
Scratch: A Way to Logo and Python
Mark Dorling

Computing at School and Network of Excellence
BCS Chartered Institute for IT

Swindon UK
+44 07825 746035

mark.dorling@computingatschool.org.uk

Dave White
Computing at School and Network of Excellence

BCS Chartered Institute for IT
Swindon UK

+44 7540 096876

dave.white@computingatschool.org.uk

ABSTRACT

There is concern amongst teachers about how to support all pupils

in making the transition from popular graphical languages like

Scratch to text-based languages like Python. In a new subject, not

taught widely before at both primary and secondary education in

England, there is inevitably a lack of tuned-in pedagogical

expertise. In this paper, the authors address the transition process

by exploring established pedagogy in Computer Science, and other

subjects including Mathematics, Science and Languages, and by

sharing and testing their findings with pupils and teachers in the

classroom.

 Teaching the fundamentals of programming is well served by

applying sequential solutions in both graphical and text-based

languages. This practitioner action research paper focuses on

scaffolding support for pupils when making the transition from

graphical to text-based languages. In an approach which uses

graphical languages in conjunction with, not in place of, text-based

programming languages, the authors discuss ways to tackle the

difficulties presented to pupils by text-based languages, and

propose a tested strategy for teachers to enable pupils to undertake

the transition successfully.

Categories and Subject Descriptors

K.3.2 [Computers & Education]: Computer and Information

Science education - Computer Science Education, Curriculum

D.3.2 [Language Classifications]: Scratch 2.0, Logo, Python 3

 General Terms
Theory, Experimentation, Human Factors

Keywords
Graphical programming language, text-based programming

language, transition process, computational thinking, unplugged

activity, Computer Science Education, Scratch, Logo, Python

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this

work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, or republish, to post

on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from

Permissions@acm.org.

SIGCSE '15, March 04 - 07 2015, Kansas City, MO, USA

Copyright is held by the owner/author(s). Publication rights

licensed to ACM.

ACM 978-1-4503-2966-8/15/03…$15.00

http://dx.doi.org/10.1145/2676723.2677256

1 BACKGROUND

From September 2014, pupils in English state-maintained

schools will be expected to follow the programmes of study set

out in the national curriculum document [4]. Computing at

School has responded with a targeted resource [2].

The programme of study has high-level aims in terms of the

introduction of computer science [4]. The following extracts

illustrate learner capabilities at different stages of primary and

secondary education.

At Key Stage 2 (age 7-11) pupils should be able to (amongst other

things): “… solve problems by decomposing them into smaller

parts.” and “use sequence, selection, and repetition in programs;

work with variables and various forms of input and output.” and

also “… detect and correct errors in algorithms and programs.” ([4],

p. 189).

At Key Stage 3 (ages 11-14) pupils should be able to: “… make

appropriate use of data structures [for example, lists, tables or

arrays]; design and develop modular programs that use procedures

or functions.” and also “Understand simple Boolean logic [for

example, AND, OR and NOT] and some of its uses in circuits and

programming…” ([4], p. 190).

For primary educators there is no specification in the programme

of study to teach either a graphical or text-based language, instead

the emphasis is placed on teaching concepts and principles. In

contrast, the programme of study for secondary education, Key

Stage 3 makes it explicit:

Pupils should be able to: use two or more programming languages,

at least one of which is textual, to solve a variety of computational

problems ([4], p. 190)

2 INTRODUCTION

There is a growing range of graphical programming environments

available to teachers, such as Scratch [9], Alice [3], Kodu etc. but

little research into how effective they are at supporting pupils to

make the transition from graphical to text-based languages. Wolz

U. et al reported that after initially learning Scratch, the students'

transition to Java or C appeared to be easier [15].

After using graphical programming environments, there is a

perception amongst non-specialist teachers in both primary and

secondary education that text-based programming is hard. And

with some reason: “Beginners need to learn to identify the

structure of a problem and the core logic of a program to solve it

but they are simultaneously forced to deal with technical details of

the programming environment that are not related to these and this

can be overwhelming and often discouraging for beginning

programmers.” [5]. Pupil difficulties with text-based language

syntax and error messages are identified in [6], [10], [15]. As a

result, some are publicly questioning whether programming is a

skill for only the more able pupils, and have asked questions about

the body of pedagogical research for teaching pupils with Special

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2676723.2677256

Educational Needs (SEN) such as Dyslexia, and English as a

Second Language (EAL).

With their experience at opposite ends of the learning spectrum the

authors met at a Computing at School meeting and found their

teaching paths surprisingly convergent both in content and

pedagogy. One, in the Digital Schoolhouse conducting action

research to teach primary and secondary pupils directly to program

in Scratch and Logo, the other delivering CPD Courses in

Computing to Primary and Secondary School teachers from

different disciplines, mostly without a background in Computing,

on how to teach Scratch and Python to pupils; and at the same time

to investigate and consider how their own programming skills

might enhance the delivery of their own subjects. The authors

concentrated on:

1. Identifying the difficulties associated with learning to program

in a text-based language available in the research literature,

and their own experiences of the difficulties which arise in

teaching programming in Scratch and text-based based

languages.

2. Investigating the background knowledge necessary for the

cross-curricula topic chosen --- geometric shapes and patterns.

3. Utilising existing pedagogy, by consulting and observing

colleagues teaching in different disciplines, --- including

Computer Science, Mathematics, Science and Languages, in

order to make the transition process for pupils and teachers a

realistic proposition.

The focus of this practitioner action research was on upper key

Stage 2 and key Stage 3 pupils and their teachers.

2.1 Aims and Methodology

The authors, with their ongoing involvement with pupils and

teachers, decided to pool their resources and experience: to see if

they could build on pupils’ and teachers’ confidence and familiarity

with Scratch to find a realistic pathway through the transition

process to text-based languages, navigable by teachers and their

pupils.

The authors experimented with a number of ideas -- some tried and

tested approaches – other ideas were researched and pursued with

pupils and teachers in the classroom. Those adopted are

summarized here:

3 TRANSITION STRATEGY

A constructionist approach to learning programming and concepts

in Computer Science developed from the many years that Logo has

been in existence[8], underpinned by the elements of

Computational Thinking [11]: abstraction, algorithmic thinking,

decomposition, evaluation and generalization.

To use a methodology that all three languages shared, namely,

sequential processing with a sprite/turtle and the reward of the

instant feedback of sprite/turtle activity on the screen.

To reduce the number of tasks to accomplish at the screen by

undertaking learning away from the computer in the form of a

number of ‘unplugged’ activities , which are targeted to cover the

background knowledge of an exciting cross-curricular topic, in this

case geometric shapes and patterns and undertake some text-based

programming learning experience in a relaxed play setting away

from the computer, using UPL (Unplugged Programming

language) --- essentially a very small subset of Logo, which drives

a pet/robot.

To harness the benefits of Scratch 2.0 and its freedom from
syntactical errors in developing sequential solutions to
problems along a simple pathway through the topic -- this

pathway is designed to take account of the other known
difficulties in programming generally, of concurrency,
initialization, and variables [6].
To address, in a rudimentary way, the fundamental control

structures of programming: sequence, repetition, function,

selection and communication, in the course of the pathway.

After a solution to an exercise is completed successfully in Scratch,

to use the structural similarity of a Scratch program to the

equivalent program in text-based languages. The program would be

mapped into a Logo/Python program, with the focus now solely on

attending to the environment and syntax of the text-based language.

To consult colleagues and observe existing pedagogy in the topic

as well as pedagogy in other subjects, including Computer Science,

Mathematics, Science and Languages. Some of the difficulties

associated with learning text-based languages were tackled directly

from these resources. Others were delayed until later in the

transition process.

4 DISCUSSION

The authors observed and consulted specialist colleagues teaching

Mathematics, Science and Languages in local primary and

secondary schools to gain a greater understanding of pedagogy in

other subjects, and, in the first instance, how it could be applied to

computational thinking and programming in the transitional

process the authors were undertaking, and further, to Computer

Science in general.

They were particularly interested in Mathematics teachers’
approaches to geometrical shapes, symmetry and patterns, mental

processes in mental arithmetic and progressing to elementary linear

algebra and linear transformations.

Science teachers methods of helping pupils to collect and analyse

data, to experiment and hypothesize in Science, including key

questioning techniques employed to harness enquiry-based

learning, and use of scientific language and concepts for variables

and constants.

Language teachers’ approaches to teaching pupils learning new

languages and applying rules of syntax in languages. Literacy:

reading precedes writing [12].

5 THE PATHWAY

The authors have outlined the pathway as a sequential journey

through a course of 10 sessions. Each session, unplugged [1], or at

the computer may consist of a mixture of: a direct teaching

component, an activity, a worksheet with graded exercises (*s

ranging from 1-5) and individual coaching/tutoring

In the next section 5.2.1, the authors map out, in more detail than

in other sections, how the unplugged session on programming takes

pupils through the use of the control structures sequence, repetition

and use of functions, preparing the way for interaction with the

computer in subsequent sections. Apart from the two further

unplugged sessions, sections up to 5.2.8 summarise how these

control structures are programmed in Scratch in the first instance,

before mapping to a text-based program in Logo/Python.

5.2.1 Unplugged 1
‘Action Geometry’ in UPL --- LOGO Unplugged

In this session, we get used to programming a pet/robot/sprite/turtle

in a text-based format without a computer. In UPL (an unplugged

programming language, essentially Logo, but adapted for

unplugged use), a pet/robot is defined by 2 characteristics:

 Its position -- where it is standing, if we are ‘walking’ the talk,

or a point on the paper if we are drawing the path. We start at

the origin O.

 The direction in which it is facing at any moment. (We assume

it is facing right to start at O).

We consider 3 of the instructions in UP:
forward 1 step (or 2 or 3),

 left turn (through 90 degrees),
 right turn (through 90 degrees).

We abbreviate the instructions when writing, for example, to
 fd2, lt and rt

The program to draw a straight line of length 2, and return to the

starting point facing in the original direction would be:
 fd2 lt lt fd2 lt lt

Notice that the pet/robot has turned through what we call a

SPIN(360) in this program. Pupils can work in pairs using UP in a

number of ways.

1. ‘Walk the talk’: one pupil ‘talks’ the instructions, the other

‘walks’ the figure

2. ‘Draw the talk’: one pupil ‘talks’ the instructions, the other

‘draws’ the figure

3. Use a combination of 1, 2 interactively to construct a program

on paper

Sequence: is setting up the instructions in a

program in the right order usually set out one

after the other, reading left to right and top to

bottom.

 Activity: Using the instructions in UP

in combination, how would you program the pet/robot to:

trace a capital letter shape like L, I, T, F, E and return

to the starting point and starting direction? Starting point

and direction for the pet/robot is at O for the letter L.

 Activity: trace a square of side-length 2 paces and return

to the starting point and starting direction.

 Activity: Ex 1. Cracking the Code: what does the pet

trace out in the following program?
fd2 lt fd2 lt fd2 lt fd2 lt fd2 fd2 lt fd2 lt fd2 lt fd2 lt

fd2 fd2 lt fd2 lt fd2 lt fd2 lt lt lt fd2 fd2 lt lt

 Quite often, the idea of repetition is used to exploit the occurrence

of pattern in the code, which in turn reflects the pattern in the figure

generated by the code.. A solution code for drawing a square might

look something like this:
fd2 lt fd2 lt fd2 lt fd2 lt

With the ‘pronounced’ spacing it is evident that 2 instructions ‘fd2

lt’ are repeated 4 times corresponding to the four sides of the

square.

Repetition A repeat structure is a way of repeating a set of

instructions as many times as specified.We use the UPL instruction

repeat as follows:
repeat4 [fd2 lt]

The repeat structure shortens the program appreciably and makes

it more easily interpreted. We have another structure, a function,

that helps to shorten the code and makes it more easily interpreted

in a different way. In Ex 1, we saw a longish UP program, in

which it was hard to see the wood for the trees. If you break it

down into its components (decomposition) it is:

1. repeat the instructions 2, 3(below)

sequentially three times

2. draw a square of 2 paces

3. move forward 2 paces

4. to end up with 3 squares in a row

5. then return the pet to the starting point and

direction.

Function: use of a function sq to draw a square.

 Activity: we introduce a new instruction ‘sq’ in UPL. sq2

draws a square of side 2 paces. In the program in Ex1, identify
the code that sq2 stands for. Rewrite the program in UPL

using sq2 in place of code wherever you can. Rewrite the

program in UPL using sq2 and the repeat structure

 ***Activity : We name a function row which stands for and

names the three squares in a row, with each square of
sidelength 2 paces. Use row and the repeat structure in UP,

to write a program in UP to draw a 3x3 array of 9 squares

made up of three rows of squares touching.

5.2.2 Unplugged 2: A worksheet
 An example of ‘joining dots’ action geometry in Figures 1 and 2

serves to acquaint pupils with the background knowledge of

polygons (a) and stars (b), (d), (e), (f).

Figure 1. Joining the dots in circles with 5 equally spaced dots

at OABCD.

.

Figure 2. action geometry: for the hexagon, heptagon and

octagon.

 Activity

Polygons: (d), (e), (f) Start at O, join dots OA, AB …

Stars: (e) Start at O, skip a dot, join OB, BD …

(e) (f) Start at O, skip 2 dots, join OC, CF …

*** (d) Start at O, skip a dot, Join OB, BD … What happens? How

would you complete a hexagram (star of David)?

5.2.3 Comparison

 Scratch, Logo and Python

 The similarity between UP and Logo is obvious in both layout and

individual instructions. Logo and Python turtle instructions are

closely matched. And the matching structure of a program is

reflected in Scratch Logo and Python in Figure 3, where UPL

instructions have been entered vertically to facilitate the

comparison (similarly for Logo).

Once the pupils had spent time doing unplugged programming and

were familiar with programming simple letter shapes and other

exercises in UP, the next step was to develop the program to draw

a square on screen in the familiar Scratch environment.

Once the program was tested and running, the pupils would attempt

to map it onto a Logo/Python program, focusing solely on

managing the new environment and getting the specific syntax

correct of the text-based language. See Figures 3, 4.

Table 1

Figure 3. Matching Program structures in UP, Scratch and

Python: drawing a square

5.2.4 Repetition

The repetition of the 2 instructions FD 100 LT 90 makes the

introduction of the repeat loop welcome, necessary (and useful for

experimenting with the values in the loop)

All pupils managed the

ordering (sequence) of

instructions when

designing an algorithm, to

draw a square. And having

met the repeat structure for

drawing a square in UPL,

found it straightforward to

do the same in Scratch.

Figure 4. The repetition structure in Scratch and Python

5.2.5 Experimentation

As a result of observations and pedagogical consultations, the

authors modified their approach to teaching computational thinking

[7]. By teasing out decomposition and generalisation in

‘unplugged’ sessions, as well as in coding computing lessons, and

extending experimentation to include collection and interpretation

of data, the authors introduced a more challenging yet supportive

interactive style both oral and written.

When pupils had constructed the repeat loop in Scratch (and

Python) see Figure 4, they were then able to experiment with the

turning angle (90 degrees) by substituting 45, 30, 60 for 90 degrees

in their repeat loop. They were asked to see if they could find

another value of the repeat parameter (4) which would result in the

turtle ‘closing’ (returning to the starting point and starting direction)

the shape they were drawingSPIN(360). The trial and error process

they were engaged in involved evaluating the effectiveness of the

program they were using albeit with simple changes and was a

successful introduction to semantic debugging. Octagons,

hexagons, dodecagons (12-sided polygons) readily popped up on

their screens, along with some excitement.

The pupils now had accumulated some data as a result of their

experimentation in Table 1 below. The authors’ dialogue with

Science and Mathematics teachers proved invaluable. A period of

guessing, hypothesizing and trial and error followed.

 Activity: Complete Table 1: What do you make of the
last entry?

Some more able students were able to find the angle for the

pentagon. But the heptagon would involve the use of a calculator

to record a non-integer value. And the key question to those who

found answers was: “Describe how you did it?

 (The production of these, and similar unplugged exercise sheets

make useful programming projects for pupils (and indeed teachers)

when they become more adept programmers. These ‘unplugged’
worksheets are a good example of how the ability to program can

produce learning materials which would otherwise be a difficult

chore [14].

5.2.5 Unplugged 3 Enquiry-based learning

Some questions were posed interactively in the classroom --- the

questions that follow were set in a CPD worksheet for teachers to

adapt for their own classrooms.

Figure 5. Tracking the square and the pentagon

 Activity: Angles and SPIN(360)

This process could be undertaken as a formal geometry exercise.

Here it is introduced calling upon symmetry and ‘action geometry’

in the computational thinking of decomposition and generalizing.

Devise a set of questions to form an enquiry-based exercise to help

the reader calculate angles x and y in the square in Figure 5.

Afterwards use exactly the same questions but substitute the words

‘regular pentagon’ wherever you see the word ‘square’ in your

questions. The questions should achieve the same result when

applied to the pentagon. Here are a couple of questions to start:

First the Square: (a 4-sided simple, regular, symmetric polygon)

1. What does symmetry mean for a square?

2. Hint: If you turn round completely once and face the

same way as you started, how many degrees have you

turned through? We will call this a SPIN.

Generalising from the known to the unknown

 In the last example with the square, we may have known from

our experience what the values of x and y are. In other polygons,

we may not be so familiar with angle sizes, hence the importance

of how we work the values of x and y out with the square. We then

have a basis for generalising to the pentagon.

 Activity: More Angles and SPIN(360)

Now the pentagon: (a 5-sided simple, regular, symmetric polygon)

After the unplugged sessions with polygons and stars and plugged-

in experimentation, pupils were able to investigate, catalogue and

decide which stars could not be drawn straightforwardly. They

Turning

Angle

Repeat

value

Regular

Shape

Shorthand Length

of side

90 4 square (4, 360/4) 100

45 6, 7 ? 50

60 ? 50

? 5 pentagon (5, 360/5) 75

? 10 ?

? 7 heptagon 50

4 90 ? 5

were then able to test and verify the formal hypothesis (and

generalisation) for drawing a star: (in shorthand notation)

 (n, r * 360/n) where r > 1 and r and n are co-prime, that is,

have no common divisor other than 1, and where n is the

number of sides of the star, and r runs from 1 to n-1.

In physical terms:

 the r corresponds to starting at O and joining every rth

vertex of the star,

 and to r SPINS of the turtle on itself as it traces the star.

 For all simple regular polygons r = 1 which generalises this

formula to include all regular polygons and stars.

5.2.7 Function

 Definition and call, simplifying and (generalizing) with

parameters.

The next step, and a crucial one, in extending pupils’ interaction
with, and learning of, generalisation and abstraction, is in the

creation of their own user functions. In the unplugged

programming sessions pupils were able to make use of the user

function ‘sq2’ for a square with argument 2, without needing to

formally define it in a specified format. (Advantage of unplugged!

Of course, pupils already make use of system functions like ‘fd2’
without seeing a formal definition).

After pupils have practiced sequence and repetition using Scratch

and transitioned to Logo/Python, they are introduced at this early

stage to a function without parameters: ‘start-right’, which they

use at the start of all their Scratch programs. It synchronizes the

initialisation of a Scratch Sprite to start from the origin and

pointing to the right, with the Python turtle, every time an

amended program is re-run. Then they meet the generalizing

idea of a parameter (sidelength) for a function ‘sq’ they have

employed in an unplugged

setting. See Figures 5 and 6

Scratch came of age as a fully-

fledged programming language

with the arrival of the explicitly

defined function facility (custom

block), which arrived in Scratch

version 2.0 in April 2013.

Figure 5. Function definition of sq(sidelength in Python)

The custom block in Scratch is a good environment in which to

learn a difficult concept. It requires careful tuition and practice in

both the concept and the process of the definition of a function.

Figure 6. Function definition of sq(sidelength) in Scratch.

Figure 5 encapsulates in the function definition the shorthand

form in a repeat loop for a rotation (4, 360/4). In the program the

shorthand form, in a repeat loop for a translation of a square

through 3 times through 50 steps(pixels), is (3, sq(50), 50). The

use of the function, through the shorthand form gives rise to the

physical interpretation of translating the square, and replaces the

more indecipherable nested loop that would otherwise arise.

The pupils have now learned how to ‘hide’ the definition of a

function (by capping it in a custom block definition and moving it

to the side in Scratch 2.0; and by declaring it in a file (module)

say ‘d.py’ and preloading it with ‘for d import *’ for Python 3.

The function can then be inserted as a single instruction in code,

thus simplifying the coding on both sides of the transition, (see

Figure 7).

Figure 7. Function definition for a pentagram (5-star) in

Scratch

Pupils are now equipped to devise and program unique patterns

and in Python 3 to add colouring-in, which enhances spectacularly

their adventures into patterns. The definition of the function

pentagram shorthand (5, 2*360/5) illustrates how the shorthand

notation and the format of entries in the repeat loop is an aid to

generalizing. The top program in Figure 7 rotates the pentagram

(90, pentagram, lt(4)) and the bottom one translates it (90,

pentagram, fd(4)), see Figure 8 and 9 for more examples of

rotation and translation.

5.2.8 Patterns

 Using functions, rotation and translation. Colouring-in in Python

Figure 8. Rotating shapes: square, 11-polygon octagon and

octagon coloured (Python)

 (a) (b) (c)

Figure 9. A shooting (translating) star, a double spin of a star

and translating a circle.

In Figure 9(a), translate a star through 125 pixels, 5 pixels at a time;

shorthand form: (125/5, pentagram, fd(5)).

In Figure 9(b), SPIN(2 *360) a pentagram in steps of 2*360/5

degrees; shorthand form:(5, pentagram, 2 * 360/5).

In Figure 9(c) translate a circle through 200 pixels, 4 pixels at a

time: shorthand form: (200/4, circle, fd(4))

Figure 10. Fancy Rotations of regular shapes

5.2.9 Selection

Drawing a general polygon/star. (algorithmic thinking,

decomposition and generalization). Selection structures are best

dealt with in a number of scenarios in Scratch directly before a

transition takes place to Logo/Python. An activity that arises

naturally in the narrative of generalisation in patterns is to write an

App (function) to draw a polygon/star of any number of sides).

And for the drawing to fit in the space available (selection).

5.2.10 Communication

Talking to the user; ask and answer in Scratch and print and input

in Python. If statements in both. The App above is extended to

allow a user to choose the polygon/star to be drawn. In Scratch, a

communication with the user may be conducted with the easy-to-

use ‘ask and wait’ block for the program to ask a question, and the

reply from the user is entered into the special variable ‘answer’. The

Python 3 structure can be directly paralleled in the transition.

6 CONCLUSION

The National Curriculum doesn’t specify that pupils should learn a

graphical language in primary school, only that the pupils should

learn two languages in secondary school, one of which should be a

text-based language. The National Curriculum is regarded as the

minimum expectation of what should be taught to pupils. This

paper suggests that a greater focus should be placed by teachers on

developing and embedding good pedagogy in computing lessons

with teachers paying particular attention to the transition process

from their graphical to text-based language. Furthermore, that there

is established pedagogy in other subjects that can be effectively

used in a Computing lesson. In turn, it was also evident that

programming could enhance the delivery of other curricula topics.

Despite the concerns alluded to in the opening of this paper

concerning the difficulties for pupils in programming in text-based

languages, the anecdotal evidence, that this paper provides,

supports the practice of using graphical languages in conjunction

with, (in effect using a graphical tool as a form of pseudo coding),

not in place of, text-based programming languages, to improve the

confidence, independence and resilience of pupils when learning to

program using a text-based language, in both primary and

secondary education.

Given good pedagogy, expert support for teachers and a strategy

(see Section 3) for supporting all pupils with making the transition

from graphical to text-based languages, the authors conclude:

 Pupils can learn a text-based programming language whilst

at primary school.

 All secondary school pupils are able to master the basics of

text-based programming.

 A graphics based language like Scratch would be a good

introduction to programming for beginners at both primary

and secondary levels.

It is the experience of the first author that this transition process has

been a factor in an increased uptake of Computer Science GCSE

qualification at Key Stage 4.

7 ACKNOWLEDGMENTS

The first author acknowledges the financial support by the SSAT

of the Digital Schoolhouse Trust, and more recently The Digital

Schoolhouse London Project funded by the Mayor of London and

Department of Education through the London School's Excellence

Fund.

8 REFERENCES

[1] Bell, T., Witten, I.H., Fellows, M. 2005. Computer Science

Unplugged. http://csunplugged.com/ [last accessed 5 July 2014].

[2] Computer science: A Curriculum for Schools 2012. Available

from:

http://www.computingatschool.org.uk/data/uploads/ComputingCu

rric.pdf

[3] Dann, W., Cooper, S. and Pausch, R. 2009. Learning to

Program with Alice, Second Edition. Pearson.

[4] Department for Education. 2013. The national curriculum in

England, Framework document. Available:

www.education.gov.uk/nationalcurriculum [Accessed 13-08-

2013].

[5] Kelleher, C. and Pausch, R. 2005. Lowering the barriers to

programming: A taxonomy of programming environments

and languages for novice programmers. ACM Comput. Survey

37, 2, 83-137.

[6] Meerbaum-Salant, O., Armoni, M. & Ben-Ari, M. (2010)

Learning computer science concepts with Scratch. ICER '10

Proceedings of the Sixth international workshop on Computing

education research. ACM, 69 – 76

[7] National Research Council. (2011) Report of a workshop of

pedagogical aspects of computational thinking, Washington, DC:

The National Academies Press

[8] Papert, S. and Harel, I. 1991. Constructionism. Ablex.

[9] Resnick, M., Maloney, J. Monroy-Hernández, A., Rusk, N.,

Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,

Silver, J., Silverman, B., and Kafai, Y. 2009. Scratch:

Programming for all. Commun. ACM, 52, 11, 60-67.

[10] Rizvi, M., Humphries, T., Major, D., Jones, M., and Lauzun,

H. (2011). A CS0 course using scratch. J. Comput. Small Coll.,

26(3):19-27.

[11] Selby, C. and Woollard, J. (2014) Computational Thinking:

The developing definitions. In Proceedings of the 45th ACM

Technical Symposium on Computer Science Education, SIGCSE

2014. ACM.

[12] Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins, P.,

and Prasad, C. 2006. An Australasian study of reading and

comprehension skills in novice programmers, using the

Bloom and SOLO taxonomies. In Proceedings of the Eighth

Australasian Conference Computing Education (Hobart,

Australia, January 16-19, 2006), 243-252.

[13] Wing, J. (2006) Computational Thinking. Commun. ACM,

49, 33 – 35

[14] White, D.[no date]. Unplugged: [online]. Available from

http://www.ispython.com/unplugged [accessed 5 July 2014]

[15] Wolz, U., Leitner, H. H., Malan, D. J., and Maloney, J. (2009).

Starting with scratch in CS 1. SIGCSE Bull. 41, 1, 2-3.

http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
http://www.education.gov.uk/nationalcurriculum
http://www.ispython.com/unplugged

