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Is the imperilled spur-thighed tortoise (7estudo graeca) native
in Sardinia? Implications from population genetics
and for conservation

Melita Vambergerl, Claudia Corti2, Heiko Stuckas!, Uwe Fritz!-"

Abstract. Using mtDNA sequences and 12 microsatellite loci, we compare populations of Testudo graeca from Sardinia and
North Africa. The observed pattern of almost no differentiation combined with reduced variation in the Sardinian population is
consistent with introduction in prehistoric or historic times from what is now Tunisia and neighbouring Algeria. Furthermore,
in the light of the recently published recommendation to eradicate the non-native 7. graeca from Italy, we review recent studies
on the archaeological and fossil record, on the phylogeography and population genetics of the three other chelonian species
occurring in Sardinia (Emys orbicularis, T. hermanni, T. marginata). We conclude that the extant Sardinian populations of
all four species are not native. However, they are and should be safeguarded under EC law (Council Regulation No 338/97
on the Protection of Species of Wild Fauna and Flora; Flora Fauna Habitat Directive: Appendix IV, Art. 12) because they
serve as a back-up for the declining mainland populations. Moreover, these populations constitute an important part of the
human-shaped natural heritage of the Mediterranean.

Keywords: conservation, Emys orbicularis, management, microsatellites, mtDNA, phylogeography, Testudo hermanni,
Testudo marginata.

Introduction mitochondrial DNA sequences and nuclear ge-
nomic fingerprinting (Fritz et al., 2005a, 2009),
even though the possibility of natural oversea

dispersal was acknowledged for T. graeca. By

The populations of most Western Palaearctic
tortoise species are declining throughout their

ranges, with four of the five species placed in
the IUCN Red List categories Near Threatened
(Testudo hermanni), Vulnerable (T. graeca,
T. horsfieldii), and Critically
(T. kleinmanni). Only populations of 7. mar-
ginata are considered to be stable (Red List cat-
egory Least Concern; IUCN, 2010). Tradition-
ally, Sardinian populations of the spur-thighed
tortoise (7. graeca) and the marginated tortoise
(T marginata) have been regarded as introduced
(Angelini, 1899; Mertens and Wermuth, 1960;
Bringsge et al., 2001; Buskirk et al., 2001;
Carpaneto, 2006a, 2006b). This view is sup-
ported by recent genetic investigations using
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contrast, Sardinian Hermann'’s tortoises (7. her-
manni) and the sole freshwater turtle species
occurring in Sardinia, the European pond tur-
tle (Emys orbicularis), are traditionally consid-
ered native (Diirigen, 1897; Mertens and Wer-
muth, 1960; Cheylan, 2001; Fritz, 2001; Maz-
zotti, 2006; Mazzotti and Zuffi, 2006). While
Carpaneto (2006a, 2006b) suggested in his in-
fluential tortoise chapters in the ‘Atlas of Ital-
ian Amphibians and Reptiles’ that the Sardinian
population of 7. marginata should be protected
as a back-up for the Greek populations, he rec-
ommended that 7. graeca should be eradicated
in Italy, at least from sites where the native
T. hermanni occurs in sympatry. Although the
latter suggestion clearly contradicts legislation,
as T. graeca is a protected species under EC
Law (Council Regulation No 338/97 on the Pro-
tection of Species of Wild Fauna and Flora;
Flora Fauna Habitat Directive: Appendix IV,
Art. 12), it caused major concern among Italian
conservationists. This concern was reinforced
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by the recent discovery that Sardinian 7. graeca
represent well-established, reproducing popula-
tions and not only scattered individuals, imply-
ing that T. graeca might have occurred for a
very long time on Sardinia. Spur-thighed tor-
toises are widely distributed along the central
west coast of Sardinia and particularly abun-
dant on the nearby islet Mal di Ventre (Corti et
al., 2004, 2007; C. Corti, pers. observ.).

In the present study, we re-examine the origin
of Sardinian 7. graeca and discuss our results in
the light of legislation and recent findings on the
phylogeography of other Mediterranean chelon-
ians. In doing so, we expand the sampling of
Sardinian tortoises of Fritz et al. (2009) consid-
erably and correlate sequence variation of the
mitochondrial cytochrome b gene with informa-
tion from 12 microsatellite loci. For compari-
son with Sardinian 7. graeca, we use the genet-
ically most closely related tortoises from north-
ern Africa (Tunisia, neighbouring Algeria; Fritz
et al., 2009).

Materials and methods

Sampling, DNA extraction, PCR, fragment analysis and
sequencing

Blood, tissue (skin, muscle) and salivary samples were ob-
tained from different localities of Sardinia, Tunisia and
neighbouring Algeria (fig. 1; table 1), preserved in 96%
ethanol and stored at —80°C until processing. The sam-
ples from North Africa and four Sardinian samples were the
same as in Fritz et al. (2009). Total DNA was isolated using
either standard proteinase K and phenol chloroform proto-
cols (Sambrook and Russell, 2001), the peqGOLD Tissue
DNA Mini Kit (protocol for tissue samples; PEQLAB, Er-
langen, Germany), or the InnuPREP DNA Mini Kit (proto-
col for isolating buccal swabs or tissue; Analytik Jena, Ger-
many).

Twelve microsatellite loci were analysed for each tor-
toise following Salinas et al. (2010): Goag5, Goagb (de-
signed for Gopherus agassizii; Edwards et al., 2003),
GmuB08, GmuD16, GmuD51 (designed for Glyptemys
muhlenbergii; King and Julian, 2004), GP61, GP81 (de-
signed for Gopherus polyphemus; Schwartz et al., 2003),
Test10, Test21, Test56, Test71, and Test76 (designed for
Testudo hermanni; Forlani et al., 2005). Microsatellite loci
were individually PCR-amplified in a final volume of 25 ul
using 1 unit 7aq polymerase (Bioron, Ludwigshafen, Ger-
many) with the buffer recommended by the supplier and a
final concentration of 1.6 mM MgCl, (Bioron), 0.2 mM of
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Figure 1. Collection sites of Testudo graeca samples
(closed circles) used in the present study. Distribution range
in North Africa shaded.

each dNTP (Fermentas, St. Leon-Rot, Germany), 0.4 uM of
each primer (forward primer fluorescent-labelled; table 2)
and approximately 10-40 ng of total DNA. In cases of PCR
failure, the reaction was repeated using the same conditions
but with 0.25-0.5 ug of Bovine Serum Albumin (BSA, Fer-
mentas) added. The PCR cycling conditions were as fol-
lows: 43 cycles with denaturation at 94°C for 60 s but for
11 min for the first cycle, annealing at 58°C for 45 s dur-
ing the first 3 cycles, followed by annealing at 55°C for
45 s during the remaining 40 cycles, and extension at 72°C
for 45 s but 30 min for the final cycle. Fragment lengths
were determined on an ABI 3130xI genetic analyser using
the GeneScan™-600 LIZ® Size Standard and the software
GENEMAPPER (Applied Biosystems, Foster City, USA). For
each tortoise, the loci Goag5, Goag6, GmuB08, Gmul6,
GmuD51, and Test76 were combined in one sequencer run
and GP61, GP81, Testl0, Test21, and Test71 in another;
Test56 was processed alone.

In addition, the nearly complete mitochondrial cy-
tochrome b gene (cyt b) and approximately 20 bp of the ad-
jacent DNA segment encoding the transfer RNA for Threo-
nine (tRNA-Thr) were sequenced when these data were not
available for the same samples from earlier studies (Fritz
et al.,, 2007, 2009). Two samples that previously yielded
highly distinct haplotypes (AS, GenBank accession number
AM230972; A9, AJ888343) were re-sequenced to test for
possible sequencing errors. Two overlapping mtDNA frag-
ments were amplified using the primer pairs CytbG plus mt-
E-Rev2 (Spinks et al., 2004; Fritz et al., 2006) and mt-c-
For2 plus mt-f-na (Fritz et al., 2006; annealing temperature
for both primer pairs, 55°C). PCR was performed in a fi-
nal volume of 20 ul using 1 unit 7ag polymerase (Bioron)
with the buffer recommended by the supplier and a final
concentration of 0.25 mM of each dNTP (Fermentas), 0.5
uM of forward and reverse primer and approximately 10-
40 ng of total DNA. When PCR failure occurred, the reac-
tion was repeated with 0.25-0.5 ug BSA (Fermentas) added.
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The PCR cycling conditions were as follows: 36 cycles with
denaturation at 94°C for 45 s but for 3 min for the first cy-
cle, annealing at 55°C for 20 s, and extension at 72°C for
90 s but 10 min for the final cycle. PCR products were puri-
fied using the ExoSAP-IT enzymatic cleanup (USB Europe
GmbH, Staufen, Germany; 1:20 dilution; modified proto-
col: 30 min at 37°C, 15 min at 80°C) and sequenced on an
ABI 3130xl1 using the BigDye Terminator v3.1 Cycle Se-
quencing Kit (Applied Biosystems) and the primers mt-E-
Rev2 and mt-c-For2. When the sequences were too short,
the primers CytbG and mt-f-na were additionally used to
gain the full length of approximately 1160 bp. Individual
sequences were aligned in BIOEDIT (Hall, 1999), manually
collapsed into haplotypes and compared with previously
published data of North African and Sardinian 7. graeca
(Fritz et al., 2005a, 2007, 2009). Of two samples represent-
ing previously published, distinct mtDNA haplotypes (A1,
A7, Fritz et al., 2009; table 1), no microsatellite data could
be produced. However, their mitochondrial sequences were
included in all calculations.

Genetic diversity and divergence of Sardinian and North
African tortoises

Mutational relationships of mitochondrial sequences were
examined by a parsimony network analysis as implemented
in TCS 1.21 (Clement et al., 2000). For mitochondrial
and microsatellite data, diversity and divergence parame-
ters were estimated for Sardinian and North African tor-
toises separately. The number and size of microsatellite al-
leles was compared using a frequency table produced with
the software CONVERT (Glaubitz, 2004). Possible linkage
among microsatellite loci was tested using ARLEQUIN 3.11
(Excoffier et al., 2005) and 1000 dememorisation steps fol-
lowed by additional 10000 steps of the Markov Chain; the
resulting p values were Bonferroni-corrected for multiple
comparisons (Rice, 1989). ARLEQUIN was further used to
estimate locus-specific observed (Hgp) and expected het-
erozygosity (Hg) and to perform a locus-by-locus analysis
of molecular variance (AMOVA; 10 000 permutations). De-
viations from Hardy-Weinberg equilibrium and the locus-
specific excess or deficiency of heterozygotes (inbreeding
coefficient Fig; Weir and Cockerham, 1984) were assessed
using GENEPOP 4.0 (Rousset, 2008). Exact p values for in-
breeding coefficients were estimated by the Markov Chain
method (1000 dememorisation steps followed by 100 000
iterations) and resulting values were again Bonferroni-
corrected. The locus-specific allelic richness was estimated
with the software FSTAT (Goudet, 1995). Frequencies of
mitochondrial haplotypes were assessed in ARLEQUIN and
used for an AMOVA (10000 permutations). The same
software was also used to determine nucleotide diversities
and net-nucleotide diversity between Sardinian and North
African tortoises.

Bayesian inference of population structure

For inferring population structuring based on unlinked ge-
netic markers, several Bayesian algorithms exist. However,
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different methods may obtain conflicting results with re-
spect to the number of genetic clusters (K) and the degree
of admixture between clusters, and none of the methods is
clearly superior to the others. Therefore, the parallel appli-
cation of different algorithms for exploring the robustness
of the inferred population structure is advisable (Pearse and
Crandall, 2004; Chen et al., 2007; Frantz et al., 2009). Con-
sequently, our microsatellite data were subjected to two dif-
ferent clustering algorithms, a spatially explicit and a spa-
tially non-explicit method that differed also in their ability
to cope with null alleles.

The non-explicit analysis was performed using the soft-
ware STRUCTURE 2.3.2 (Pritchard et al., 2000; Falush et al.,
2003; Hubisz et al., 2009). Here, the main criterion for de-
limiting clusters is the search for groups in Hardy-Weinberg
equilibrium and linkage equilibrium. This search is con-
ducted for each locus separately, which allows detecting ge-
netic clusters of admixed origin. The number of clusters was
estimated using posterior probabilities [highest In P(D)] for
K =1, ..., 10. Four different scenarios were analysed for
two data sets, one including all 12 microsatellite loci and the
other only the nine loci without null alleles (table 2): (i) an
admixture scenario in which individuals are allowed to have
mixed ancestry with allele frequencies correlated and (ii) an
admixture scenario with allele frequencies not correlated;
(iii) a no-admixture scenario with allele frequencies corre-
lated, or (iv) not correlated. The admixture model assumes
recent or current gene flow, so that individuals can have an-
cestors from more than one population. By contrast, the no-
admixture model assumes no or only negligible gene flow
with the consequence that ancestry from only one popula-
tion is favoured. In this context, correlated allele frequencies
are expected in populations with a common origin, result-
ing in similar allele frequencies. On the other hand, uncor-
related allele frequencies are expected for populations that
are isolated for a long time, so that allele frequencies can
be considered independent. The burn-in was set to 10° and
the number of further MCMC runs to 5 x 10*. Calculations
were repeated 10 times for each K; convergence of like-
lihood values was reached after the burn-in. Clusters and
individual admixture were visualized with barplots.

As spatially explicit Bayesian clustering method, GENE-
LAND 3.1.4 (Guillot et al., 2005) was used. Similar to
STRUCTURE, GENELAND estimates the number of K by
searching for units in Hardy-Weinberg equilibrium and link-
age equilibrium, but with using geographical coordinates of
each sample as prior information. For this purpose, the geo-
graphical coordinates of samples from confiscated Tunisian
tortoises were set to the central Tunisian coast (between
Tamra and Sidi Ferdjani), the region where the tortoises
originated from (table 1). An advantage of GENELAND is
that this software allows for correcting the clustering results
for null alleles (Guillot et al., 2008), whereas STRUCTURE
results may be biased by null alleles (Falush et al., 2003,
2007). K was set to range from 1 to 10, using the options al-
lele frequencies correlated or not correlated, and for both of
these settings null alleles existent (as suggested by MICRO-
CHECKER 2.2.3; van Oosterhout et al., 2004), 10° MCMC
steps, and burn-in of 10°. Calculations were repeated 10
times each and the following parameters were obtained:
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number of clusters (K), cluster assignment of each indi-
vidual, inbreeding coefficient Fig of each cluster, and pair-
wise Fgr values between clusters. Standard diversity and
divergence parameters estimated by GENELAND (Hardy-
Weinberg equilibrium, linkage equilibrium, Fig, FsT) were
subsequently checked using ARLEQUIN, as recommended
by Guillot et al. (2005).

Results

Genetic diversity and divergence of Sardinian
and North African tortoises

With one exception, all newly sequenced sam-
ples from Sardinia yielded the previously iden-
tified haplotype A6; the remaining sample con-
tained a new haplotype (A10, GenBank acces-
sion number FR686466; table 1). A10 differs
in one mutational step from A6. Tortoises from
Tunisia and adjacent Algeria yielded seven dis-
tinct haplotypes (A1-A4, A6-AS8) that differ by
a maximum of six mutational steps (fig. 2). The

Figure 2. Parsimony network for mtDNA haplotypes of
Sardinian and North African Testudo graeca based on an
alignment of 1164 bp. Symbol size corresponds to hap-
lotype frequency. Grey symbols or slices refer to North
African tortoises; white, Sardinian tortoises. Small black
circle, missing node haplotype. Each line connecting two
haplotypes represents one substitution, except when hash-
marks are present. Then, each hashmark is one mutational
step. Haplotype frequencies are for A6 = 24, A2 = 3,
A4 = 3, all other haplotypes were found only once. Great-
est outgroup probability has the most frequent haplotype A6
(0.7105).
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previously published highly distinct haplotypes
A5 (Tunisia) and A9 (Sardinia), characterized
by 11 or nine singletons, respectively, turned
out to be sequencing errors (table 1). Our re-
sequencing of the same samples resulted in an
unambiguous assignment of the Tunisian sam-
ple to haplotype A4 and of the Sardinian sample
to haplotype A6.

All twelve nuclear microsatellite markers
were found to be in linkage equilibrium
for Sardinian and Tunisian tortoises each, al-
though there is evidence for non-random as-
sociation between different pairs of loci in
Sardinian (Goag5-Test21, GmuD16-Test56)
and Tunisian tortoises (Goag5-GP61, GmuD51-
Test10, Test10-Test21). For Sardinian and Tuni-
sian tortoises, null alleles are present at loci
GmuD51, TestlO, and Test56. A significant
excess of homozygosity was found for Sar-
dinian tortoises at loci GmuD51 and Test10,
and for Sardinian and Tunisian tortoises at
locus Test56 (table 2). Despite smaller sam-
ple size, diversity indices of microsatellites are
higher for Tunisian tortoises (average estimates
for Tunisia: Na: 6.5, Agr: 5.83, Hp: 0.52, Hg:
0.61; for Sardinia: Na: 5.2, Ag: 4.29, Hp: 0.48,
Hg: 0.53). This is also mirrored by mtDNA with
distinctly higher haplotype and nucleotide di-
versities in North Africa (table 3).

Statistically significant fixation indices for
both microsatellites (Fsr: 0.049, p < 0.0001)
and mtDNA (Fgr: 0.39, p = 0.0001) suggest
that Sardinian and North African tortoises are
genetically divergent. However, for microsatel-
lites only 4.89% of the observed variation oc-
curs between Sardinia and Tunisia and 95.11%
within these two groups, while 39.01% of the
mitochondrial variation is observed between
and 60.99% within the groups. The clearly
higher between-group percentage of mtDNA
and its higher Fgr value are caused by the differ-
ent haplotype frequencies in Sardinia and North
Africa (table 3). Yet, the low net-nucleotide di-
vergence (0.00065, p = 0.0002) reveals weak
differentiation at the nucleotide level, and this
pattern of negligible differentiation of Sardinian
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Table 3. Frequencies of mitochondrial haplotypes and indices for mtDNA diversity. Standard deviations of diversity indices
in parentheses. North African tortoises are from Tunisia and adjacent Algeria.

Group n Haplotype frequencies Haplotype Nucleotide

Al A2 A3 A4 A6 A7 A8 Al0 diversity diversity
North Africa 15 007 020 0.07 020 032 007 0.07 O 0.85(0.06)  0.00236 (0.00149)
Sardinia 20 0 0 0 0 095 0 0 0.05  0.10(0.09)  0.00009 (0.00017)

tortoises is supported by haplotype network
analysis (fig. 2; see also above). When it is con-
sidered that the weakly differentiated haplotype
A10 could be found in North Africa when more
tortoises will be studied, this suggests that the
haplotypes of Sardinian tortoises are part of the
variation occurring in Tunisia and neighbouring
Algeria.

Bayesian inference of population structure

Population structure and the number of ge-
netic clusters (K) were inferred without pri-
or assignment of samples using two different
Bayesian methods (STRUCTURE, GENELAND).
The STRUCTURE results differed depending on
the model and the number of used microsatel-
lite loci. Either all tortoises were placed in one
cluster or Sardinian and Tunisian tortoises were
assigned to two clusters (table 4). Yet, when two
clusters were inferred, their demarcation was
weak and for many individuals an admixed an-
cestry was suggested (fig. 3). Correspondingly,
locus-by-locus AMOVAs resulted in a very low
Fsr value of 0.05 (p < 0.001), irrespective of
whether all microsatellite loci were processed or
when the three loci with null alleles (GmuD51,
Test10, Test56) were excluded.

By contrast, the spatially explicit GENELAND
analysis corrected for null alleles revealed
K = 3 under the assumption of correlated allele
frequencies. One cluster corresponded to Sar-
dinian tortoises, while Tunisian specimens were
placed in two distinct clusters, one for the tor-
toises from the vicinity of Tabarka and another
one for all other Tunisian tortoises (table 5).
However, the fixation indices (F'st) among these
clusters were again very low and amounted to
only 0.042-0.058 (estimated by GENELAND),
indicating negligible genetic divergence. In all

three populations occurs an excess of homozy-
gotes (Fg for Sardinia: 0.24, for Tabarka: 0.31,
for other Tunisian tortoises: 0.26), perhaps due
to a Wahlund effect. Subsequent ARLEQUIN
analyses substantiated low divergences among
clusters (locus-by-locus AMOVA: Fgr 0.082,
p < 0.001). Homozygous excess was con-
firmed for all three clusters (p < 0.001 for all
clusters), but there was no pattern of linkage dis-
equilibrium.

Under the assumption of not correlated allele
frequencies, GENELAND suggested only two
clusters. Sardinian tortoises were grouped now
together with Tunisian tortoises from Tabarka,
and the second cluster comprised all other
Tunisian specimens (table 5). The fixation in-
dex (F'st) between these two clusters was 0.053,
indicating again only insignificant divergence.
In both clusters occurs an excess of homozy-
gotes (Fs for each: 0.26). Subsequent analyses
of the clusters with ARLEQUIN (locus-by-locus
AMOVA: Fgr 0.077, p < 0.001) confirmed
this pattern; for the two clusters a significant
excess of homozygotes is evident (p < 0.001
each), but no obvious pattern of linkage dise-
quilibrium.

In summary, population structures inferred
from GENELAND differed when allele frequen-
cies were set correlated or not correlated. Re-
gardless of the allele frequency model, the over-
all population structure is decidedly weak and
all inferred clusters show an excess of homozy-
gotes.

Discussion

Our data provide strong evidence that Sardinian
Testudo graeca belong not only to the same sub-
species as in Tunisia and neighbouring Alge-
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Figure 3. Barplots indicating the number of genetic clusters (K = 2) and individual population assignment as inferred by
STRUCTURE using all 12 loci. (A) Admixture model with allele frequencies not correlated, (B) no-admixture model with
allele frequencies correlated, (C) no-admixture model with allele frequencies not correlated. Membership proportions from
the runs (n = 10 each) with the highest likelihood value. Individuals 1-13: Tunisia; 14-33: Sardinia. Under the admixture
model with allele frequencies correlated only one cluster is suggested for Tunisian and Sardinian tortoises.

ria (T. g. nabeulensis; Fritz et al., 2009), but
fall within the genetic variation occurring in
North Africa. Population genetic analyses us-
ing quickly evolving microsatellite loci indicate
only negligible differentiation of Sardinian tor-
toises, and one spatially explicit analysis cor-
rected for null alleles even placed Sardinian
tortoises together with certain Tunisian speci-
mens (from Tabarka) in one and the same clus-
ter. With respect to mitochondrial haplotypes,
nearly all Sardinian tortoises possess a haplo-
type that was also recorded in North Africa,
and the sole distinct Sardinian haplotype dif-
fers by only one mutational step from the oth-
ers. By contrast, up to six mutational steps occur
among haplotypes of Tunisian and Algerian tor-
toises (fig. 2). This situation suggests that Sar-
dinian tortoises contain only part of the genetic

variation found in North Africa. Such a pattern
is expected after a founder effect. This implies
that the Sardinian population is derived from
North African spur-thighed tortoises that were
either introduced by man or reached Sardinia by
recent transoceanic dispersal.

For tortoises there are several cases of such-
like oversea dispersal known. The most promi-
nent example are the Galdpagos tortoises (Che-
lonoidis nigra complex) that must have reached
this volcanic archipelago via the Pacific Ocean
from the 1000 km distant South American
mainland (Caccone et al., 1999). Moreover, a
live Aldabra tortoise (Aldabrachelys gigantea)
encrusted with barnacles (Lepadidae) was re-
cently washed ashore on the East African coast
(Gerlach et al., 2006), providing for the first
time direct evidence that tortoises may sur-
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vive long exposure to sea water. Biogeogra-
phy and genetics argue for further examples
(Le et al., 2006), so that a natural colonization
of Sardinia from North African T. graeca has
to be taken into account (Fritz et al., 2009).
However, the counter-running major Mediter-
ranean surface currents (Razouls et al., 2009)
do not favour the dispersal of Tunisian tor-
toises to the western Sardinian coast. Conse-
quently, introduction by man is more likely, es-
pecially when it is considered that another tor-
toise species, 1. marginata, was evidently intro-
duced to Sardinia (Bringsge et al., 2001), and
all extant chelonians occurring on the Balearic
Islands (Emys orbicularis, T. graeca, T. her-
manni) were also introduced in prehistoric or
historic times (Buskirk et al., 2001; Chey-
lan, 2001; Fritz, 2001; Fritz et al., 2006).

In contrast to 7. graeca and T. marginata
(Angelini, 1899; Mertens and Wermuth, 1960;
Bringsge et al., 2001; Buskirk et al., 2001;
Carpaneto, 2006a, 2006b), two other chelonian
species, T. hermanni and E. orbicularis, are
traditionally regarded native in Sardinia (Diiri-
gen, 1897; Mertens and Wermuth, 1960; Chey-
lan, 2001; Fritz, 2001; Mazzotti, 2006; Maz-
zotti and Zuffi, 2006). The fossil record seems,
at first glance, to corroborate this view with
Sardinian finds of T. cf. hermanni (Abbazzi et
al., 2004: Plio-Pleistocene border) and E. orbic-
ularis (Chesi et al., 2008: several Late Pleis-
tocene and Holocene finds), but none for T.
graeca and T. marginata. However, genetic data
indicate a totally lacking mitochondrial differ-
entiation of Sardinian (and Corsican) T. her-
manni compared to Sicilian tortoises (Fritz et
al., 2006; Giacalone et al., 2009). Furthermore,
Sardinian (and Corsican) E. orbicularis are ge-
netically not differentiated from the widely dis-
tributed continental subspecies E. o. galloital-
ica (Lenk et al., 1999; Fritz et al., 2005b), even
in quickly evolving microsatellite markers, sug-
gestive of extinction of a native population and
later reintroduction by man (Pedall et al., 2010).
Moreover, a recent meta-analysis of archaeolog-
ical and palaeontological records provides evi-
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dence that most Western Mediterranean popu-
lations of T. hermanni were driven extinct dur-
ing a pronounced cold event of the last glacial
(Heinrich event 4, approx. 39 500-38 000 years
ago; Morales-Pérez and Sanchis-Serra, 2009),
implying that, as in E. orbicularis, the tortoises
were later reintroduced in Sardinia and Corsica.

The Mediterranean fauna has been heavily
impacted and altered by humans for thousands
of years, and this is especially true for Corsica
and Sardinia (e.g., Corti et al., 1999a, 1999b;
Masseti, 2009). We could imagine that turtles
and tortoises, as ‘living cans’, were well-suited
live provision for prehistoric settlers and sea-
farers and that some surplus individuals were
abandoned after the arrival on the islands or
even intentionally introduced there as a later
food resource. A similar case was recently un-
ravelled for Madagascar, where a continental
African turtle species was introduced long ago
(Vargas-Ramirez et al., 2010). More examples
are expected to be discovered in future. The
large-scale usage of chelonians as live provi-
sion is also well-known from sailors in the
17th to 19th Centuries. The reason making
these animals so attractive for provision is that
they could be stored aboard for long periods
without needing to be fed or watered (Cham-
bers, 2004). When it is considered that prehis-
toric societies in the Western Mediterranean ap-
preciated chelonians as food (Cheylan, 1998,
2001; Stiner et al., 1999, 2000; Morales-Pérez
and Sanchis-Serra, 2009), such an introduction
scenario seems very likely to explain the occur-
rence of the four non-native chelonian species
of Sardinia.

Populations of T. graeca are confined in Sar-
dinia to the region of Oristano and the islet Mal
di Ventre, about 8 km off the central west coast.
Mal di Ventre is a small, uninhabited island that
is separated by 17-20 m deep sea from Sar-
dinia (Corti et al., 2007). According to this wa-
ter depth (Antonioli et al., 2007), Mal di Ventre
was connected to Sardinia until approximately
8000-7500 years ago, and it could be speculated
that the tortoises should have been present both
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on Sardinia and Mal di Ventre before the land
connection was flooded by the raising Holocene
sea level. However, it is known that the islet was
repeatedly inhabited by man from prehistoric to
medieval times (Casu, 2004) and it cannot be
excluded that the tortoises were introduced later.
For the region of Oristano, human occupation is
known since prehistoric times (Webster, 1996)
and one major Phoenician town, Tharros, is lo-
cated within the extant range of 7. graeca. Thar-
ros was founded in the 7th Century BC (Piraz-
zoli, 2005). Together with our genetic data, this
situation suggests that 7. graeca was introduced
in western Sardinia by prehistoric or early his-
toric settlers, perhaps by Phoenicians coming
from what is now Tunisia and neighbouring Al-
geria in North Africa.

Although we conclude that T graeca was in-
troduced in Sardinia long ago, we strongly dis-
agree with Carpaneto (2006a) that the species
should be eradicated there. Such action would
be in conflict with the legal situation since
T. graeca is protected by EC law (Council Reg-
ulation No 338/97 on the Protection of Species
of Wild Fauna and Flora; Flora Fauna Habi-
tat Directive: Appendix IV, Art. 12). Accord-
ing to recent genetic investigations and as out-
lined above, none of the four chelonian species
of Sardinia is native and their occurrence on
Sardinia resembles the situation of the mou-
flon (Ovis orientalis). This species was intro-
duced in prehistoric times (Masseti, 1997, 2003)
and is protected by the same EC regulations as
T. graeca. Nobody would recommend eradica-
tion of the mouflon in Sardinia because it is
not native there. All of these species, mouflon
and chelonians, represent part of the rich natural
heritage of the Western Mediterranean, result-
ing from the millennia-old interaction of man
and nature, and deserve the same protection.
Moreover, since all of the Sardinian tortoise
species are not native, none endangers an au-
tochthonous species by outcompeting. Rather,
all Sardinian tortoises serve as a back-up for
the mainland populations in Europe and Africa
most of which are declining (IUCN, 2010),

M. Vamberger et al.

whereas the tortoise habitats in Sardinia are rel-
atively secure due to traditional pasture farming
(C. Corti, pers. observ.).
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