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In the study of chemical kinetics, electrical circuit theory, and problems
of missile guidance a type of differential equation arises which is exceed-
ingly difficult to solve by ordinary numerical procedures. A very satis-
factory method of solution-of these equations is obtained by making use of
a forward interpolation process. This scheme has the unusual property
of singling out and approximating a particular solution of the differential
equation to the exclusion of the manifold of other solutions. This behavior
may be explained by a simple geometrical interpretation of the significance
of the forward interpolation process. The differential equations to which
this method applies are called "stiff."
A typical example of a stiff equation is the equation representing the

rate of formation of free radicals in a complex chemical reaction. The
free radicals are created and destroyed so rapidly compared to the time
scale for the over-all reaction that to a first approximation the rate of
production is equal to the rate of depletion. This is the notion of the
pseudo-stationary state. In some cases such as the fast reactions occurring
in flames or detonations, this approximation is not sufficiently accurate.
The method described in the present paper provides a means for obtaining
solutions to equations of this type to any degree of accuracy.
The nunmerical procedure described here can easily be extended to sets

of simultaneous first-order differential equations. In any particular
region, the differential equations can be uncoupled by introducing suitable
linear combinations of the original dependent variables. Some of the
uncoupled equations may be "stiff" in which case they can be integrated
by the methods discussed here; whereas other uncoupled equations may
be integrated by the more usual procedures.

1. Concept of Stiff Equations.-Consider the first-order differential
equation,

=- [y - G(x)]/a(x, y). (1)
dx
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The right-hand side of this equation represents a general function of x and
y which for each value of x has a root, y = G(x). If Ax is the desired
resolution of x or the interval which will be used in the numerical integra-
tion, the equation is "stiff" if

and G(x) is well

a(x, y) < 1
Ax

behaved [i.e., varies with x

(2)

considerably more slowly
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Slopes, dy/dx, for a Typical Stiff Equation, dy/dx = 5(y - x*).

than does exp (x/a(x, G(x)))]. The geometrical significance of the stiffness
is shown in figure 1. Here the family of solutions horn out as one proceeds
in the positive x direction. This can be chosen as the positive x direction
without loss of generality. The slope, dy/dx, is drawn at regular intervals
of x and y. For a particular value of x: for large values of y the slope is
very large and positive; for small values of y the slope is very large in the
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negative sense; in the vicinity of y = G(x) the slope changes rapidly from
large positive to large negative.
Looking at equation (1), it appears that if a(x, y) is sufficiently small

there is a special solution, y = Y(x), which lies close to y = G(x). To a
first approximation, Y is given by Y(M,

Y(M) = G + a(x, G) d (3)

The second approximation, Y(2), is obtained by substituting Y(O) for y
in dy/dx and in a(x, y),

d Y(M)Y(2) = G + a(x, Y( )) d- (4)

In this manner, an arbitrary order of approximation of Y may be obtained
in terms of the lower orders of ap-
proximation. If a(x, y) does not
depend upon y, we can write down (I,v
the resulting expression for Y, C>O"yz)

Go DkGY =E (5) '
k= oDxk;

where D/Dx is the differential opera-
tor, a(x)d/dx. Whereas the func-
tion Y(x) remains close to G(x), FIGURE 2
every other solution deviates ex-
ponentially. This can be seen by subtracting the differential equation
for Y from equation (J). In the region about Y(x) (assuming that a(x, y)
varies slowly with y),

a(x,- Y) _ (y - Y). (6)
dx

This integrates to give

y - Y = Cexp [fa(dx ))l (7)

where C is a constant of integration. The qualitative appearance of this
family of solutions is shown in figure 2.

2. Numerical Solution of Stiff Equations Using Forward Interpolation.-
It is very difficult to integrate "stiff" equations by ordinary numerical
methods. Small errors are rapidly magnified if the equations are inte-
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grated in the direction such that the family of solutions horn out, whereas
the numerical solutions oscillate violently about Y(x) if the integration is
carried out in the opposite direction.
We have discovered a method of numerically integrating "stiff" equa-

tions which has the desirable property that regardless of the starting
conditions and regardless of the direction of integration, a solution is
generated which rapidly converges to Y(x). Thus for example, in figure 2,
if we use this system of integration starting at the point (xo, yo) we obtain

FIGURE 3

Integration of dy/dx = 5(y - x2) in the positive x direction from (x = 5, y = 50).
Here a/Ax = 1/5, G(x) = x2, Y(x) = 0.08 + 0.4x + x2.

the function indicated by the dotted line rather than the solution to the
original differential equation which passes through this point and rapidly
approaches infinity.

Let xo, xl, ..., xn, ... be a set of values of x spaced a distance Ax be-
tween successive points. Then the subscript on any quantity indicates
that it is evaluated at the corresponding value of x. We wish to
evaluate y,, from a knowledge of y at the previous points. Suppose, for
example, that y(x) can be approximated locally by a straight line passing
through y,, and yn-i. Then this straight- line has the slope:
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(dy\ Yn-y n-1
kdx/ n AX (8)

Now, using this expression for the slope in evaluating the terms of the
differential equation, equation (1), at the forward point one obtains:

(dy = Yn -Yn-1 _ yn-Gn
kdxhn Ax a(yn, xn)

t
V

(9)

FIGURE 4

Integration of dy/dx = 5(y -x2) in the negative direction from (x = 5, y = 50). Here
a/Ax = - 1/5, G(x) = x2, Y(x) = 0.08 + 0.4x + x2.

Thus,

Yn =

a(xns yn)Gn -
a xY)Yn-1Ax

a(xn, yn)1 -
AX

(10)
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If a(x, y) does Iiot depend upon the value of y, equationi (10) gives ani
explicit solution for yn in termis of y,_'; otherwise, equatioin (10) gives
an implicit relationship between yr, and y,-,. Thus startiing from a point
(x0, yo), equation (10) provides a numerical solution to the differential
equation, equation (1). The curious fact is that quite regardless of the
starting point, thus numerical solution seeks and approximates Y(x) in
the manner shown by the dotted curve in figure 2. The reason for this
behavior may be seen geometrically from figure 3. Here yo lies on the
curve y = So(x) where So(x) is a solution to the original differential equa-
tion. Eqiuating (dyldx), from equations (8) and (9) is equivalent to
asking whit solution to equation (1), y = SI(x), has a tangent at the point
xl which passes through the point (x0, yo). Similarly in passing from xi
to x2, etc. Since the slope for a stiff equation has a reasonable value
(neither tremendously large in the positive or negative sense) only in the
vicinity of G(x) or Y(x), it is clear that this numerical integration scheme
limits us to approximating Y(x).

It is interesting to notice that this method of integration imay be used
in either direction. An integration in the negative direction so that Ax
is negative (i.e., in the direction of convergence of the manifold of solutions)
is illustrated in figure 4. In this case the solution approaches the
asymptote without oscillations. The integration in the two directions is
not reversible since the definition of the forward point depends upon the
direction of integration. This fact may be used numerically to hunt the
special solution by first integrating in one direction and then reversing
the direction.

3. The Asymptotic Form.-If a(x, y) is a function only of x, it is easy to
see how the numerical procedure leads to an approximation of V'. Since

Gn = Y - a(xn)(dY/dx)n, (11)

equation (10) can be rewritten in the form

a(x")
Ax

,- Yn= - [Yn?.-I I. ±I El (12)

where

E = - 1 n + Y n-1 + Ax (i) * (13)

Expanding Y and (d1Y/dx) in Taylor series about the point, x,-1, it follows
that
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e = 1 (AX)2 d2)-1 +
I

(Ax)) [dsYN + (14)2 \d~x2/,l 3 \dx3/)XnI
Looking at equation (12) it appears that there are two reasons why yn
differs from Y.. The rate of convergence of y toward Y is measured by
the factor

a(xn)
Ax

b=- .~~(15)
1 a(x^)

Ax

The larger the interval size Ax, the smaller the value of b and the more
rapidly yn converges toward Y.. The series converges for values of b
less than unity and approaches an asymptote given approximately by

~yL(\F!(Ax\Kd!YAx\2 dYLy = Y + a(x) (AX) dX + - (AX)2 .]. (16)

This discrepancy between y and Y is due to the poorness of the fit of Y
by successive linear segments. The smaller the intervals, Ax, the smaller
this error.
The error in the asymptote of the series may be reduced by using a

three-point formula for (dy/dx) in which y is fit to a quadratic passing
through Yn, Yn-1 and Yn-2. Since the slope is evaluated at x,, the same
sort of forward interpolation is used as in the linear approximation. In
place of equation (10), one obtains the following relation:

a(x., y.) 1 a(x,, y.)
Gn -2 ax - 2 Ax -Yn-2

= 3 a(x.,y^)y(17)
2 AX

In this case the difference between Yn and Y. is given by'
/ a(xx))

AX

2(x

-2 (Yn-1 - Yn-1) + - (y,-2 - a)F 3 ( ) (dx3 )n-l 12 (18)
[1 IdsYN 1 d4 Y(8
L_3 Y )x-)nI 12 X4 x4h

Hence the asymptotic form is approximately
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F2 d3Y 1 d4Y 1
Y = YY+a(x)I-(AX)2 3 + -(Ax)3 4 + (19)L9 dx3 18 dx4I4

A geometrical argument of why y,n approximates Y,, follows the same liie
as for the linear case.
The use of a cubic to fit y leads to the expression

Gn + a(IxnYY)3yn-Il 3 Yn-2-- Yn-3)YnAX 2 3 /
20

= 1~~~~~~~I1 a(x,,, y,) (0
6 Ax

with a discrepancy between y, and Y, given by2

Axa(x,,)
Yn Yn 11a ) X

6 Ax

3 1- 3(Yn-1 Yn-1) + 2(Ynf-2 Yn-2) - (Yn-3 Yn-3)j

-- (AX)4 (d 4) +
I
(Ax)(5 +(d n)-1 20 (dx ' (21)

The use of a quartic leads to

G +(x., y) 4n1+3yn-2 - Yn-3 ± n-4y= Ax(,(Y)AYn3 4 (22)

1-nx12 Ax

with the discrepancy between Yn and Yn given by

/ a(x) \ 4(Yn-1 - Yn-1) + 3 (Yn-2
_ Y-2)

( Ax -yn 2 -Y-n 2)±+-(Yn-4 Yn -)
-n Z = t 25 a(x)

I
sd5Y

12 Ax (Ax)51 +..

(23)

Thus by taking higher order polynomials to fit y at a large number of
points, it is possible to obtain progressively more excellent fits of Y. In
all cases, the use of forward interpolation in the evaluation of (dy/dx)n
in.terms of yn, Yn-b ... is the mathematical operation which forces yn to
seek out and approximate Yn.
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Assuming the value of a(x, y) to be independent of y.

THE ELEMENTARY BASIC PRINCIPLES OF THE UNIFIED
THEORY OF RELATIVITY*

By VACLAV HLAVAT.Y
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Communicated by T. Y. Thomas, January 14, 1952

1. Introduction.-The unified theory of relativity exposed recently by
Einstein' is based on three principles: (A) The introduction of a non-
symmetric tensor gAy in the space X4 of the relativity; (B) the introduction
of a non-symmetric connection rF, by means of

axy gw, = r ,g, + rJ'g@ (1)

and finally (C) the introduction of a (seemingly) overdetermined system
of conditions imposed on the rF, which yields gA,.

In the subsequent sections we will deal with each of these basic principles.
However, we confine ourselves to results only. The corresponding detailed
proofs will be given in a subsequent series of three papers in the Journal
of Rational Mechanics and Analysis.

2. Principle A.-Denote by hx,,(k],,) the symmetric (the skew sym-
metric) part of gAF and by g, h, k the corresponding determinants. Through-
out this paper we assume h # 0. If n = 4 and if hx,, is of the signature
+++ - then there are in general two sets of bivectors B1, B2 totally
perpendicular, which are privileged in the sense that they are polar con-
jugate with respect to the cone hx,, as well as with respect to the linear
complex k),,, of bivectors. Closely connected with them are four sets of
(imaginary) bivectors each of them being polar self conjugate with respect
to h),,, and k),,,.

Projecting this configuration from an arbitrary point P of our space
X4 into the ideal space H3 of the tangent space T4(P) of X4 at P, one obtains
a linear line complex K containing a linear line congruence C (whose axes
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