

InfiniBand Technology Overview

Dror Goldenberg, Mellanox Technologies

The material contained in this tutorial is copyrighted by the SNIA.

- Member companies and individuals may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced without modification
 - The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.

This presentation is a project of the SNIA Education Committee.

InfiniBand Technology Overview

- The InfiniBand architecture brings fabric consolidation to the data center. Storage networking can concurrently run with clustering, communication and management fabrics over the same infrastructure, preserving the behavior of multiple fabrics. The tutorial provides an overview of the InfiniBand architecture including discussion of High Speed – Low Latency, Channel I/O, QoS scheduling, partitioning, high availability and protocol offload. InfiniBand based storage protocols, iSER (iSCSI RDMA Protocol), NFS over RDMA and SCSI RDMA Protocol (SRP), are introduced and compared with alternative storage protocols, such as iSCSI and FCP. The tutorial further enumerates value-add features that the InfiniBand brings to clustered storage, such as atomic operations and end to end data integrity.
- Learning Objectives:
 - > Understand the InfiniBand architecture and feature set.
 - > Understand the benefits of InfiniBand for networked storage.
 - > Understand the standard InfiniBand storage protocols.

- Motivation and General Overview
- Protocol Stack Layers
- Storage Protocols over InfiniBand
- Benefits

The Need for Better I/O

Datacenter trends

- Multi-core CPUs
- Bladed architecture
- Fabric consolidation
- Server virtualization & consolidation
- Increasing storage demand

Better I/O is required

- High capacity
- Efficient
 - > Low latency
 - > CPU Offload
- Scalable
- Virtualization friendly
- High availability
- Performance
- Low power
- TCO reduction

InfiniBand Technology Overview © 2008 Storage Networking Industry Association. All Rights Reserved.

Compute Node

InfiniBand Storage Solutions

The InfiniBand standard - strong alternative to

- Fibre Channel (SAN)
- Ethernet (NAS)

Superior performance

- 20Gb/s host/target ports (moving to 40Gb/s 2H08)
- 60Gb/s switch to switch (moving to 120Gb/s 2H08)
- Sub I µs end to end latencies

Unified fabric for the Data Center

Storage, networking and clustering over a single wire

Cost Effective

Compelling price/performance advantage over alternative technologies

Low power Consumption – Green IT

Less than 5W per 20Gb/s port InfiniBand

Mission Critical

- Highly reliable fabric
- Multi-pathing
- Automatic failover
- Highest level of data integrity

INFINIBAND"

© 2008 Storage Networking Industry Association. All Rights Reserved.

InfiniBand Technology Overview

Fabric Technologies Comparison

Feature	Fibre Channel	Standard 10 GbE	InfiniBand
Line Rate (GBaud)	4.25(4GFC)8.5(8GFC)10.51875* (10GFC)	10.3125*	20 (4x DDR) 40 (4x QDR)
Unidirectioanl Throughput (MB/s**)	400 (4GFC) 800 (8GFC) 1,200 (10GFC)	1,250	2,000*** (4x DDR) 4,000 (4x QDR)
Reliable Service	Practically no	No	Yes
Fabric Consolidation	Practically no	In the future (FCoE)	Yes
Copper Distance	15m	10GBase-CX4 15m 10GBase-T 100m	Passive SDR 20m/ DDR 10m Active DDR 25m
Optical 100m Distance***		10GBase-SR 300m 10GBase-LRM 220m	300m (SDR) 150m (DDR)

* Serial interface signaling rate

** MB/s = 10⁶ Bytes/sec

*** 1,940 MB/s measured

**** Datacenter oriented media

InfiniBand Technology Overview

© 2008 Storage Networking Industry Association. All Rights Reserved.

InfiniBand Topologies

- Example topologies commonly used
- Architecture does not limit topology
- Modular switches are based on fat tree architecture

InfiniBand Protocol Layers

* MicroGiGaCN is a trademark of Fujitsu Components Limited

InfiniBand Technology Overview © 2008 Storage Networking Industry Association. All Rights Reserved.

10

Width (IX, 4X, 8X, I2X) including auto-negotiation

Speed (SDR/DDR/QDR) including auto-negotiation

4X DDR HCAs and switches are currently shipping

Power management

• Polling / Sleeping

Connector

- Fixed: MicroGiGaCN
- Pluggable: QSFP

8/10 encoding

- Maintain DC Balance
- Limited run length of 0's or 1's

Control symbols (Kxx.x)

 Lane de-skew, auto negotiation, training, clock tolerance, framing

Link Speed (10⁹ bit/sec)

Lane Speed \rightarrow	SDR (2.5GHz)	DDR (5GHz)	QDR (10GHz)	
Link Width ↓				
IX	2.5	5	10	
4 X	10	20	40	
8X	20	40	80	
12X	30	60	120	

Physical Layer

Fiber Optics*:

Speed

SDR/

DDR

DDR

Connector

Micro-

Micro-

GiGaCN

GiGaCN

Widt

h

4X

4X

InfiniBand Technology Overview © 2008 Storage Networking Industry Association. All Rights Reserved.

Power

0.8-IW

**

IW

Fiber

Media

12 strand MPO

12 strand

attached

Physical Layer – Cont'd

Copper Cables*:

Width	Speed	Connector	Min Reach	Type / Power**
4X	SDR/ DDR	Micro- GiGaCN	20m/ 10m	Passive
4X	DDR	Micro- GiGaCN	15-25m	Active 0.5-0.75W
12X	SDR/ DDR	24pin Micro- GiGaCN	20m/ 10m	Passive

Туре

Media

Optical

Cable

Converter

Min

Reach

300m/

150m

100m

12X – 24 pair MicroGiGaCN→

4X - MicroGiGaCN MPO Media Converter \rightarrow

4X - MicroGiGaCN Optical Cable \rightarrow

11

Link Layer

Addressing and Switching

- Local Identifier (LID) addressing
- Unicast LID 48K addresses
- Multicast LID up to 16K addresses ٠
- Efficient linear lookup ٠
- Cut through switching supported ٠
- Multi-pathing support through LMC

Independent Virtual Lanes

- Flow control (lossless fabric)
- Service level ٠
- VL arbitration for OoS

Congestion control

Forward / Backward Explicit Congestion Notification (FECN/BECN)

Data Integrity

- Invariant CRC
- Variant CRC ٠

Independent Virtual Lanes (VLs)

H/L Weighted Round Robin (WRR) VL Arbitration

Efficient FECN/BECN Based Congestion Control

Network Layer

Global Identifier (GID) addressing

- Based on IPv6 addressing scheme
- GID = {64 bit GID prefix, 64 bit GUID}
 - > GUID = Global Unique Identifier (64 bit EUI-64)
 - > GUID 0 assigned by the manufacturer
 - > GUID 1..(N-1) assigned by the Subnet Manager
- Optional for local subnet access
- Used for multicast distribution within end nodes

Enables routing between IB subnets

- Still under definition in IBTA
- Will leverage IPv6 routing algorithms

HCA processes Consumer polls completions Transport executed by HCA

I/O channel exposed to the application

Consumer posts work requests

- Transport services
 - Reliable / Unreliable

Asynchronous interface

 \diamond

 \diamond

Connected / Datagram

InfiniBand Technology Overview © 2008 Storage Networking Industry Association. All Rights Reserved.

Transport – Host Channel Adapter (HCA) Model

Transport Layer

Queue Pair (QP) – transport endpoint

- Asynchronous interface
 - > Send Queue, Receive Queue, Completion Queue
- Full transport offload
 - > Segmentation, reassembly, timers, retransmission, etc
- Operations supported
 - > Send/Receive messaging semantics
 - > RDMA Read/Write enable zero copy operations
 - > Atomics remote Compare & Swap, Fetch & Add
 - > Memory management Bind/Fast Register/Invalidate

Kernel bypass

- Enables low latency and CPU offload
- Exposure of application buffers to the network
 - Direct data placement / zero copy
- Enabled through QPs, Completion Queues (CQs), Protection Domains (PD), Memory Regions (MRs)
- Polling and Interrupt models supported

Partitions

- Logically divide the fabric into isolated domains
- Partial and full membership per partition
- Partition filtering at switches

Similar to

- FC Zoning
- 802.1Q VLANs

InfiniBand Data Integrity

Hop by hop

- VCRC I6 bit CRC
- CRCI6 0×100B

🔶 End to end

- ICRC 32 bit CRC
- CRC32 0x04C11DB7
- Same CRC as Ethernet

Application level

- TI0/DIF Logical Block Guard
 - > Per block CRC
- I 6 bit CRC 0x8BB7

InfiniBand Technology Overview © 2008 Storage Networking Industry Association. All Rights Reserved.

Management Model

Subnet Manager (SM)

- Configures/Administers fabric topology
- Implemented at an end-node or a switch
- Active/Passive model when more than one SM is present
- Talks with SM Agents in nodes/switches

Subnet Administration

- Provides path records
- QoS management

Communication Management

Connection establishment processing

\diamond Clustering

- MPI (Message Passing Interface)
- RDS (Reliable Datagram Socket)

Network

- IPoIB (IP over InfiniBand)
- SDP (Socket Direct Protocol)

Storage

- SRP (SCSI RDMA Protocol)
- iSER (iSCSI Extensions for RDMA) ٠
- NFSoRDMA (NFS over RDMA) ٠

Upper Layer Protocols

InfiniBand Technology Overview

© 2008 Storage Networking Industry Association. All Rights Reserved.

InfiniBand Technology Overview © 2008 Storage Networking Industry Association. All Rights Reserved.

20

InfiniBand Block Storage Protocols SNIA

SRP - SCSI RDMA Protocol

Defined by T10

iSER – iSCSI Extensions for RDMA

- Defined by IETF IP Storage WG
- InfiniBand specifics (e.g. CM) defined by IBTA
- Leverages iSCSI management infrastructure

Protocol offload

- Use IB Reliable Connected
- RDMA for zero copy data transfer

Education

SRP - Data Transfer Operations

Send/Receive

- Commands
- Responses
- Task management

RDMA – Zero Copy Path

- Data-In
- Data-Out

iSER uses the same principles

 Immediate/Unsolicited data allowed through Send/Receive

iSER and SRP are part of mainline Linux kernel

Data Transfer Summary

	SRP	iSER	iSCSI	FCP
Request	SRP_CMD (SEND)	SCSI-Command (SEND)	SCSI-Command	FCP_CMND
Response	SRP_RSP (SEND)	SCSI-Response (SEND)	SCSI-Response (or piggybacked on Data-In PDU)	FCP_RSP
Data-In Delivery	RDMA Write	RDMA Write	Data-In	FCP_DATA
Data-Out Delivery	RDMA Read RDMA Read Resp.	RDMA Read RDMA Read Resp.	R2T Data-Out	FCP_XFER_RDY FCP_DATA
Unsolicited Data-Out Delivery		Part of SCSI-Command (SEND) Data-Out (SEND)	Part of SCSI- Command Data-Out	FCP_DATA
Task Management	SRP_TSK_MGMT (SEND)	Task Management Function Request/ Response (SEND)	Task Management Function Request/ Response	FCP_CMND

SRP Discovery

Discovery methods

- Persistent Information {Node_GUID:IOC_GUID}
- Subnet Administrator (Identify all ports with CapabilityMask.IsDM)
- Configuration Manager (CFM)*
 - Locate the Device Administrator through Service Record
- Boot Manager*
- Boot Information Service*

Identifiers

- Per LUN WWN (through INQUIRY VPD)
- SRP Target Port ID {IdentifierExt[63:0], IOC GUID[63:0]}
- Service Name SRP.TI0.{PortID ASCII}
- Service ID Locally assigned by the IOC/IOU

InfiniBand I/O Model

Leverages all iSCSI infrastructure

• Using IP over InfiniBand

Same iSCSI mechanisms for discovery (RFC 3721)

- Static Configuration {IP, port, target name}
- Send Targets {IP, port}
- SLP
- iSNS

Same target naming (RFC 3721/3980)

- iSCSI Qualified Names (iqn.)
- IEEE EUI64 (eui.)
- TII Network Address Authority (naa.)

NFS over RDMA

Defined by IETF

- ONC-RPC extensions for RDMA
- NFS mapping

RPC Call/Reply

- Send/Receive if small
- Via RDMA Read chunk list if big

Data transfer

- RDMA Read/Write described by chunk list in XDR message
- Send inline in XDR message

Uses InfiniBand Reliable Connected QP

- Uses IP extensions to CM
- Connection based on IP address and TCP port
- Zero copy data transfers

NFSoRDMA is part of mainline Linux kernel

I/O Consolidation

- Slower I/O
- Different service needs different fabrics
- No flexibility
- More ports to manage
- More power
- More space
- Higher TCO

- High bandwidth pipe for capacity provisioning
- Dedicated I/O channels enable convergence
 - For Networking, Storage, Management
 - Application compatibility
 - QoS differentiates different traffic types
 - Partitions logical fabrics, isolation
- Gateways Share remote Fibre Channel and Eth ports
 - Design based on average load across multiple servers
 - Scale incrementally add Ethernet/FC/Server blades
 - Scale independently

I/O Consolidation – VLs and Scheduling Example

Physical:

VLs and scheduling can be dynamically configured and adjusted to match application performance requirements

High Availability and Redundancy

- Multi-port HCAs
 - Covers link failure
- Redundant fabric topologies
 - Covers link failure
- Link layer multi-pathing (LMC)
- Automatic Path Migration (APM)
- ULP High Availability
 - Application level multi-pathing (SRP/iSER)
 - Teaming/Bonding (IPoIB)
 - Covers HCA failure and link failure

Education

SNIA

Performance Metrics

IB Verbs

- Latency
 - > RDMA Write 0.99us
 - > RDMA Read 1.87us (roundtrip)
- Bandwidth
 - > 1.5-1.9GB/s (unidirectional)
 - > 2.9-3.7GB/s (bidirectional)
 - Depends on PCIe (2.5-5GT/s)

Clustering (MPI)

- Latency I.2us
- Message rate 30M msg/sec

- Block Storage (SRP)
 - Bandwidth (IMB I/O, no RAID)
 - > I/O Read I.7GB/s
 - > I/O Write I.6GB/s
 - > Single DDR port

- File Storage (NFSoRDMA)
 - Read I.6GB/s
 - Write 0.59GB/s
 - Single DDR port

InfiniBand Storage Opportunities & Benefits

- Clustering port can connect to storage
- High Bandwidth Fabric
- Fabric consolidation (QoS, partitioning)
- Efficiency full offload and zero copy
- Gateways
 - One wire out of the server
 - Shared remote FC ports scalability

Clustered/Parallel storage, Backend fabric benefits:

- Combined with clustering infrastructure
- Efficient object/block transfer
- Atomic operations
- Ultra low latency
- High bandwidth

Datacenter developments require better I/O

- Increasing compute power per host
- Server virtualization
- Increasing storage demand

InfiniBand I/O is a great fit for the datacenter

- Layered implementation
- Brings fabric consolidation
- Enables efficient SAN, Network, IPC and Management traffic
- Price/Performance
- Gateways provide scalable connectivity to existing fabrics

Existing storage opportunities with InfiniBand

• Connectivity to HPC clusters, where IB is the dominant fabric

Other SNIA Tutorials

Check out SNIA Tutorials

- Comparing Server I/O Consolidation Solutions: iSCSI, InfiniBand and FCoE
- Fibre Channel over Ethernet

Please send any questions or comments on this presentation to SNIA: <u>tracknetworking@snia.org</u>

Many thanks to the following individuals for their contributions to this tutorial.

- SNIA Education Committee

Bill Lee Howard Goldstein Sujal Das Graham Smith Ron Emerick Walter Dey

Backup

Interconnect: A Competitive Advantage

Education SNIA

End-Users

Enterprise Data Centers

- Clustered Database
- eCommerce and Retail
- Financial
- Supply Chain Management
- Web Services

High-Performance Computing

- Biosciences and Geosciences
- Computer Automated Engineering
- Digital Content Creation
- Electronic Design Automation
- Government and Defense

Embedded

- Communications
- Computing and Storage Aggregation
- Industrial
- Medical
- Military

Data Centers

 Clustered database, data warehousing, shorter backups, I/O consolidation, power savings, virtualization, SOA, XTP

Financial

- Real-time risk assessment, grid computing and I/O consolidation
- Electronic Design Automation (EDA) and Computer Automated Design (CAD)
 - File system I/O is the bottleneck to shorter job run times

High Performance Computing

High throughput I/O to handle expanding datasets

Graphics and Video Editing

• HD file sizes exploding, shorter backups, real-time production

Interconnect Trends – Top500

Top500 Interconnect Trends

Growth rate from Nov 06 to Nov 07 (year)

- InfiniBand: +52%
- All Proprietary: -70%
- GigE: +26%

Efficiency

Average Cluster Efficiency

InfiniBand - the only growing high speed interconnect

28

All Proprietary High Speed

Nov-05 Nov-06 Nov 07

52% growth from Nov 2006

125

Source: http://www.top500.org/list/2007/06/

InfiniBand

280 260

240

220

200 180

160

140 120

100

80 60

40 20

0

Number of Clusters

The TOP500 project was started in 1993 to provide a reliable basis for tracking and detecting trends in high-performance computing.

271

GigE

InfiniBand Technology Overview © 2008 Storage Networking Industry Association. All Rights Reserved.

Defines System Area Network architecture Comprehensive specification:

Industry standard defined by the InfiniBand Trade Association

The InfiniBand Architecture

Architecture supports

- Host Channel Adapters (HCA)
- Target Channel Adapters (TCA)
- Switches
- Routers

Facilitated HW design for

- Low latency / high bandwidth
- Transport offload

Education

SNIA

InfiniBand Packet Format

InfiniBand Data Packet

VL	L١	/er	SL	rsvd	LNH	DLID
rsvd	I	Len			SLID	
LRH						

IPVer	TClass		Flow Labe	l				
	Payload Ler	า	Next Header	Hop Lim				
	SGID[127:96]							
	SGID[95:64]							
	SGID[63:32]							
SGID[31:0]								
	DGID[127:96]							
DGID[95:64]								
DGID[63:32]								
	DGID[31:0]							
GRH (Optional)								

	Opcode	SMPad	TVer	Partition Key
	rsvd	Destination QP		
A	rsvd	PSN		

BTH

InfiniBand software is developed under OpenFabrics Open source Alliance <u>http://www.openfabrics.org/index.html</u>

InfiniBand standard is developed by the InfiniBand® Trade Association <u>http://www.infinibandta.org/home</u>

- InfiniBand Architecture Specification Volumes 1-2 Release 1.2.1
 - <u>www.infinibandta.org</u>
- IP over InfiniBand
 - RFCs 4391, 4392, 4390, 4755 (<u>www.ietf.org</u>)
- NFS Direct Data Placement
 - http://www.ietf.org/html.charters/nfsv4-charter.html
- iSCSI Extensions for RDMA (iSER) Specification
 - http://www.ietf.org/html.charters/ips-charter.html
- SCSI RDMA Protocol (SRP), DIF
 - <u>www.tl0.org</u>

Glossary

- APM Automatic Path Migration
- BECN Backward Explicit Congestion Notification
- BTH Base Transport Header
- CFM Configuration Manager
- CQ Completion Queue
- CQE Completion Queue Element
- CRC Cyclic Redundancy Check
- DDR Double Data Rate
- DIF Data Integrity Field
- FC Fibre Channel
- FECN Forward Explicit Congestion Notification
- GbE Gigabit Ethernet
- GID Global IDentifier
- GRH Global Routing Header
- GUID Globally Unique IDentifier
- HCA Host Channel Adapter
- IB InfiniBand
- IBTA InfiniBand Trade Association
- ICRC Invariant CRC
- IPolB Internet Protocol Over InfiniBand
- IPv6 Internet Protocol Version 6
- iSER iSCSI Extensions for RDMA
- LID Local IDentifier
- LMC Link Mask Control
- LRH Local Routing Header
- LUN Logical Unit Number

- MPI Message Passing Interface
- MR Memory Region
- NFSoRDMA NFS over RDMA
- OSD Object based Storage Device
- OS Operating System
- PCIe PCI Express
- PD Protection Domain
- QDR Quadruple Data Rate
- QoS Quality of Service
- QP Queue Pair
- RDMA Remote DMA
- RDS Reliable Datagram Socket
- RPC Remote Procedure Call
- SAN Storage Area Network
- SDP Sockets Direct Protocol
- SDR Single Data Rate
- SL Service Level
- SM Subnet Manager
- SRP SCSI RDMA Protocol
- TCA Target Channel Adapter
- ULP Upper Layer Protocol
- VCRC Variant CRC
- VL Virtual Lane
- WQE Work Queue Element
- WRR Weighted Round Robin