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Spacecraft Thruster Control Allocation Problems

Pablo A. Servidia and Ricardo Sánchez Peña

Abstract—We consider the control allocation problem in a spacecraft
thruster configuration. It consists on the determination of the force com-
mand to be sent to each thruster in order to point the total torque and/or
thrust vectors. Here, we state four possible practical problems and propose
a control allocation algorithm based on a subgradient optimization, which
is shown to be faster than existing allocators.

Index Terms—Control allocation, spacecraft, thruster.

I. INTRODUCTION

Spacecraft control systems usually require multiple redundant actu-
ators capable of achieving particular objectives for one or more control
loops and stages under consideration. The task which links the control
law with the particular commands to be sent to each individual actu-
ator in the configuration is called control allocation. Here we consider
the spacecraft control allocation problem when the actuator is a set of
thrusters, and for the following controller requirements:

• Case TA: Exact pointing of the torque vector in IR3, used for
attitude control. The thrust vector requirement determines two
subcases: 1) Maximum thrust projection in a certain direction,
considered in [1] and [2], which is useful for the attitude and
orbit control subsystem (AOCS); and 2) Torque vector pointing
is independent of the thrust vector (free), which is useful for the
attitude control subsystem (ACS), and has been considered in [3].

• Case TB : Exact thrust vector pointing in IR3. The torquemodulus
is minimized. Useful for the orbit control subsystem (OCS).

• Case TC : Exact torque vector pointing in IR3, with exact thrust
vector pointing in a cone of feasible directions. Useful for AOCS.

• Case TD: Exact torque and thrust vectors pointing in any
direction of IR6. Useful for AOCS in certain applications (see
[4]) in which attitude changes must be independent of position
control.

The control allocator returns the force magnitude to be commanded
to each of the n thrusters in order to achieve each desired torque and/or
thrust vector pointing. A special case stated in [5], called direct con-
trol allocation, preserves the direction of an m-dimensional physical
vector to be pointed, being optimal the allocation which attains the
maximum feasible modulus. Based on [3], it can be proved that the
optimal direct control allocation has desirable robustness properties. A
direct control allocator based in facet search was proposed in [5] for
m = 3. A faster version, the bisecting edge search algorithm, was pre-
sented in [6], but its implementation did not guarantee its efficiency for
m > 3, as shown in [7]. In [8], the direct control allocation is stated as a
linear programming problem in n variables. All these implementations
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assume independent bounds for each command and were proved effi-
cient for n � m. When consideringm > 3, no hierarchy is assumed
between the partitions of the complete vector of physical moments.
These considerations do not necessarily apply to spacecraft thruster

control applications. Therefore, we found convenient to state the direct
control allocation as a continuous selection from a certain set-valued
map determined by the desired vector pointing and the actuator con-
straints, which is presented in Section II-B. Our implementation of this
selection is based on a subgradient algorithm proposed in Section II-C,
and is compared with previous allocators in Sections II-D and E.

A. Notation

We assume a configuration of n thrusters located at certain positions
and orientations with respect to the spacecraft’s frame, fixed at its
center of mass. When considering each of the problems stated, it
will be useful to define a configuration matrix where the ith ac-
tuator is described by the column vector xi 2 IRm and a scalar
Fi � 0, for i = 1; . . . ; n. The particular control action made by
this actuator is Zi = xiFi. For each case, the configuration matrix
will be X = [x1; . . . ; xn] 2 IRm�n and the command vector
F = [F1; . . . ; Fn]

T 2 F , where F � fF 2 IRn : F � 0g is the set
of feasible forces. The vectors xi will depend on the particular control
action to be considered (torque and/or thrust). The resulting control
action Z 2 IRm is Z = XF .

B. Controllability, Failures, and Robustness

Thecontrollability restriction tobesatisfiedbytheconfigurationofac-
tuators is as follows: for agivensetof feasiblecommandvaluesF , the set
XF must contain vectors in all directions of IRm. To obtain a necessary
condition, assume an unbounded set F = fF 2 IRn : F � 0g.
Lemma I.1: ([1]) Given a matrix X 2 IRm�n, the following con-

ditions are equivalent.

1) For all Z 2 IRm, there exists F � 0 such that XF = Z .
2) X is full rank and its kernel has sign definite vectors, i.e., 9w >

0 such that Xw = 0.

For n = m + 1, w may be computed as follows.
Lemma I.2: [2] Given a matrix X 2 IRm�(m+1) that is full rank,

the vector w 2 IRm+1, wi = (�1)ij ~Xij, generates ker(X).
As the configuration matrix after the ith actuator failure is ~Xi, the

next lemma is useful.
Lemma I.3: [1], [2] There is no matrixX 2 IRm�(m+2), such that

all the ~Xi have full rank and ker( ~Xi) has sign definite vectors.
With these results, we consider the controllability in each case.

The previous lemmas can be used to determine the minimum feasible
number of thrusters for a configuration that does not support failures
(n0), and for a configuration that supports a single point of failure
(n1).

• Cases TA and TB : The vector s 2 IR3 (torque or thrust) has
to be pointed, and there is complete freedom to determine the
configuration matrices (A or B). Form = 3, we obtain n0 = 4
and n1 = 6 from previous results (see [1]).

• Case TC : It is required to point the torque vector and two com-
ponents of the thrust vector. If the cone of thrusts is around the z
axis, it is necessary to point the vector s = [Tx; Ty; Tz ; Ux; Uy]

T ,
which has m = 5 and we obtain n0 = 6 (which may be found
from Lemma I.2) and n1 = 8 (n1 = 7 is not possible due to
Lemma I.3). In this case, we impose the positiveness of the ele-
ments in the third row of B to guarantee a positive thrust projec-
tion onto the z axis for allF > 0. Note that the rank of [AT BT ]T

must be six because we may choose three linearly independent
thrusts for each torque.

0018-9286/$20.00 © 2005 IEEE
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Fig. 1. (a) Level surfaces of the clf V . The allocator input is the direction
of s . (b) The optimal direct allocator generates a torque T (s ) more
robust under uncertainties4 than the torque T (s ) obtained by the optimal
nondirect allocator.

• Case TD : We need to point the vector s =
[Tx; Ty; Tz ; Ux; Uy; Uz ]

T , which has m = 6 and, hence, by
similar arguments as in the previous case, we obtain n0 = 7.
There are TD configurations that support failures with n1 = 10.

For each vector to be pointed, assume that there is a control-affine
subsystem which has to be asymptotically stabilized, and an associ-
ated smooth control Lyapunov function V (or clf in [9]) that has to be
decreased. Without loss of generality, consider the case TA for a par-
ticular maneuver. Let s be a vector perpendicular to the level surface of
the smooth clf and pointing toward its decreasing values, as shown in
Fig. 1(a). This vector has to be computed using model parameters and
measured state variables, hence it will have an error. Let s4 = s+4s

be the uncertain vector computed by the control law.
A direct allocator Fd(s4) produces a torque Td(s4) = AFd(s4)

that preserves the direction of s4. We may define the optimal direct
allocator for s4 6= 0 as the continuous force selection function
selF(s4) := Fd(s4) such that Td(s4) = A selF (s4) is the torque
with maximum feasible modulus in the direction of s4. The optimal
nondirect allocator may be defined as the forces F

d
(s4) such that the

resulting torque T
d
(s4) = AF

d
(s4) attains the maximum feasible

projection onto the direction computed by the control law s4.
Without uncertainties, i.e.,4s = 0, the optimal nondirect allocation

produces the maximum feasible decrement of the clf. However, when
considering the uncertainty in s, Fig. 1(b) shows for a simplified torque
set in IR2 that the optimal direct allocator is better than the optimal
nondirect one. This is because under the same uncertainty4s the latter
leads to a resulting torque perpendicular to the desired direction, which
means no decrease of the associated clf.

II. DIRECT CONTROL ALLOCATION AS A CONTINUOUS SELECTION

A. Set Valued Maps and Continuous Selections

A set valued mapM : Sa Sb, also called a multifunction, is a
map from one nonempty set Sa to subsets of another nonempty set Sb,
both assumed finite dimensional. A selection from a set-valued mapM
is a single valued mapm such thatm(x) 2 M(x) for all x 2 Sa.

The set K is a cone if x 2 K implies �x 2 K for all � 2 IR. If
x1; x2 2 K implies x1+x2 2 K , thenK is a convex cone. The interior
of a set S and its boundary are denoted as int(S) and @S, respectively.
S is absorbing if 0 2 int(S). The set Sa n Sb contains the elements in
Sa, not in Sb.

A convex bounded absorbing setK defines a distance to the origin:

dK(x) := inffa > 0 : x 2 aKg (1)

called the Minkowski functional. We define for a given convex
bounded absorbing set K � S the vector signum sgnK(x) such that

dK(x) sgnK(x) = x for all x 2 S. The minimal selection ofM(x)
with the distance dK is

m(x) = argminfdK(z) : z 2M(x)g (2)

where the vector z 2 M(x) that realizes the minimum of dK(z)
is assumed unique for all x. In this case, if M(x) is continuous and
takes closed convex values,m(x) is continuous. This is proved in [10,
Prop. 2.19], where the previous uniqueness assumption is guaranteed
by taking K such that dK is a norm induced by an inner product. The
same result holds for a general convex bounded absorbingK if we as-
sumeM to be such that

fv 2M(x) : dK(v) = minfdK(z) : z 2M(x)gg (3)

has a single element for each x 2 Sa.

B. Optimal Direct Control Allocation

Let S be the set of all possible desired vectors to be pointed. The
function  (s; F ) : S � IRn ! IR determines the objective to be
maximized, which is linear in F ; for instance  (s; F ) = sTXF .
The set of feasible forces F � IRn is defined as

F = K
` \Ku (4)

where K` and Ku are convex sets that specify the lower and upper
bounds of F . In particular, if 0 � F ` < F u 2 IR are the lower and
upper bounds of each Fi, we define the set of forces F = F`u =
K`

1 \ K
u
1 with K`

1 := fF 2 IRn : Fi � F ` � 0; i = 1; . . . ; ng
and Ku

1 := fF 2 IRn : kFk1 � F ug. In general, Ku should be
absorbing and compact; while K` � fF 2 IRn : F � 0g should be
such that all its supporting planes have normal vectors �n that satisfy
�n � 0. This last requirement on K` guarantees that every element in
F may be scaled to obtain an element in @Ku, which assures that the
optimal forces vector lies on @Ku due to the linearity of (s; F ) on F .
Let F1 � IRn be the convex cone of forces, obtained by scaling F

F1 :=
��0

�F : (5)

The continuous vector function L : S ! IRn is such that for all
s 2 S, the physical vectors determined by Z(s) = XL(s) preserve
the desired directions. As L(s) does not necessarily belong to F , we
require a linear set valued map W(s) such that for all w 2 W(s),
Z(s) = X(L(s) + w) also fulfills the pointing requirements, the ob-
jective function verifies  (s; L(s) + w) =  (s; L(s)), and

int(F) \W(s) 6= ; 8 s 2 S (6)

which means that a forces vector inF may achieve the desired physical
directions. Note that the latter is equivalent to int(F1) \W(s) 6= ;,
which is a specific version of the requirement in Lemma I.1.
The set-valued mapM : S IRn is defined as

M(s) = fL(s) + w : w 2 W(s)g \ F1 (7)

which takes closed convex values and is continuous on S. Letm(s) be
the minimal selection ofM(s) in the sense of dK , defined as in (2).
Also, condition (3) must be assumed.
Assumption II.1: For each s 2 S there exists a unique z 2 M(s)

that minimizes dK (z).
The uniqueness and continuity condition ona the command vector is

necessary for actuators which can not operate in a discontinuous way.
This is not the case of thrusters under pulse modulation firing (PMF),
but even in this case this condition is used to guarantee a continuous
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convergence of the trajectories generated by PMF (the command vector
is translated into duty cycles) toward those generated by continuous
forces (see [3]).

The control allocator may be simplified under the following
assumption.

Assumption II.2: For all z 2 int(K`)\@Ku and s 2 S there exist
vectors w0 2 W(s) such that z � w0 2 int(F).

Lemma II.1: Under Assumption II.1, the optimal direct control al-
location is realized for all s 2 S n f0g, a given L(s) and  (s; F ),
by the continuous selection of forces selF(s) = sgnK (m(s)). Under
Assumption II.2, selF (s) 2 @K` \ @Ku for s 2 S n f0g.

Proof: Due to Assumption II.1, the minimal selection may be
written as the intersection m(s) = M(s) \ dK (m(s))Ku which
is continuous on S (see Section II-A). The optimal selection of forces
for (s; F ) andL(s)may be obtained by scaling the minimal selection
m(s) in the sense of dK by the largest value a 2 IR that guarantees
a forces vector in F

selF (s) = argmaxf (s; F ) : F = am(s) 2 Fg

=
m(s)

dK (m(s))
= sgnK (m(s)):

This is continuous onSnf0g, where selF (s) 2 @Ku\K`. Asm(0) =
0, it is discontinuous at s = 0. Under Assumption II.2, as for any
z 2 @Ku \ int(K`) we have  (s; sgnK (z � w0)) >  (s; z), the
optimum is not reached on int(K`)\ @Ku, which implies selF (s) 2
@K` \ @Ku on S n f0g.

C. Implementation

Next, we define the search coordinates to span W(s). Let
fwi(s)g, i = 1; . . . ; nw � n � m, be a basis of W(s) and
W (s) = [w1(s); . . . ; wn (s)]

M(s) = fL(s) +W (s)
 : 
 2 IRn g F1:

The low redundancy of thruster configurations makes more attractive
the search over the n�m coordinates 
i than over the n components of
the command vector F . The search for the minimal selectionm(s) in
terms of the coordinates 
i, is a nonlinear programming problem. For
nw = 1 the minimal selection might not require a search procedure, as
in the case considered in Section II-CI. The case nw = 1 is obtained
for configurations with n = m+1 or when the setW(s) is previously
partitioned in lower order sets to achieve a mixed optimization. When
the search procedure cannot be eliminated, and more than one coordi-
nate 
i has to be determined simultaneously, the minimal selection will
determine in general a nonsmooth optimization problem depending on
the regularity of the function dK (�). In nonsmooth optimization, the
gradient of the objective function is replaced by the subdifferential set,
composed by subgradient elements.

1) Particular Case F = F`U : Consider the particular forces set
F`u. The cone of forces is determined as

F1 = F 2 IRn :
F `

F u
�

mini=1;...nfFig

maxi=1;...nfFig
:

Condition (6) holds if 8 s 2 S and there is a vector w 2 int(F1) \
W(s), i.e,

F `

F u
<

mini=1;...nfwig

maxi=1;...nfwig
: (8)

In this case,m(s) = L(s) + argminw2W(s)maxi=1;...;nf(L(s))i+

(w; s)wig and, due to Assumption II.2, 
(w; s) satisfies

F `

F u
=

mini=1;...;nf(L(s))i+ 
(w; s)wig

maxi=1;...;nf(L(s))i+ 
(w; s)wig
:

The optimal selection is then selF (s) = (m(s)=km(s)k1)Fu. To
obtain 
(w; s), note that for F ` = 0 and a feasible1w


(w; s) = � min
i=1;...;n;w >0

(L(s))i
wi

(9)

which may be used to determine the optimal selection for F ` > 0 in
a second step. The torque objective  (s; F ) decreases as F ` ! F u,
being the maximum torque for F ` = 0.
The following result is useful to guarantee the uniqueness Assump-

tion II.1 and to characterize the image of selF (s) for F = F`u.
Lemma II.2: Given F = F`u, Assumption II.1 holds if all the

(n �m) � (n �m) partitions of a full-rank matrix W (s) such that
col(W (s)) = W(s) are nonsingular. Moreover, maxi=1;...;nF

�
i =

F u, mini=1;...;nF
�
i = F ` and n �m + 1 components take extremal

values.
Proof: This is a simple generalization of [3, Lemma III.4].

Remark II.1: In the particular case, L(s) = X+s and W(s) =
ker(X). Assumption II.1 is usually guaranteed (see [5] and [8]) by
evaluating the nonsingularity of all the m � m partitions of X . Our
previous lemma evaluates the nonsingularity of all the (n�m)� (n�
m) partitions of W , but for this particular case both conditions are
equivalent, which was proved in [3].
2) A Subgradient Implementation: Letm(
; s) := L(s)+W (s)


and the function �s(
) to be minimized

�s(
) := dK (m(
; s)) (10)

on the convex set �(s) = f
 2 IRn�mjm(
; s) 2 F1g. This is
achieved by the vector 
� such that m(s) = m(
�; s). For the set
F lu, �s(
) = maxj=1;...;nf(m(
; s))jg=F

u.
Next, we prove that �s(
) is a convex function when evaluated on

�(s). Take 
1; 
2 2 �(s), hence for 0 < � < 1, 
3 = �
1 + (1 �

�)
2 2 �(s). Takingmi = m(
i; s) for i = 1; 2; 3, we obtainm3 =

�m1+(1��)m2 2 F1. It is a known result that theMinkowski func-
tional dK is convex, therefore �s(
3) � ��s(


1) + (1� �)�s(

2).

This convex property of �s on �(s) guarantees the convergence of
the subgradient optimization algorithm (see [11]). Let @�s(
) be the
subdifferential and �(
) 2 @�s(
) a subgradient of �s at 
 . The sub-
gradient algorithm is similar to the steepest descent but the elements of
@�s(
) take the place of the usual gradient r�s(
)


(k + 1) = 
(k)� �k
�(
(k)

k�(
(k)k2
(11)

where �k > 0 defines the step size sequence. In our particular imple-
mentation, the step size �k is attenuated if �s(
(k)) does not decrease,
and is amplified when �s(
(k)) decreases too slow. To guarantee that

 2 �(s) and to improve the search, we use the fact that, under As-
sumption II.2, the optimal 
� must satisfy selF (s) 2 @K` \ @Ku.
For the set F`u with F ` = 0, it is sufficient to replace 
 by 
̂ =

(W (s)
; s)
 such that mini=1;...;nmi(
; s) = 0 [see (9)]. This im-
plies 
̂ 2 @�(s), which is convenient because 
� 2 @�(s).

D. Spacecraft Thruster Control Allocators

• Cases TA, TB , and TD: All these cases use the Moore–Penrose
pseudoinverse of the respective configuration matrix to define the
vector function L(s) = X+s, where s is defined by the particular
physical vectors to be pointed, the set W(s) is determined by the
kernel of X , and the direction of s is preserved. The function to be
maximized is  (s; F ) = sTXF .
Simulation results:We have tested the subgradient-based control al-

locator with a six-thruster configuration of type TA1. To compute the
subgradient, we have used a centered cell with six nodes and a fixed

1It should satisfy L(s) + 
(w; s)w � 0 for some 
(w; s) 2 IR.
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number of iterations (eight). We have obtained, with the same preci-
sion bounds as in [6], a computing time 30% better (1724 versus 2229
flops) than the fast bisecting edge search allocator proposed in [6], and
4.7 times better (1724 versus 8084 flops) than the exact facet search
algorithm in [5]. For these cases, the basis of ker(A) and the pseudoin-
verse of A are precomputed at a design stage (see [1] and [2]); other-
wise, it should demand 327 and 156 flops more, respectively. Note also
that the efficiency of the bisecting edge algorithm is not maintained for
m > 3 (see [7]). The LP formulation for the direct control allocation
in [8] was implemented using the solver lp() of Matlab 5 for compar-
ison.2 Our algorithm resulted 3.7 times faster (1724 versus 6342 flops,
the latter in average). Moreover, we have observed that similar preci-
sion bounds are achieved by taking a noncentered cell with four nodes,
also for eight iterations, resulting 1340 flops (30% faster).

• Case TC : Let s� be the unit vector that points in the same direction
as the desired torque, anywhere in IR3; and s� the unit vector that
points in the same direction as the desired thrust, and takes values
in a cone around the z axis. The orthogonal matrix function C(s)
represents the rotation from the spacecraft frame to another space-
craft fixed frame whose z axis points toward the direction of the
required thrust vector, and is continuous on S. LetB(s) be the ma-
trix composed by the first two rows of B(s) := C(s)B and bz(s)
its third row. We assume that the configuration is designed in such
a way that bz(s)F > 0 for all s 2 S and F 2 F . As this holds
for every thrust in a solid cone and torques in all directions in IR3,
[AT BT ]T must have rank six . The forces vector F 2 F performs
a direct allocation if

AF =  (s; F )s� and B(s)F = 0 (12)

where  (s; F ) = sT� AF is the objective to be maximized. The
reason for this torque priority in the optimization is that the torque
also determines, indirectly through the dynamics, the inertial
orientation of the thrust cone. This case may be solved as before
considering

L(s) =X+(s)
s�
0

W(s) = ker(X(s))

X(s) =
A

B(s)
: (13)

As X(s) is full-row rank, its pseudoinverse is X+(s) =
XT (s)(X(s)XT(s))�1. Only the first three columns of X+(s)
are necessary, hence, the number of operations involved may be
reduced by 2/5, i.e., 40%.
To compute a basis of W(s), note that ker(B(s)) � ker(B) due

to the nonsingularity of C(s); hence, ker(A) \ ker(B) � ker(A) \
ker(B(s)). A basis fw1; . . . ; wn�6g of ker(A)\ker(B)may be pre-
computed, but an additional vector is needed to complete the basis of
ker(A) \ ker(B(s)). It may be obtained by using Lemma I.2 to com-
pute the kernel of

[ATB
T
(s)w1 � � �wn�6]T 2 IR(n�1)�n: (14)

The following example presents some simulation results.

E. Example With Five Moments and Eight Actuators

An eight thruster configuration composed by two four-thruster con-
figurations of type TA1 is usually considered for satellite AOCS. We
prove that the simultaneous operation of the eight thrusters qualify as

2This LP library function is not optimized for a “real-time” implementation,
and the Matlab f lops() output should be taken as an estimate.

a configuration of type TC which can not work as a TC configura-
tion after a failure. Finally, the proposed allocator is evaluated for the
eight-thruster TC configuration.
The locations are dix = rcos(�i), diy = r sin(�i) and diz = h, while

the orientations are eix = sin(�) sin(�i), eiy = sin(�) cos(�i) and
eiz = cos(�), where � = (�=4)[1 1 3 3 5 5 7 7]T , � = �0:436 33,
h = �2:5r, r = 0:2 and � = (�=4)[7 3 5 1 3 7 1 5]T . The thruster
sets (1; 2; 5; 6), (3; 4; 7; 8), (1; 4; 5; 8) and (2; 3; 6; 7) may be used as
configurations of type TA1 because their configuration matrices are
full-rank and contain w = [1 1 1 1]T in their kernel.
Now, we consider the eight thrusters as a TC configuration, hence

X(s) andW(s) are given by (13). Suppose the thrust direction objec-
tive is the z axis. Vector w� = [1 1 1 1 1 1 1 1]T does not generate
torque but generates a thrust in the direction of the z axis, i.e., it ful-
fills requirement (6), while matrix [AT BT ]T has rank six. Consid-
ering F = F`u with F ` = 0 and F u = 1 we obtain a configuration
of type TC that fulfills the particular requirement (8). Excluding the
first thruster, the resulting configuration matrix ~X1 has a kernel gen-
erated by the following vectors: w1 = [�2 �1 1 �2 �1 0 1]T and
w2 = [0 1 1 0 1 0 1]T , which shares a zero in the sixth column. How-
ever, the (1; 2; 3; 4; 5; 7)th columns of [ ~AT

1
~BT
1 ]

T have rank five and,
hence, the requirements for a TC configuration are not fulfilled. Hence,
this eight-thruster configuration, as TC , does not support one failure,3

although it could still work as TA1.
This configuration does not satisfy the condition in Lemma

II.24 to guarantee the uniqueness Assumption II.1, because there
are two similar sets of four thruster subconfigurations, which
determines singular 3� 3 partitions on W (s). However, unique-
ness may be achieved by selecting, for a given s, a convenient
basis fwi(s)g of W(s) taking into account L(s). In partic-
ular, we take a basis composed by w1(s) = [1 1 0 0 1 1 0 0]T ,
w2(s) = [1 0 1 0 1 0 1 0]T and w3(s) = [0 1 0 1 0 1 0 1]T if
fi : (L(s))i = max(L(s))g � f1; 2; 5; 6g; otherwise, we take
w1(s) = [0 0 1 1 0 0 1 1]T . Using the subgradient optimization
algorithm in [11] with eight iterations (fixed) and computing the
subgradient with a centered cell of six nodes, we obtain a worst case
error lower than 3% for the thrust and 1% for the torque, similar to the
results in [6] and [8]. In the particular case where the thrust direction
objective is fixed in body frame, L(s) and a basis of W(s) may
be precomputed, and the allocation would demand only 1954 flops,
associated to eight search iterations over W(s). The thrust modulus
for all required torque directions is between 3.55–3.65 N. The torque
set is shown in Fig. 2(a).
In [8], a linear programming approach is proposed to implement the

direct control allocation. The approach may be directly applied to con-
sider the case TC by taking a five-dimensional vector objective com-
posed by the three elements of the torque vector and two elements at
zero. Our matrixX should be taken as the matrix CB in [8]. We used
the Matlab function lp(), which was started with a feasible suboptimal
solution (explained later) and using the torque/thrust objectives as be-
fore. The Matlab flop count measured 14 010 flops in average. There-
fore, our algorithm is seven times faster than the linear programming
approach.
When considering the pointing of the thrust vector inside a solid

cone around the z axis, the pseudoinverse of X(s) and the basis of
W(s) have to be computed, as explained in Section II-D. Hence, our
algorithm would demand 3285 flops, which is 4.25 times faster than
the LP implementation.

3We have found eight-thruster T configurations which support a failure, but
with a very low thrust modulus.

4This problem also appears in [8] for the tailless C-17 aircraft.
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Fig. 2. Eight thrusters T configuration example. (a) Attainable torque set of the torque optimal selection. (b) Attainable torque set of the torque suboptimal
selection.

TABLE I
NOTATION

A simpler, faster, but torque-suboptimal selection is obtained if only
one sign positive vector w(s) 2 W(s) is used. Considering the unit
vector �z as the thrust objective and w = [1 1 1 1 1 1 1 1]T , this allo-
cator produces a torque that is 14% lower than the previous one [see
Fig. 2(b)] with a constant thrust of 3.63 N. It demands only 32 flops to
determine 
(s; w) in (9).

Let sel0F(s) be the previous torque-suboptimal selection, which
takes the optimal selection over the partition W0(s) := spanfwg.
Taking as secondary objective the thrust, define

sel�F(s) = arg min
F2F

bz(s)F j F = sel0F(s) + w

w 2 W(s);wi2I = 0

sel+F(s) = argmax
F2F

bz(s)F j F = sel0F(s) + w

w 2 W(s);wi2I = 0

where Ip is the index set where sel0(�) achieves its extremal values.
In particular, the implementation for n = 8 only requires to solve
two linear equations. The average thrust modulus was computed,
being 4.3 N for sel+

F
(s) and 3.1 N for sel�

F
(s). We might also define

selF (s; �) := � sel+F(s) + (1 � �) sel�F(s), to determine a thrust
modulus regulation.
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