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1. About 1950, Lur'el initiated the study of a class of (closed-loop) control
systems whose governing equations are

dx/dt = Fx - gp(a), dS/dt = -p(a), a = h'x + pt. (L)

In (L), a, (, p are real scalars, x, g, h are real n-vectors, and F is a real n X n matrix.
The prime denotes the transpose. F is stable (all its eigenvalues have negative
real parts). cp(o-) is a real-valued, continuous function which belongs to the class
AK: i;(O) = 0, 0 < a<(a) < 02K.
We ask: Is the equilibrium state x = 0 of (L) g.a.s. (globally asymptotically

stable) for any o CE AK?
2. This problem is related to the well-known 1946 conjecture of Aizerman: If

(L) is g.a.s. for every linear sp C AK, then it is also g.a.s. for any sc C AK. In this
crude form, however, Aizerman's conjecture was found to be false, and Lur'e was
led to consider a more special situation:" 2
PROBLEM OF LUR'E. Find conditions on p, g, h, and F which are necessary and

sufficient for the existence of a Lyapunov function V of a special type (namely V = a
quadratic form in (x, a) plus the integral of <p(a)) which assures g.a.s. of (L) for any
s A ..

This is essentially an algebraic problem.
3. Even if so(a) = o-, with e > 0 and arbitrarily small, (L) can be g.a.s. only if

p > 0. This follows easily by examining the characteristic equation of (L) when
sp(-) = ea. Henceforth, it will be always assumed that p > 0.

4. The best information available to date concerning the Problem of Lur'e is
the highly important 1961
THEOREM OF Popov.3 Assume that F is stable and that p> 0. Then (L) is g.a.s. if

the condition

Re(2ap + iwfl) [h'(iwI- F)-g + p/ico.] . 0 for all real co (P)

holds for 2ap = 1 and some i >_ 0.
Popov has also studied, but did not resolve, the question of existence of a Lya-

punov function which assures g.a.s. whenever (P) holds. We shall settle this
question completely and at the same time solve the Problem of Lur'e.

5. In the same paper, Popov proved also: Consider the most general function
V(x, a) which is a quadratic form in (x, a) plus a multiple of the integral of <p(a):

V(x, a) = x'Px + a(a - h'x)2 + f3 f qp(a)da + aw'x (a, f real). (1)

If for any p EC A (e > 0) the function V > 0 and V (its derivative along solutions of
(L)) is < 0 then w = 0.
Assuming w = 0, V will be nonnegative for any ; C- A,, if and only if a > 0O
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,. 0, and P = P' > 0 (nonnegative definite). From (L) and (1) (with w = 0),
we get

V(x, v-) = x'(PF + F'P)x - 2p(#)x'(Pg - aph - (1/2)13F'h)
- 13(p + h'g)s2(cT) -2apap(a). (2)

V . 0for any p (E A,0. implies My = ,3(p + h'g) . 0. If

(a) Q = -PF - F'P, (b) \/ yq = r = Pg - aph- (1/2)13F'h, (3)

defines Q, q, and r, we can write V as

V(x, v-) = - [x'(Q -qq')x + (V/_yso(0r) + q'X)2 + 2apaop(of)] (4)

If > 0, V < 0forany so CA. if andonlyif Q - qq' > 0. If -y = 0, V < 0
for any so C A0. if and only if r = 0 and Q _ 0. (In this case, q is not defined by
(3b) but may be picked always so that Q _ qq'.)

6. Our solution of the Lur'e Problem will utilize and extend results of Popov,3
Yakubovich,4 and LaSalle.5 In addition, the following observation is of crucial
technical importance.
By the writer's canonical structure theorem,6 F, g, h defining a linear subsystem

of (L) may be replaced by FBB, gB, and hB (notations of ref. 6), without loss of
generality as far as the g.a.s. of (L) is concerned. In fact, h'(iwI - F)-g in (P)
is equal to hB (icl - FBB) 'gB-
Hence it may and it will be assumed without ioss of generality that the pair (F, g) is

completely controllable and (F, h') is completely observable.
All that is needed from controllability theory7 in the subsequent discussion is the

lemma:
The following statements are equivalent: (i) (F, g) is completely controllable; (ii)

det [g, Fg, ..., F -g] t 0; (iii) x'lexp Ft]g Ofor all t implies x = 0; (iv) g
does not belong to any proper F-invariant subspace of R n.
By definition, (F, h') is completely observable if and only if (F', h) is completely

controllable.
7. THEOREM (Solution of the Problem of Lur'e). Consider (L), where p > 0,

F is stable, (F, g) is completely controllable, and (F, h') is completely observable. We
seek a suitable Lyapunov function V from the class defined by (1).

(A) V > 0 and V < 0 for any zo E A. (hence V is a Lyapunov function which
assures Lyapunov stability of x = 0 of (L) for any (p E A .) if and only if w = 0 and
there exist real constants a, 1 such that a _ 0, 3 _ 0, a + f3 > 0, and (P) holds.

(B) Suppose V satisfies the preceding conditions. Then V is a Lyapunov func-
tion which assures g.a.s. of (L) if and only if either (i) a * 0 or (ii) a = 0 and the
equality sign in (P) occurs only at those values of X where Re{ h'(iwI- F) -1g } _ 0.

(C) There is an "effective" procedure for computing V.
The constants a, f3 whose existence is required are precisely those used in (1) to

define V.
8. The principal tool in the proof of the theorem is the following result, itself

of great interest in linear system theory:
MAIN LEMMA. Given a real number -y, two real n-vectors g, k, and a real n X n

matrix F. Let y > 0 F stable, and (F, g) completely controllable. Then (i) a real
n-vector q satisfying
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(a) F'P + PF =-qq', (b) Pg-k=x/q (5)
exists if and only if

(1/2)Y + Re{k'(iwl - F)1-g} _ 0 for all real . (6)
Moreover, (ii) X1 = I x: x'Px = 0 1 is the linear space of unobservable states6 relative

to (F, k'); (iii) q can be "effectively" computed; (iv) (5) implies (6) even if qq' is
replaced by qq' + R, where R = R' > 0.

Observe that (5a) and the stability of F imply that P is symmetric, nonnegative
definite.

9. Proof of the Main Lemma: Necessity: Add and subtract icoI from (5a).
Multiply (5a) by (iwI- F)-l on the right and by (-iwI - F')-' on the left.
Using (5b) yields

2 Re {k'(iwI- F)-} = q'(icoI- F)-lg 2 - 2V/ Re { q'(icI- F) -g}, (7)
which implies (6). Adding R = R' > 0 to qq' in (5a) does not diminish the right-
hand side of (7). Hence (iii).

Suffirienc?,, We exhibit a constructive procedure for finding q, hence V. Let
ak be the coefficient of Sk in the polynomial det (sI- F) = &(s). Let en = 9,
en-1 = Fg + an-9g ... , el = Fn-,g + a.-,Fn-2g+ ... + aog. Because (F, g) is
completely controllable, these vectors are linearly independent, hence form a basis
for Rn. Relative to this basis, F, g, and h have the form

\ O~~~~1 . bn_2,
-aO -an-2 -an-l 1 bn-1

Using the theory of the Laplace transformation, etc.,8 it follows that

h'(sI - F)-lg = (bo + ... + bn-18sn )/- (s)./1P(. (8)
This formula identifies the components of any vector q (relative to the basis el,

I. en) with the numerator coefficients of the rational function q'(sI - F)-'.
Setting s = ico and assuming (6), we can write

y + 2 Re{ k'(iwI- F) -1g = IO(i) 1 2/I|P(i) 1 2 > 0 (9)

where 0 is a polynomial in iw of degree n with real coefficients.
0 is determined as follows. The numerator of the left-hand side of (9) is the

polynomial r(-c2) = [y - 2k'F(c2I + F2) -g]* [det (c2J + F2)]. Since r has real
coefficients and is nonnegative, its zeros Xk are complex conjugate and of even mul-
tiplicity if real, negative. The zeros of A(ico) = r( -2) are V,/Xk and occur in
complex conjugate pairs. The reflection of a pair of complex conjugate zeros of A
about the imaginary axis is also a pair of zeros of A. Therefore 0(iwc) exists and
may be taken, e.g., as the product of all factors of A with left-half-plane zeros. 0
so defined has complex conjugate zeros and therefore it is a polynomial with real
coefficients. The above choice of 0 is not unique, but convenient.
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Since the leading coefficient of 0 is x/y, v = 0- + V\/l is a polynomial of (formal)
degree n - 1. If the coefficients of v, arranged in the order of ascending powers,
are identified with the vector q, then v(iw)/#(iw) = q'(icoI- F) 1g by (8). By re-
tracing the steps of the necessity proof, it is easily verified that q so defined satis-
fies (5).

Let X1 = {x:q'[exp Ft]x = 0}. By (5a), xi E X1 if and only if xi'Px1 = 0.
Then (5b) implies k'[exp Ft]x, - 0. Hence, XI c X2 = {x:k'[exp Ft]x =- 0}.
But it can be shown8 that dim X1 = degree of the largest common divisor of v,
s1} = {degree of largest common divisor of the numerator and denominator of
k'(iwI - F)-1g} = dim X2. Hence, X1 = X2, which implies (ii) and completes the
proof of the main lemma.
A weaker version of this lemma was proved by Yakubovich4
10. Proof of Part A of the Theorem: Define k = aph + ('/2)i3F'h.
Sufficiency. (a) If a >_ 0, / _ 0, then condition (P) implies the following: or . 0

and there is a q satisfying (3b). Indeed, if /3 = 0, then obviously Zy = 0. If /3 > 0,
then the left-hand side of (P) tends asymptotically to p + h'g as waI . o so that
p + h'g and hence y must be nonnegative. By the definition of k, (P) is equivalent
to (6). Since oy > 0 the main lemma shows that q exists and satisfies (5b), which is
the same as (3b).

(b) If Q = qq' then P, Q satisfy (3a) because P, qq' satisfy (5a). Thus we have
constructed a V of the form (1), and V > 0 and V _ 0 for any so E A..

(c) If a > 0, and (P) holds, then V is positive definite if a + ,3 > 0. Indeed, if
either a = 0 or/ = 0, the pair (F, k') is completely observable because so is (F, h').
By (ii) of the main lemma P > 0. If both a, /3 > 0, then again by (ii) of the main
lemma x'Px = 0 only if k' [exp Ft]x_ 0. But there is no x $ 0 for which this con-
dition can hold jointly with h'x = 0, because that would contradict complete ob-
servability of (F, h'). Hence, P + ahh' > 0. Thus V is positive definite.

Necessity. Suppose V >OandV 0< . Then a > 0,/ > 0,and a+/ > O are cer-
tainly necessary; moreover, there must exist P, Q, and q satisfying (3) and we must
have also y >_ 0, Q = qq' + R (R = R' 0O.) Since (3) corresponds to (5), it
follows by (i) of the main lemma that (6) is satisfied. (6) is equivalent to (P), so
that (P) is necessary.

11. Proof of Part B of the Theorem. Let V be the Lyapunov function con-
structed in §10. We recall Theorem VIII of ref. 9 (p. 66): If V > 0 and V _ 0,
then eve? y solution bounded for t > 0 tends to some invariant set contained in V = 0,
Thus to establish g.a.s. of (L) we have to show that (a) every solution of (L) is
bounded, and (b) the only invariant set of (L) in V = 0 is o01.

(a) This can be proved by exactly the same technique as was used by LaSalle5
in similar context.

(b) We seek a solution (x(t), oa(t)) of (L), not identically zero, whose values lie
in its own positive limit set as well as in V = 0. Since V may be multiplied by a
positive constant, there are two cases to be considered:

(i) Let 2ap = 1. By (4) V = 0 only if or(t) = 0. so that h'x(t) = -pro =
const. Moreover, x(t) = [exp Ft]xo since so = 0. But xo 5 0 would contradict
complete observability of (F, h').

(ii) Now let a = 0. By (4) V = 0 implies
V/Y(fO(t)) = -q'x(t). (10)
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If q'x(t) 0, we have again the previous case. Otherwise y > 0. Then x(t) is
the solution of the linear differential equation dx/dt = (F + y-112gq')x. By (a)
above x(t) is bounded. Hence x(t) can lie in its own positive limit set only if it is
almost periodic. Therefore at least one pair of eigenvalues of F + -y-1/2gq' must
be + icok $ 0, which implies that (6) holds with the equality sign at c = Wk. But
then (10) and the requirement Re{h'(ickI - F)1g} _ 0, k = 1, 2, are in-
compatible. Hence { 0} is the only invariant set in V = 0.
On the other hand, the modified condition (P) in (B-ii) of the theorem is neces-

sary for g.a.s. since it is the Nyquist stability criterion for linear functions in A,,.
12. Even if we drop the assumption of complete controllability and observa-

bility of the subsystem (F, g, h), the theorem remains valid with respect to the
completely controllable and completely observable state variables (XB, a). Since
F is stable, FAA, . . ., FDD (see ref. 6) must be also stable. Thus, our theorem actu-
ally implies g.a.s. of the entire system (L), i.e., of the variables (x, a). In particu-
lar, it implies Popov's theorem.
The question then arises whether the Lyapunov function (1), constructed on

(XB, a), can be extended to (x, a). If (P) holds as a strict inequality (so that V <
0), this is quite easy to show and was explicitly pointed out by Morozan'0 using
Yakubovich's version of our main lemma. But if V < 0, it seems unlikely that an
explicit Lyapunov function can be constructed in general which specializes to (1)
on (XB, C).
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