In an edge-to-edge
tiling, vertices are called nodes. Thus, at a node of an edge-
to-edge tiling, vertices of several polygons meet, and the
sum of the interior angles at the vertices gathered at a node
is equal to 360◦. More generally, let us call the multi-set
of vertices of polygons a spot, if the sum of interior angles
at the vertices in the multi-set is equal to 360◦ (see Fig. 2).
Thus, a node of an edge-to-edge tiling presents a spot, but a
spot is not necessarily corresponding to a node of edge-to-
edge tiling, because, a spot is defined without considering
the edge-lengths.

As shown in Fig. 1, let us label the vertices (angles) of
the convex pentagon with labels A, B, C , D, E , and the
edge of that with labels a, b, c, d , e in the fixed manner.
The interior angles at a vertex is denoted by the same letter
(label) as the vertex. If 2A + B + C =360◦ holds, then the
multi-set {A, A, B, C} constitute a spot, which is called the
label-set of the spot. The number of labels (with allowing
repetition) in the label-set is called the valence of the spot.
For example, if the label-set of a spot is {A, A, B, C} then
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the valence of the spot is four (or we say, the spot is 4-
valent). The number of different labels of the label-set of
a spot is called the size of the spot. Thus, a spot with the
label-set {A, A, B, C} has size 3.

Equilateral convex pentagonal tiles are completely char-
acterized in the following way.

THEOREM 1 (Hirschhorn and Hunt, 1985). An equilateral
convex pentagon tiles the plane if and only if it has two
angles adding to 180◦, or it is the unique equilateral convex
pentagon with angles A, B, C, D, E satisfying 2B + A =
2E +C = 2D + A+C = 360◦ (A ≈ 70.88◦, B ≈ 144.56◦,
C ≈ 89.26◦, D ≈ 99.93◦, E ≈ 135.37◦).

Bagina (2004) proved the following proposition, and she
used it to present a different proof of Theorem 1.

BAGINA’S PROPOSITION. In each edge-to-edge tiling of
the plane by uniformly bounded pentagons, there exists a
tile with at least three nodes of valence three.

“Uniformly bounded” means that there are fixed
R, r (R > r > 0) such that every tile contains a disk of
radius r , and is enclosed by a disk of radius R. Since we
consider only congruent convex pentagonal tiles, our tiling
is always uniformly bounded.

The purpose of this research is to obtain a perfect list of
types for convex pentagonal tiles that can generate an edge-
to-edge tiling. Though our research is not completed yet,
using our procedure or partial results obtained so far, we
prove the following.

THEOREM 2 If a convex pentagon in which the sum of three
consecutive angles is never equal to 360◦ has exactly four
different edge-lengths, and the two edges of equal length are
not consecutive, then the convex pentagon cannot generate
an edge-to-edge tiling.

THEOREM 3 If a convex pentagon can generate an edge-
to-edge tiling with one 4-valent nodes and at most two 3-
valent nodes, then the convex pentagon belongs to one (or
more) of type 1, type 2, type 6, type 7, type 8, or type 9.
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Fig. 1. Convex pentagonal tiles of 14 types. The pale gray pentagons in each tiling indicate the fundamental region (the unit that can generate a periodic
tiling by translation only).

THEOREM 4 Let T be an edge-to-edge tiling by a convex
pentagonal tile. If T has only 3-valent nodes of size 3 and
4-valent nodes, then the convex pentagonal tile belongs to
one (or more) of type 1, type 2, or type 4.

The purpose of this paper is to introduce a plan to an-
swer the following. Among the convex pentagons that can
generate an edge-to-edge tilings, is there any one that does
not belong to the known 14 types? Let us roughly explain
our plan and procedure. Let G = ABC DE be a candidate

of convex pentagonal tile that can generate an edge-to-edge
tiling. Then, by Bagina’s Proposition, it has at least three
vertices that will become 3-valent nodes in the tiling. We
choose two of them, and consider conditions on angles, and
edge lengths. By these conditions, we can produce 465 pat-
terns of pentagons. Examine these pentagons one by one,
and classify them into (i) geometrically impossible cases,
(ii) the cases that cannot generate an edge-to-edge tiling,
(iii) known types, and (iv) remainders. If there is no re-
mainder, then the list of known types will be a perfect list,
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Fig. 2. 4-valent spot of size 3.

otherwise, new type will be obtained in the remainder.
At present, our plan is not completed yet, and there re-

main 34 uncertain cases (unknown whether a convex pen-
tagon can generate an edge-to-edge tiling). I think I can
settle these 34 cases soon.*1

2. Present Classification and EE Convex Pentagonal
Tiles

As mentioned in Section 1 and shown in Fig. 1, the
known convex pentagonal tiles can be classified into 14
types. (The pale gray convex pentagons in each tiling of
Fig. 1 indicate the fundamental region, which is the unit
that can generate a periodic tiling by translation only.) For
example, a convex pentagonal tile of type 1 satisfies that
the sum of three consecutive angles is equal to 360◦ (or the
sum of the remaining two consecutive angles is equal to
180◦). This condition is expressed as A + B + C = 360◦

in Fig. 1. According to the present classification rule of
pentagonal tiles, one convex pentagonal tile may belong to
more than one type. For example, the convex pentagons of
Fig. 3 belong to both type 1 and type 7. Note also that the
classification problem of types of convex pentagonal tiles
and the classification problem of pentagonal tilings (tiling
patterns) are quite different.

In the 14 types shown in Fig. 1, the convex pentagons of
types 4, 5, 6, 7, 8, and 9 can generate an edge-to-edge tiling.
On the other hand, the tilings of types 3, 10, 11, 12, 13, and
14 of Fig. 1 are non-edge-to-edge with allowing vertices
lying in the interior of edges. Tilings of type 1 or type 2 are
generally non-edge-to-edge as shown in Fig. 1, however, in
special cases, the convex pentagonal tiles of type 1 or type
2 can generate edge-to-edge tilings with one 3-valent node
with size 3 and one 4-valent node with size 2, as shown in
Fig. 4.

The term “convex pentagonal tile” is used to stand for
a convex pentagon that generate an edge-to-edge tiling, or
a non-edge-to-edge tiling or both. So, let us call a convex
pentagonal tile that can generate an edge-to-edge tiling an
EE convex pentagonal tile in this paper.

∗1In 2012, we found the perfect list of types of convex pentagonal tiles that
can generate an edge-to-edge tiling. We have known that a same result was
obtained by Bagina (Bagina, 2011) after the manuscript in which the list
(Sugimoto, 2012) is shown was submitted to Forma.

3. Angle Conditions
3.1 Definition of N1, N2, N3, N4 and Ng(G), Nt (G) for a

pentagon G
Hereafter, the term “pentagon” means only a five-vertex

polygon, not necessarily a pentagonal tile. The symbol G is
used for a convex pentagon.

The total number of possible label-sets of 3-valent spots
of a convex pentagon ABCDE is 35. We divides these 35
3-valent spots into four sets N1, N2, N3, and N4 as follows.
(The reason why the label-sets with size 3 are divided into
two sets N1 and N2 will become clear in Subsection 3.2).

N1 = {{A, B, C}, {B, C, D}, {C, D, E}, {D, E, A}, {E, A, B}}.
N2 = {{A, B, D}, {B, C, E}, {C, D, A}, {D, E, B}, {E, A, C}}.
N3 = {{A, A, B}, {A, A, C}, {A, A, D}, {A, A, E}, {B, B, A},

{B, B, C}, {B, B, D}, {B, B, E}, {C, C, A}, {C, C, B},
{C, C, D}, {C, C, E}, {D, D, A}, {D, D, B}, {D, D, C},
{D, D, E}, {E, E, A}, {E, E, B}, {E, E, C}, {E, E, D}}.

N4 = {{A, A, A}, {B, B, B}, {C, C, C}, {D, D, D}, {E, E, E}}.
N1 is the set of 3-valent spots of size 3 consisting of three
consecutive vertices. N2 is the set of 3-valent spots of size 3
consisting of three non-consecutive vertices. N3 is the set of
3-valent spots of size 2, and N4 is the set of 3-valent spots
of size 1.

Example 3.1. Let G0 = ABC DE be a convex pentagon
such that A = 148◦, B = 72◦, C = 140◦, D = 108◦, E =
72◦, a = d (�= b �= c �= a). This pentagon G0 has two 3-
valent spots {A, B, C} ∈ N1 and {E, A, C} ∈ N2, and since
A + B +C = 360◦, a = d, it can generate an edge-to-edge
tiling with 3-valent node {A, B, C} as shown in Fig. 4(a).
Thus, G0 is an EE convex pentagonal tile.

For a convex pentagon G, define Ng, Nt as follows:

Ng := Ng(G) = the set of 3-valent spots of G.

Nt := Nt (G) = the set of 3-valent spots of G given by nodes

(provided that G is an EE convex pentagonal tile).

For example, Ng(G0) = {{A, B, C}, {E, A, C}} and
Nt (G0) = {{A, B, C}}. So, G0 is a convex pentagon satis-
fying Ng ∩ N1 �= ∅ and a convex pentagonal tile satisfying
Nt ∩ N1 �= ∅.
3.2 EE convex pentagonal tiles with spots in N1 or N4

If a convex pentagon has a spot in N1, then it belongs
to type 1. Thus, a convex pentagon G that satisfies Ng ∩
N1 �= ∅ belongs to type 1 and can be excluded from further
investigation in this paper. This is why we divide the set of
3-valent spots of size 3 into N1 and N2.

For a convex pentagonal tile satisfying Nt ∩ N4 �= ∅, we
have the following Lemma.

LEMMA 1 If an EE convex pentagonal tile satisfies Nt ∩
N4 �= ∅ then it also satisfies that Nt ∩ (N1 ∪ N2 ∪ N3) �= ∅.

Proof. An internal angle at a vertex in a spot presented
by a 3-valent node of size 1 is 120◦, and two edges adjacent
to the vertex have the same length. Then, an EE convex
pentagonal tile has at most three 3-valent spots, for other-
wise, it has four vertex of angle 120◦ and all edge-lengths
must be equal, but such pentagon cannot exist.
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Fig. 3. Convex pentagonal tile that belongs to both type 1 and type 7, and the example of tilings that are generated by the tile. The pale gray pentagons
in each tiling indicate the fundamental region.

Fig. 4. Examples of edge-to-edge tilings by convex pentagonal tiles that belong to type 1 or type 2. The pale gray pentagons in each tiling indicate the
fundamental region. (a) Convex pentagonal tiles that belong to type 1. (b) Convex pentagonal tiles that belong to type 2.

Fig. 5. Seven sub-cases of tentative 3-valent node of {A, B, D}.

If an EE convex pentagonal tile has three 3-valent nodes
of size 1, it belongs to type 1. This can be seen as follows: If
the three different vertices (vertex-labels) in the three label-
sets of size 1 are consecutive (for example, A = B = C =
120◦), then the pentagonal tile clearly belongs to type 1.

(There is no EE convex pentagonal tile with three label-sets
of 3-valent nodes of size 1 such that three different vertices
in the three label-sets with size 1 are not consecutive, e.g.,
A = B = D = 120◦, see Appendix A).

If an EE convex pentagonal tile has one or two label-sets
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Fig. 6. Two sub-cases of tentative 3-valent node of {A, A, B}.

Fig. 7. Three sub-cases of tentative 3-valent node of {A, A, C}.

Fig. 8. One sub-case of tentative 3-valent node of {A, A, A}.

of 3-valent node with size 1, then by Bagina’s Proposition,
we must have Nt ∩ (N1 ∪ N2 ∪ N3) �= ∅. �
3.3 Tentative node, label-sets v1, v2, and the sets

Gi , i = 1, . . . , 5
Let G = ABC DE be a candidate of an EE convex pen-

tagonal tile. A spot of G that is supposed to become a 3-
valent node of the supposed edge-to-edge tiling is called a
tentative 3-valent node of G. Then, by Bagina’s Proposi-
tion, G should have at least three tentative 3-valent nodes
(in other words, G should be able to form at least three ten-
tative 3-valent nodes at the same time around itself). If
G generates an edge-to-edge tiling, and has at least one
3-valent node of size 1, then it satisfies that Nt ∩ (N1 ∪
N2 ∪ N3) �= ∅ by Lemma 1. Therefore, if G generates
an edge-to-edge tiling, G has at least one 3-valent node of
size 2 or 3. Let v1 be the label-set of a tentative 3-valent

node of G that has size 2 or 3, and let v2 be the label-set
of any tentative 3-valent node of G. Note that v1 may not
be uniquely defined, and v1 = v2 is possible. If G has a
spot consisting of three consecutive vertices, and generates
a tiling, then G also belongs to type 1. Hence, we may
suppose that Ng(G)∩ N1 = ∅. Denote by (G, v1, v2) a con-
vex pentagon in which v1, v2 are specified as the spots of
tentative 3-valent nodes, and define the sets of such convex
pentagons (G, v1, v2) in the following way.

G1 := {(G, v1, v2) | v1, v2 ∈ Ng ∩ N2, Ng ∩ N1 = ∅}.
G2 := {(G, v1, v2) | v1, v2 ∈ Ng ∩ N3, Ng ∩ N1 = ∅}.
G3 := {(G, v1, v2) | v1 ∈ Ng ∩ N3, v2 ∈ Ng ∩ N2, Ng ∩ N1 = ∅}.
G4 := {(G, v1, v2) | v1 ∈ Ng ∩ N2, v2 ∈ Ng ∩ N4, Ng ∩ N1 = ∅}.
G5 := {(G, v1, v2) | v1 ∈ Ng ∩ N3, v2 ∈ Ng ∩ N4, Ng ∩ N1 = ∅}.

For the sake of convenience, we set G6 := {(G, v1, v2) |
v1 ∈ Ng ∩ N1}. Then, all EE pentagonal tiles appear as
(G, v1, v2) in one of Gi , i = 1, 2, . . . , 6; the members in
G6 are pentagonal tiles of type 1. Thus, some conditions
(equations) on angles for an EE convex pentagonal tile not
belonging to type 1 are obtained from v1, v2 of (G, v1, v2)

in G1 − G5.
In the subsequent sections, by considering edge fitting

around tentative 3-valent nodes, we add edge conditions
(equations) to the angle conditions derived from v1, v2.



98 T. Sugimoto

Table 1. Sub-cases of tentative 3-valent nodes belonging to N2.

Tentative 3-valent nodes

Sub-case Edge conditions Sub-case Edge conditions

AB D-1 a = e, c = d DE B-1 a = b, c = d

AB D-2 a = d, c = e DE B-2 a = c, b = d

AB D-3 a = e, b = c = d DE B-3 a = b = e, c = d

AB D-4 a = d, b = c = e DE B-4 a = c = e, b = d

AB D-5 a = b = e, c = d DE B-5 a = b, c = d = e

AB D-6 a = b = d, c = e DE B-6 a = c, b = d = e

AB D-7 a = c, b = d = e DE B-7 a = d, b = c = e

BC E-1 a = b, d = e E AC-1 b = c, d = e

BC E-2 a = d, b = e E AC-2 b = d, c = e

BC E-3 a = b, c = d = e E AC-3 a = b = c, d = e

BC E-4 a = c = d, b = e E AC-4 a = b = d, c = c

BC E-5 a = b = c, d = e E AC-5 a = d = e, b = c

BC E-6 a = d, b = c = e E AC-6 a = c = e, b = d

BC E-7 a = c = e, b = d E AC-7 a = c = d, b = e

C D A-1 a = e, b = c

C D A-2 a = c, b = e

C D A-3 a = d = e, b = c

C D A-4 a = c, b = d = e

C D A-5 a = e, b = c = d

C D A-6 a = c = d, b = e

C D A-7 a = b = d, c = e

Table 2. Sub-cases of tentative 3-valent nodes belonging to N3 that satisfy condition under which the two vertices in v are consecutive.

Tentative 3-valent nodes

Sub-case Edge conditions Sub-case Edge conditions

AAB-1 a = b = c CC D-1 c = d = e

AAB-2 b = c CC D-2 d = e

AAE-1 a = e DDC-1 c = d

AAE-2 a = b = e DDC-2 c = d = e

B B A-1 a = b DDE-1 a = d = e

B B A-2 a = b = c DDE-2 a = e

B BC-1 b = c = d E E A-1 a = b = e

B BC-2 c = d E E A-2 a = b

CC B-1 b = c E E D-1 d = e

CC B-2 b = c = d E E D-2 a = d = e

4. Edge Conditions
4.1 Edge fitting around a tentative 3-valent node

Given a label-set v of a tentative 3-valent node, try to as-
semble pentagons around a point (3-valent node) according
to the labels in the label-set v. Since each of three pen-
tagons can be turned over, there are eight possible ways to
assemble the three pentagons. Further, to fit edges, we have
several conditions (equations) on edge-lengths.

(i) The case v ∈ N2.
There arise seven sub-cases for edge fitting around
the 3-valent node. For example, if v = {A, B, D},
then, as shown in Fig. 5, we have the seven sub-cases
ABD-1–ABD-7 (ABD-7 represents two sub-cases with

the same edge conditions). Notice that the equations
following the colons for each label in the figure give
the conditions on edge-lengths. Among the sub-cases
AB D-1−AB D-7, the three sub-cases AB D-2, AB D-
4, and AB D-6 yield type 2 tiles, and hence, for our
purpose, there are four sub-cases to consider.

For other cases see Table 1. From the relations on an-
gles and edge-lengths, the cases ABD-2, ABD-4, ABD-
6, BCE-2, BCE-4, BCE-6, CDA-2, CDA-4, CDA-6,
DEB-2, DEB-4, DEB-6, EAC-2, EAC-4, and EAC-6
in Table 1 are judged to be convex pentagonal tiles of
type 2, therefore these are excluded from further con-
sideration.



Convex Pentagons for Edge-to-Edge Tiling, I 99

Table 3. Sub-cases of tentative 3-valent nodes belonging to N3 that satisfy condition under which the two vertices in v are not consecutive.

Tentative 3-valent nodes

Sub-case Edge conditions Sub-case Edge conditions

AAC-1 a = c = d CC E-1 a = c = e

AAC-2 b = c = d CC E-2 a = d = e

AAC-3 a = b = c = d CC E-3 a = c = d = e

AAD-1 a = d = e DD A-1 a = b = d

AAD-2 b = d = e DD A-2 a = b = e

AAD-3 a = b = d = e DD A-3 a = b = d = e

B B D-1 b = d = e DDB-1 b = c = d

B B D-2 c = d = e DDB-2 b = c = e

B B D-3 b = c = d = e DDB-3 b = c = d = e

B B E-1 a = b = e E E B-1 b = c = e

B B E-2 a = c = e E E B-2 a = b = c

B B E-3 a = b = c = e E E B-3 a = b = c = e

CC A-1 a = b = c E EC-1 c = d = e

CC A-2 a = b = d E EC-2 a = c = d

CC A-3 a = b = c = d E EC-3 a = c = d = e

Table 4. Sub-cases of tentative 3-valent nodes belonging to N4.

Tentative 3-valent nodes

Sub-case Edge conditions

AAA a = b

B B B b = c

CCC c = d

DDD d = e

E E E a = e

(ii)-1 The case that v ∈ N3 and two vertices in v are
consecutive.
The cases are possible as v, and for each of them, there
arise two sub-cases for edge-fitting. See Table 2, and
Fig. 6.

(ii)-2 The case that v ∈ N3 and the two vertices in v are not
consecutive.
The cases are possible as v, for each of them, there
arise three sub-cases for edge-fitting. See Table 3, and
Fig. 7.

(iii) The case v ∈ N4.
There arises one sub-case for each of five cases for v.
See Table 4, and Fig. 8.

4.2 Number of patterns to examine
We now estimate the number of cases we need to ex-

amine. First, suppose (G, v1, v2) ∈ G1. Without loss of
generality, we may suppose that v1 = {A, B, D}. From
this, by considering edge-fitting, we get four refined cases
ABD-1, ABD-3, ABD-5, and ABD-7. On the other hand,
since v2 ∈ N2, it can be one of five label-sets {A, B, D},
{B, C, E}, {C, D, A}, {D, E, B}, {E, A, C}, and from
each, we get four refined cases. Therefore, from G1, we
get 4 × 5 × 4 = 80 cases (patterns) that should be examined.

If v1 = {A, B, D} is specified as AB D-1, and v2 is
specified as C D A-1, then we have

Angle conditions: A + B + D = 360◦, B = C,

Edge conditions: a = e, b = c = d.

Actually, what we care about is such [angle conditions +
edge conditions]. Convex pentgons satisfying such condi-
tions are referred to as patterns or cases. Thus, from G1 we
have at most 80 patterns.

By similar consideration, from G2, G3, G4, and G5, we
get 250, 100, 20, and 15 patterns, respectively. Therefore,
the total number of patterns we need to examine is (at most)
80 + 250 + 100 + 20 + 15 = 465. These 465 patterns
include all patterns obtained from EE convex pentagonal
tiles except those in type 1 or type 2.

5. Results of Our Examination
Each of 465 patterns in Subsection 4.2 was considered

one by one, using Bagina’s Proposition, the information
on known convex pentagonal tiles, Theorem 1, geometric
properties of a convex pentagon, etc. Let us show below
just two examples.

Example 5.1. Case that v1 is ABD-1 and v2 is CDA-1.
Since ABD-1 implies A + B + D = 360◦, a = e, c = d,
and CDA-1 implies C + D + A = 360◦, a = e, b = c,
the pentagon G satisfies that A + B + D = 360◦, B =
C, a = e, b = c = d. A convex pentagon satisfying
this condition is symmetric to itself with respect to the line
through the vertex E and the midpoint of the edge BC, and
cannot have a spot of valence seven or more. Except the
two special cases, this pentagon cannot generate an edge-
to-edge tiling. The two special cases are the following: One
case is B = C = E = 90◦ when the pentagon belongs to
type 1 and type 4. The other case is A = B = C = D =
120◦. This can have a 6-valent node 6E = 360◦, and the
pentagon belongs to type 1, type 5, and type 6. (Though
the pentagon can have a 5-valent tentative node, it cannot
generate an edge-to-edge tiling.)
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Table 5. Uncertain cases of whether a convex pentagon can generate an edge-to-edge tiling.

†: The notation of the conditions follows the present classification rule.

Example 5.2. Case that v1 is AAB-1 and v2 is EED-1.
This is the case that 2A + B = 2E + D = 360◦, a = b =
c, d = e. Suppose that such convex pentagon exists. Let
M be the midpoint of the diagonal AC . Then, since a = b,
we have B M ⊥ AC , and since 2A + B = 360◦, B M ‖
AE . Hence AE ⊥ AC . Similarly, we have AE ⊥ C E .
Therefore, ∠AC E = 0◦, a contradiction.

By examining each of 465 patterns analogously to the
above, the 465 cases are classified into four categories: (i)
a convex pentagon cannot exist; (ii) a convex pentagon
cannot generate an edge-to-edge tiling (even if it exists);
(iii) a convex pentagon belongs to at least one of type 1,
type 2, type 4, type 5, type 6, type 7, type 8, or type 9
(if it exists); and (iv) uncertain case (unknown whether a
convex pentagon can generate an edge-to-edge tiling). At
present, there are 34 uncertain cases remained. These 34

uncertain cases are listed in Table 5. I am working on these
34 patterns now, and they will be settled in near future.

6. Proofs of Theorems 2, 3, 4
6.1 Proof of Theorem 2

Pentagons can be classified by the number of equal edges
and their positions. In the following, the edges are des-
ignated symbolically in 1, 2, . . . in cyclic (anticlockwise)
order, with the same symbol for equal edges. Mirror-
reflections are excluded. Beginning with equilateral pen-
tagons, followed by those with four equal edges, etc., they
are classified into 12 cyclic-edge-types: [11111], [11112],
[11122], [11212], [11123], [11213], [11223], [11232],
[12123], [11234], [12134], [12345] (Sugimoto and Ogawa,
2006).

The convex pentagons of cyclic-edge-types in the 465
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Fig. 9. Case that v1 is ABD-1 and v2 is ABD-1.

Fig. 10. Case that v1 is ABD-1 and v2 is ABD-3, and convex pentagon has
two ABD-3.

patterns are [11111], [11112], [11122], [11212], [11123],
[11213], [11223], or [11234]. The convex pentagons
of cyclic-edge-types that are judged to type 2 in G1 are
[12123] and [11212] from Table 1. The pentagons of type
[12134] belongs to none of Gi , i = 1, 2, 3, 4, 5. Since ev-
ery EE convex pentagonal tile that does not belong to type
1 is contained in at least one of Gi , i = 1, 2, . . . , 5, it is not
a convex pentagon of type [12134]. If a new condition on
edges or angles is added to a pentagon, then the number of
equal edges may increase but never decreases. If the num-

Fig. 11. Case that v1 is ABD-1 and v2 is ABD-3, and convex pentagon has
two ABD-1 and one ABD-3.

ber of equal edges increases, then the pentagon no longer
satisfies the condition of Theorem 2. This proves Theorem
2.

Note also that we proved that there is not an EE convex
pentagonal tile of [12345] (Sugimoto and Ogawa, 2006). �
6.2 Proof of Theorem 3

If each tile of an edge-to-edge tiling by convex pentag-
onal tile has one 4-valent node and at most two 3-valent
nodes, the tiling is called to satisfy the simplest node condi-
tion (Sugimoto and Ogawa, 2005, 2009a). Note that, under
the simplest node condition, the number of the same labels
in the label-set of one 4-valent node and two 3-valent nodes
must be only two.

As for the 34 uncertain patterns in Table 5, it seems,
from the information on v1 and v2, that 23 patterns in the
34 patterns do not satisfy the simplest node condition. For
example, the pattern in which v1 is AAB-1 and v2 is BBC-
1 does not satisfy the simplest node condition since the
number of B in the label-sets is three. In Table 5, the
23 patterns that do not satisfy the simplest node condition
are indicated by “N” in the last column. On the other
hand, it can be proved that the remaining 11 patterns cannot
generate an edge-to-edge tiling that satisfies the simplest
node condition. For example, the pattern in which v1 is
ABD-1 and v2 is ABD-1 cannot generate an edge-to-edge
tiling with A + B + D = 360◦ and 2C + 2E = 360◦ since
the spot of {C , C , E , E} is not a tentative node. As another
example, in the pattern in which v1 is AAB-2 and v2 is CCD-
2, there is a place where the vertices B and C meet when
AAB-2 is formed (see Fig. 6). However, in a tiling with
the simplest node condition for this pattern does not have
a node where the vertices B and C meet. Therefore, this
pattern can not generate an edge-to-edge tiling with only
nodes {A, A, B}, {C , C , D}, and {E , E , B, D}. On
the other hand, EE convex pentagonal tiles outside the 34
uncertain cases belong to at least one of type 1, type 2, type
4, type 5, type 6, type 7, type 8, or type 9, and the tilings of
type 4 and type 5 do not satisfy the simplest node condition.
Thus, we obtain Theorem 3. �
6.3 Proof of Theorem 4

Let G be a convex pentagon that generates the tiling T .
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Fig. A1. Convex pentagon that satisfies the conditions “A = B = D = 120
◦
, a = b = c, d = e. ”

Since T has 3-valent nodes of size 3, we have Nt ∩ N1 �= ∅
or Nt ∩ N2 �= ∅. Since we may take v1, v2 as v2 = v1,
G belongs to G1 or G6. If G belongs to G6, then since
G generates an edge-to-edge tiling T , G belongs to type
1. Therefore, we may assume that G is a pentagon in G1.
G1 has patterns in which a convex pentagon is equilateral,
two (solved) patterns in which a convex pentagon that is not
equilateral exists, two uncertain patterns (see Table 5), and
patterns in which a convex pentagon cannot exist.

(i) Patterns in which a convex pentagon is equilateral.
If G is equilateral, then it belongs to type 1 or type
2 by Theorem 1. Note that the convex pentagon with
A ≈ 70.88◦, B ≈ 144.56◦, C ≈ 89.26◦, D ≈ 99.93◦,
E ≈ 135.37◦ in Theorem 1 belongs to type 7 and its
tiling is not T .

(ii) Two (solved) patterns in which a convex pentagon that
is not equilateral exists.

(ii)-1 Case that v1 is AB D-1 and v2 is C D A-1: If G
satisfies either B = C = E = 90◦ or A =
B = C = D = 120◦, then it belongs to type 1
(we note that other pentagons of this case cannot
generate an edge-to-edge tiling).

(ii)-2 Case that v1 is AB D-7 and v2 is AB D-7: If a
convex pentagon has a node with label-set (�=
{A, B, D}) in N2 and a 3-valent node with other
label-set, then the pentagon belongs to type 1 or
type 2.

(iii) The pentagon G is none of the two uncertain patterns
in G1.

(iii)-1 Consider the case that v1 is AB D-1 and v2 is
AB D-1. In this case, A + B + D = 360◦, a =
e, c = d . By Bagina’s Proposition, in the edge-
to-edge tiling T , there is a pentagon (copy of G)
with at least three 3-valent nodes as vertices. If
these nodes are all AB D-1 case, then the pen-
tagon (copy) can be regarded as the gray pen-
tagon in Fig. 9. In this gray pentagon, both
vertices C, E must be 4-valent nodes, and from
a = e, c = d , we must have 4C = 4E = 360◦.
Therefore, C = E = 90◦ and a = e, c = d, and
hence G belongs to type 4.

(iii)-2 Consider the case that v1 is AB D-1 and v2 is
AB D-3 (angle and edge conditions are A + B +
D = 360◦, a = e, b = c = d). If all 3-valent

nodes in T are AB D-1, then G belongs to type
4 as seen in (iii)-1. The convex pentagon with
two 3-valent nodes of ABD-3 cannot have other
3-valent nodes, see Fig. 10. The convex pentagon
with two ABD-1 and one ABD-3 is unique as in
Fig. 11. In this case we have 4E = 360◦ and
the convex pentagon has the relation C = E =
90◦, a = e, b = c = d. Thus it belongs to type
4. �
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Appendix A.
We show that there is no EE convex pentagonal tile with

three 3-valent nodes of size 1 such that three different ver-
tices in the three label-sets with size 1 are not consecutive.

Let G be a convex pentagon satisfying A = B = D =
120◦. Then we have

a = b = c = d = e or a = b = c �= d = e.

The case a = b = c = d = e is impossible, because
the length of the base C E of the trapezoid ABC E with
A = B = 120◦ is longer than the base C E of the isosceles
triangle C DE with D = 120◦. So, we have a = b = c �=
d = e. Then, since C + E = 180◦ and since G is symmetric
to itself with respect to the line through D and the midpoint
of AB, we must have C = E = 90◦ (see Fig. A.1(a)). If
this pentagon generates an edge-to-edge tiling, the vertex
D becomes a 3-valent node with label-set {D, D, D}, and
the convex hexagon as shown in Fig. A.1(b) will be used in
the tiling. By using the new notation as in Fig. A.1(c), this
convex hexagon must satisfy A = B = C = D = E =
F = 120◦, a = c = e, b = d = f . Such convex hexagon
does not belong to the three types of convex hexagonal tiles
in Fig. A.2 (Kershner, 1968; Gardner, 1975; Grünbaum
and Shephard, 1987). Thus, the convex pentagon G cannot
generate an edge-to-edge tiling.
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