
Detailed Analysis of I/O traces for large scale applications

N. Nakka, A. Choudhary, W. K. Liao
Electrical Engineering and Computer Science
Northwestern University, Evanston, IL, USA.

{nakka, choudhar,wkliao}@eecs.northwestern.edu

L. Ward, R. Klundt, M. I. Weston
Sandia National Laboratory

Albuquerque, New Mexico, USA.
{lee,rklundt,miwesto}@sandia.gov

Abstract - In this paper, we present a tool to extract

I/O traces from very large applications running at full
scale during their production runs. We analyze these
traces to gain information about the application. We
analyze the traces of three applications. The analysis
showed that the I/O traces reveal much information
about the application even without access to the source
code. In particular, these I/O traces provide multiple
indications towards the algorithmic nature of the
application by observing the changes of data amount and
I/O request distribution at the checkpoints. Adaptive
Mesh Refinement (AMR) is one of the kind of algorithms
that can exhibit such I/O behavior. This is the first study
of I/O characteristics of unbalanced AMR-supported
applications at scale. The key observations that we made
in the trace were (1) Variation in aggregate data sizes
across checkpoints for AMR and non-AMR applications,
(2) Variation in the number of I/O calls by a client
depending on the nature of the application, (3) Use of
temporary files by applications and possible erroneous
calls to I/O functions, (4) Variation in average data
transfer size according as whether the application has
AMR support or not, (5) Aggregation of I/O for
processes executing on a single physical node through
MPI-IO calls, and (6) Updates to specific data structures
in the checkpoint file.

Keywords:Large scale I/O tracing, I/O trace analysis,
adaptive mesh refinement

I. INTRODUCTION
Tracing I/O access patterns on large

supercomputing clusters has always been challenging.
These challenges are found in developing an efficient
and light weight tracing solution that does not add
significant overhead in terms of memory and
processor time to the traced application. Researchers
from LANL have provided a comprehensive survey of
the currently available I/O tracing techniques [1].
Keeping these constraints in mind, researchers at
Sandia National Laboratories have developed an I/O
tracing framework for light-weight tracing of large
scale applications on Catamount systems. I/O traces
are a valuable source of information for debugging
distributed applications and as guidance for I/O
benchmark development. This paper demonstrates the
first analysis of traces of large scale applications in
production. These I/O traces provide interesting
insights to the nature of the traced application, without
viewing the source code of the application. The goal
was not to automate the analysis process but rather to

understand how valuable the trace information was in
inferring application behavior.

II. RELATED WORK
Using the taxonomy developed in [1] three

differing I/O tracing tools LANL-Trace [2], Tracefs
[3], and //TRACE [4] have been evaluated. LANL-
Trace adds a high overhead to the traced application,
prohibiting it from being used at scale for real-world
complex applications. Besides this, it does not support
anonymization for distribution of the traces. Tracefs
has advanced tracing features but has a high
installation overhead. Particularly on parallel file
systems, which are the subject of the current study.
//TRACE has been recommended for replaying file
system traces but also does not support
anonymization. Huang et. al. [5] developed a high
resolution disk I/O trace system built into the Linux
operating system but does not collect information
about the driving IO API call. Carey et. al. [6] and
Cattell et. al. [7] provided I/O tracing mechanisms for
large database systems, an application that is very
different from even the most casual single program,
multiple data application. Ramakrishnan et. al. [8]
analyzed I/O traces in commercial computing
environments to understand file access behavior. They
showed that a relatively small fraction of files are
active and studied the dynamic sharing of files but did
not analyze distributed applications. Ousterhout et. al.
[9] performed a trace-driven analysis of the UNIX
BSD 4.2 file system and found some interesting
conclusions on usage of files on the file system but,
again, were not concerned with distributed
applications. Howard et. al. [10] improved the
performance of the Andrew file system using
observations made on a prototype implementation.
Joukov et. al. [11] designed and implemented Replayfs
to replay the file system traces at the VFS level.
Stardust [12] examines interactions between the client
and server – this is it's “end-to-end” claim, and it's
strength. We wished to capture application interaction
with the VFS. i.e., at the system call boundary and not
request flow across the network. The client operating
system has the opportunity to reformat the application
calls in a file systems specific way. Stardust
instrumented NFS and, so, the Stardust traces will
show read/write calls no larger than the maximum
payload size for the protocol. Our tool is independent
of such specifics, recoding the actual call, response,

978-1-4244-4921-7/09/$25.00 ©2009 IEEE 419

and timing as given by and from the perspective of the
application at the “system call” boundary.

These traces are roughly the equivalent of
capturing the Windows32 IO API calls described in
Magpie [13]. There did not exist such a tool on
Catamount. The equivalent, under Linux, is strace(1).
strace is too slow (milliseconds of overhead per call)
to preclude tracing coupled applications at scale. We
do not have the resources to implement the Magpie
system on a large supercomputer; the instrumentation
points are not there.

III. DESCRIPTION OF TRACE UTILITY [14]
It is of great benefit and interest to system

developers and administrators to acquire good
understanding of usage modes on large scale
machines. To address the lack of such a tool
researchers at the Sandia National Laboratory have
implemented a tracing utility that is meant to be used
with the Catamount Lightweight Kernel (LWK) [15].
The tracing utility, along with the LWK and the
application run on Red Storm, a Cray XT3+ capability
class machine1. By itself Catamount does not provide
directly user accessible I/O capabilities as it is a
custom microkernel. Application I/O is managed by
the inclusion of user level library sysio2. This library
provides a virtual file system implementation which
allows the application simultaneous access to various
file systems. Each sysio library call provides a hook at
entry and exit. The tracing needs to be initialized
through a function call at the beginning of the
program. Otherwise, the hook does nothing.

When the tracing functionality is activated,
traversal of an entry or exit hook triggers an event,
which consists of a call into the tracing code, passing a
record of qualifying information for the call. Each
event results in the encoding of the call, type of hook,
and the qualifying information into a buffer in the
tracing code. The design includes double buffering
and use of asynchronous write calls to dump a buffer
when full3.

The tracing utility traces only I/O calls of the
application interacting with the file system. File
system interactions of the tracing utility itself are not
traced. On detection of internal error conditions the
tracing halts, and allows the application to continue
without interruption if possible.

Each process in the application job generates one
file containing the I/O traces encoded in an efficient,
platform independent, binary format. A dictionary

1 http://cray.com/products/xt4/index.html
2 http://sourceforge.net/projects/libsysio
3 Asynchronous behavior is dependent on the capability

of the underlying file system where the trace data is written.

describing the binary file format must be generated
using a provided external utility on the host platform.
The resulting traces can be decoded into readable
format by using the dictionary and the provided binary
decoder on any machine.

A. Details of the Trace Output Format
Each process in the parallel job generates a set of

trace events. The final translated output is the
concatenation of all the trace sets, and is in human
readable format. Note that the trace can contain the
data transfers of the client (process) across multiple
checkpoints (commonly also known as restart dumps)
of the application. Each set of per-client trace events
begins with a header line with the following format
(bold indicates keywords):

header(headerbom,headernode(node_nid.pid)h
eaderlength(<bytes>))

In this trace event the node on which the trace
events are generated is uniquely identified by the pair
nodeid.processid.

All other contents of the final output have the
following format:

tracetype(ENTER|EXIT)time:(secs)time:(msec
s)str(<event_name>)<infolist>

Each system call which occurs in the traces will
have an Enter/Exit pair present. The time fields above
denote seconds and microseconds since the Epoch
(00:00:00 UTC, January 1, 1970) as returned by the
gettimeofday call.

The <infolist> contains a hierarchically arranged
collection of qualifying information for the particular
I/O system call and varies according to the call.

A simple example is the event for entry to the open
syscall. The trace event contains, after the timestamp,
the name of the call, a string with a sanitized version
of the pathname, and the incoming values for open
flags and mode.

tracetype(ENTER)time:(1205528630)time:(529
780)str(open)str(“filename”)flags(578)mode(43
6)

A more complex example is the stat call, which
resolves to a call to fxstat within the sysio library.
Here are the Enter and Exit events for that call:

tracetype(ENTER)time:(125528630)time:(5311
85)str(fxstat)ver(1)fd(3)

tracetype(EXIT)time:(125528630)time:(53136
8)str(fxstat)return(0)stat(st_dev(0)st_ino(10
702772)st_mode(33204)st_nlink(1)gid(41776)uid
(41776)st_rdev(0)st_size(0)st_atime(120552855
8)st_mtime(1205528630)st_ctime(1205528630)st_
blksize(2097152)st_blocks(0))

The Enter event for fxstat provides the incoming
values of the version and file descriptor. The Exit
event provides a return code, and the contents of the
stat struct items which have been acquired by the call.
The item names are taken from the stat struct
definition of the machine where the traces have been
generated.

420

The call names in the trace events reflect the actual
API call within the sysio library where the trace event
is being recorded. Generally these follow the POSIX4
definitions and should be self-explanatory.

Some calls are specific to sysio. For example, all
I/O transfers in the released traces are implemented at
the lowest level with asynchronous versions of,
usually familiar, calls, and iowait/iodone5. The ireadv
and iwritev trace events, for instance, provide
information identifying the file descriptor, the pointer
to an I/O vector, and the length requested for the
transfer. The request is queued, to be completed
asynchronously if possible. The iodone routine is used
to poll for completion, but is not traced. The return
code in the iowait Exit event reports the number of
bytes transferred. Here is an example of the sequence
of trace events associated with a write call:

tracetype(ENTER)time:(125528630)time:(5863
86)str(iwritev)fd(3)ziovec(base(0x200EFDC0)le
n(524288))

tracetype(EXIT)time:(125528630)time:(59048
9)str(iwritev)ptr(0x200B1110)

tracetype(ENTER)time:(125528630)time:(5904
90)str(iowait)ptr(0x200B1110)

tracetype(EXIT)time:(125528630)time:(59053
0)str(iowait)return(524288)

Also provided are a set of asynchronous vector I/O
calls which perform extent based transfers. Both
ireadx and iwritex calls take as input a file descriptor,
a list and count of memory specifications (struct iovec
*) and a list and count of extent specifications (struct
xtvec *). The return value is, as for all data transfer
calls, a transaction identifer ioid_t. The extent
specifications are (offset, length) pairs and define the
locations in the file involved in the data transfer, as
follows:

struct xtvec {
 off_t xtv_off; // Stride/Extent offset.
 size_t xtv_len;// Stride/Extent length.
};

The ireadx/writex calls reconcile the memory
specification list and file extent list in order,
performing transfers as directed, until one or the other
of the lists is exhausted. Here is an example of the
trace events produced by iwritex and corresponding
iowaits:

tracetype(ENTER)time:(1216152765)time:(250
413)str(iwritex)fd(1)count(4)ziovec(base(0x53
7D50)len(10),base(0x538590)len(10),base(0x537
D70)len(10),base(0x538BB0)len(17))count(4)yxt
vec(off(0)len(15),off(20)len(5),off(30)len(10
), off(50)len(10))

tracetype(EXIT)time:(1216152765)time:(2504
87)str(iwritex)ptr(0x538DF0)

tracetype(ENTER)time:(1216152765)time:(250
505)str(iowait)ptr(0x538DF0)

4 IEEE Std 1003.1 available at

http://standards.ieee.org/
5 man pages for the calls ireadv, ireadx, iwritev, iwritex,

iodone, and iowait are available on Cray XT3 machines

tracetype(EXIT)time:(1216152765)time:(2505
21)str(iowait)return(40)

The above trace indicates that the iwritex call
sourced data from four buffers of length 10, 10, 10,
and 17, and sent the data to four locations in the file,
specified by (offset, length) pairs (0,15),
(20,5),(30,10),(50,10). The Exit event from the iowait
call reported 40 bytes transferred. This implies that 7
bytes in the last buffer went unused, which is correct
since the file extent specification list was exhausted
before sourcing all data referred to in the memory
specification.

In the following discussion for the sake of brevity
and clarity of presentation, we do not include the
tracetype and time stamp, whenever an excerpt from a
trace is to be shown for illustrating an observation.

IV. APPLICATIONS TRACED
Traces for 3 very large scientific applications were

collected while they were executing representative
production tasks. All three use the Message Passing
Interface (MPI) to efficiently support inter-client
communications.

Alegra. ALEGRA [16] is a coupled physics
framework whose roots go back to 1990, when the
authors joined Sandia National Laboratories and began
development of a shock physics code based on
arbitrary Lagrangian-Eulerian finite element
algorithms. The application can be executed on
multiple clients among which the input problem is
distributed. The refinement of the input distribution
depends on the number of clients. In this paper we
analyze the two traces from Alegra provided with the
same input problem , one executed on 2744 clients and
the other on 5832 clients.

S3D IO Kernel. S3D is a compressible Navier-
Stokes solver coupled with an integrator for detailed
chemistry (CHEMKIN-compatible), and is based on
high-order finite differencing, high-order explicit time
integration, and conventional structured meshing [17].
The IO portion of S3D was extracted and it was this
kernel that was traced.

CTH. CTH [18] is a family of codes developed at
Sandia National Laboratories for modeling complex
multi-dimensional, multi-material problems that are
characterized by large deformations and/or strong
shocks. A two-step, second-order accurate Eulerian
solution algorithm is used to solve the mass,
momentum, and energy conservation equations. CTH
includes models for material strength, fracture, porous
materials, and high explosive detonation and initiation.

Both the ALEGRA and CTH traces were taken
with production binaries and parametrized with
production input decks. However, in order to keep the
trace files to a reasonable size, the trace files
themselves have been truncated to include only the

421

first few compute-dump cycles. The remaining cycles,
for both, are similar to the first few, excepting file
address use, of course.

V. VARIATION IN DATA TRANSFER SIZE ACROSS
CHECKPOINTS

For each application the amount of data transfer
per second was aggregated and the data transfer size
was plotted against time. The plot for the cth
application is shown in Figure 1.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0.
0

11
.5

23
.5

36
.0

49
.3

62
.7

74
.9

87
.8

10
1.

2

11
3.

8

12
6.

8

13
9.

7

15
2.

5

16
5.

4

17
7.

3

18
9.

6

20
2.

5

W
rit

e
Tr

an
sf

er
 S

iz
e

(K
B

)

Time (minutes)

IO Activity with Time - CTH

Figure 1. I/O Activity with Time for CTH

In the figure each set of spikes represents the data
transfer for a checkpoint. It shows that a checkpoint
was taken after about every 20 minutes. However, the
total amount of data transfer for each checkpoint
varies, increasing gradually in the beginning and
reaching a saturation point at about the 5th checkpoint.
This would seem to be a side-effect of the AMR
nature of the cth application. As the application
progresses, for every iteration the mesh is refined
further to improve the computation efficiency. As a
byproduct, the amount of data dumped for each
checkpoint seems to fluctuate until the adaptive
algorithm reaches some equilibrium. The cth
application was traced for about 200 minutes. Since
cth never settled to a completely reproducible pattern,
the amount of trace data included is far larger. Once
again, AMR seems the prime driver for this behavior.

Alegra performs checkpoint dumps with a period
of about 4 minutes. The traces contain 4 checkpoint
dumps. The times captured by the traces were
sufficient to capture the behavior. For instance, the 12
minutes of Alegra capture 4 time steps. Capturing the
remaining 10,000 minutes would show the same
behavior. For alegra 2744 shown in Figure 2 the group
of data transfers starting at 3 minutes, 5.3 minutes, 7.8
minutes and 10.3 minutes correspond to the 4
checkpoints. For alegra 5832 (shown in Figure 3) the
checkpoints start at 4.4 minutes, 7.9 minutes, 11.6
minutes and 15.3 minutes. From a visual observation it
is clear that the aggregate data transferred for each
checkpoint is the same for every consecutive

checkpoint for both versions of alegra. This strong
lack of variability provides evidence for its non-
adaptive nature.

0

5000

10000

15000

20000

25000

0 2 4 6 8 10 12

W
rit

e
Tr

an
sf

er
 S

iz
e

(M
B

)

Time (Minutes)

IO Activity by Time - alegra with 2744 clients

Figure 2: I/O Activity with Time: alegra with 2744 clients

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16 18

W
rit

e
Tr

an
sf

er
 S

iz
e

(M
B

)

Time (Minutes)

IO Activity By Time - alegra with 5832 clients

Figure 3: I/O Activity with Time: alegra with 5832 clients

VI. VARIATION IN THE NUMBER OF I/O CALLS
The traces for different applications were analyzed

and the number of I/O calls made by each client
counted. The clients were distributed into classes
depending on the number of I/O calls they made. For
alegra (refer to Figure 4 and Figure 5) and s3d it was
seen that there were only a very few, static, roles for
clients. Data and the related work is statically
partitioned among the allocated nodes at the beginning
of the application and this distribution is maintained
throughout the lifetime of the run. Similarly, then, the
amount of data written out by each client remains the
same throughout the lifetime of the run. The following
figures illustrate this phenomenon. In all three
applications one of the clients shows a relatively high
number of I/O calls. This is the head node that reads
the input decks and communicates with all other nodes
to parameterize and initialize the run.

422

1728

864

144
1 6 1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

378 412 477 601 613 8270

N
um

be
r o

f C
lie

nt
s

Num of IO Calls

Num of IO Calls - alegra 2744 clients total

Figure 4: Client distribution by #I/O calls: alegra 2744

4096

1536

192
1 6 1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

378 412 477 601 613 8271

N
um

be
r o

f C
lie

nt
s

Num of IO Calls

Num IO Calls - alegra 5832 clients total

Figure 5: Client distribution by #I/O calls: alegra 5832

On the other hand for the AMR-supported
application, cth, there is a wide range of the number of
calls made by all clients, as shown in Figure 6. This
again appears only to be explained if we consider that
this AMR application distributes and redistributes
either or both of its data and the amount of work per
cycle required among its clients. At each iteration the
data distribution is redefined to adaptively balance the
computation. Figure 6 demonstrate this wide spectrum
in the distribution of clients.

0

50

100

150

200

250

N
um

be
r o

f C
lie

nt
s

Number of IO Calls

Number of IO Calls by Clients - CTH

Figure 6: Client distribution by #I/O calls: cth

VII. USE OF TEMPORARY FILES
The I/O trace for alegra showed calls to open two

temporary files. After using the file during the course
of the application, the I/O trace showed calls to rmdir
to remove these entries. The “rmdir” system command
is normally used to remove directory entries, when the
directory is empty. This returned an error response
with an error code for the rmdir command. The error
code returned was ENOTDIR (“Is not a directory”)
since the names belonged to temporary files and not
directories. The “unlink” function was then called with
the same filenames as parameters to remove these file
entries. This gives us an understanding of the
application semantics. Firstly, that the application uses
two temporary files. Secondly, the application
attempted to remove these names using calls to both
rmdir and unlink. One of them would be successful
depending on whether the name refers to a directory or
a file and the other would return an error.

str(open)str(”file1”)flags(577)mode(436)
str(open)return(3)
.
.
.
str(open)str(”file2”)flags(577)mode(436)
str(open)return(3)
.
.
.
str(rmdir)str(”file1”)
str(rmdir)errcode(-20)
str(unlink)str(”file1”)
str(unlink)return(0)
.
.
.
str(rmdir)str(”file2”)
str(rmdir)errcode(-20)
str(unlink)str(”file2”)
str(unlink)return(0)

VIII. AGGREGATION OF I/O
The s3d application was traced in two different

setups: s3d_fort is doing file per process I/O via posix
I/O calls, and s3d_MPI-IO is doing single shared file
I/O via MPI IO calls. Figure 7 shows that for s3d_fort
all processes were performing almost the same amount
of I/O uniformly. However for s3d_MPI-IO, based on
sizes of trace output, we noticed that half the processes
were doing very little. This is evident in the
distribution of clients according to the number of I/O
calls made as shown in Figure 8.

423

6398

1 1
0

1000

2000

3000

4000

5000

6000

7000

182 185 800

N
um

be
r o

f C
lie

nt
s

Number of IO Calls

Num of IO Calls - s3d Fortran

Figure 7: Client distribution by #I/O calls: s3d fortran

This behavior was not readily attributable. In this
case, the source code was examined and revealed that
the s3d application uses collective IO support within
the ROMIO implementation of MPI-IO. ROMIO
appears to chose one process from each node to use as
an aggregator. This collective behavior is enabled in
s3d by the use of a romio hint, 'romio_no_indep_rw',
in the call to MPI_Info_set. This causes only
aggregators to call open(), but not non-aggregators.

3200 3199

1
0

500

1000

1500

2000

2500

3000

3500

28 160 778

N
um

be
r o

f C
lie

nt
s

Num of IO Calls

Num of IO Calls - s3d MPI

Figure 8: Client distribution by #I/O calls: s3d MPI-IO

IX. DATA TRANSFER BLOCK SIZE, SEQUENTIAL
VS. RANDOM ACCESS I/O

The I/O trace shows the block of data transferred
by the size of each transfer. The calls to lseek and
lseek64 I/O functions that appear before data transfer
function calls show whether the application is
performing I/O sequentially from the file or accessing
random sections of the file.

str(ireadv)fd(3)ziovec(base(0x200EFDC0)len
(1048576))

The above read function trace from alegra shows
that the application is trying to read 1048576 bytes =
1MB of data. Thus the data block size is at least 1 MB.

In the trace for cth, we see a larger access block of
2 MB (2097152 bytes), as shown in the following
excerpt.

str(ireadv)fd(4)ziovec(base(0x39D07790)len
(2097152))

From the offsets to consecutive calls to the lseek
function in alegra (shown below) it can be concluded
that the application does not perform sequential I/O.

str(lseek)zoff64(1048576)
str(lseek)zoff64(524288)
str(lseek)zoff64(524288)
str(lseek)zoff64(0)
str(lseek)zoff64(1572864)
str(lseek)zoff64(1048576)
str(lseek)zoff64(524288)
str(lseek)zoff64(524288)
str(lseek)zoff64(0)

Another interesting observation in seek offset was
in the cth application where the offsets revealed that
the application continuously wrote data to the file and
read back all the data in a consecutive read. This
behavior is unexplained.

X. UPDATES TO SPECIFIC DATA STRUCTURES
The I/O trace was helpful in understanding the

workings of the application in updating specific data
structures. For example, in analyzing the traces for the
cth application, one would except that the application
would write the checkpoint file in large chunks to the
file system. However, we observed a significant
number of writes of size length 4. We inferred that the
"length 4 write"s are updates to header information.
This is because the client writes a chunk of data at a
specific position in the file and then moves the pointer
back to a particular location within the written data
and again writes the 4 bytes (thus updating some 4
bytes of information within the already written data).
In fact, the total number bytes written initially by each
client is the same. This makes it clear that this could
be some kind of header information. There are several
"length 4 write"s in a single checkpoint dump from a
client. For all clients, the corresponding offsets in the
file for all except the last "length 4 write" seem to be
the same. The location of the last length 4 write varies
depending on the client, hinting that this could be
client specific information in the header.

str(lseek64)fd(4)zoff64(0)cmd(0)
str(lseek64)zoff64(0)
str(ireadv)fd(4)ziovec(base(0x39D07790)len

(2097152))
str(ireadv)ptr(0x37D86930)
str(iowait)ptr(0x37D86930)
[1] str(iowait)return(638672)
[2] str(lseek64)fd(4)zoff64(4294667292)

cmd(1)
[3] str(lseek64)zoff64(338668)
[4] str(iwritev)fd(4)ziovec(base(…)len(4))
str(iwritev)ptr(0x37D86930)
str(iowait)ptr(0x37D86930)
str(iowait)return(4)
str(lseek64)fd(4)zoff64(0)cmd(0)
str(lseek64)zoff64(0)
str(ireadv)fd(4)ziovec(base(0x39D07790)len

(2097152))
str(ireadv)ptr(0x37D86930)

424

str(iowait)ptr(0x37D86930)
[5] str(iowait)return(638672)

In the above excerpt the first call to read (line [1])
returns 638672 bytes. The file pointer is currently at
638672 bytes. The following call to lseek64 ([2])
places the file pointer at a negative offset

4294667292 = – 300004 (in a signed 32 bit word)
relative to the current pointer, placing the final file

pointer at (638672 – 300004 =) 338668 bytes as
shown in line [3] the excerpt. The application then
writes 4 bytes into this location (line [4]), which does
not increase the size of the file but overwrite already
written data. This is proved by the fact that the next
read of the file returns the same 638672 bytes of data
(line [5]).

XI. DISTRIBUTION BY DATA TRANSFER SIZE
We examined the distribution of data transfer size

across the application clients. Once again, we note a
remarkable distinction between applications with and
without support for AMR. Figure 9 and Figure 10
show the distribution of data transfer size for the first
two checkpoints of the cth application with AMR
executing on 3300 clients. Figure 11 and Figure 12
show the distribution for the alegra application without
AMR support. We used the alegra run with 2744
clients for comparison.

The horizontal axis shows the amount of data
transferred. Clients are binned into groups based on
their data transfer size. The y-axis shows a count of
the clients. The distributions show that for an AMR-
supported application the amount of data transferred
varies widely across the clients. For a non-AMR
application, the clients reliably perform similarly sized
data transfers.

Figure 9: Data transfer size histogram for chkpt#1: cth

Figure 10: Data transfer size histogram for chkpt#2: cth

XII. CONCLUSIONS AND FUTURE WORK
In this paper, for the first time we have obtained

and analyzed I/O traces for very large scale
applications executing on a large supercomputer,
representative of their production runs. The tracing
was performed using an I/O tracing library to be
linked into the application. The analysis of the traces
showed that application-level I/O traces by themselves
can give us many good insights into the nature of the
application without requiring access to the source
code. Particularly analysis of the traces provide
multiple indications of applications behavior, such as
the presence of AMR (adaptive mesh refinement).
Apart from distinguishing the nature of applications,
the traces also revealed aggregation of I/O through
MPI I/O, use of temporary files and updates to data
sections in checkpoint files. The tracing tool has been
developed to work specifically for the Catamount
LWK. However, we cannot derive adequate benefit
from the tracing mechanism by restricting it to a
specific kernel. To address this very issue, we are in
the process of porting it to Linux.

ACKNOWLEDGEMENTS
This work was supported in part by DOE SCIDAC-2:
Scientific Data Management Center for Enabling
Technologies (CET) grant DE-FC02-07ER25808,
DOE FASTOS award number DE-FG02-08ER25848,
NSF grants HECURA CCF-0621443, SDCI OCI-
0724599, CCF-0833131, CCF-0621443, CNS-
0830927 and NSF ST-HEC CCF-0444405.

425

Figure 11: Data transfer size histogram for chkpt#1: alegra 2744

Figure 12: Data transfer size histogram for chkpt#2: alegra 2744

REFERENCES
[1] Konwinski, J. Bent, J. Nunez, and M. Quist.

“Towards an I/O tracing framework
taxonomy,” In Proceedings of the 2nd
international Workshop on Petascale Data
Storage, Nov 2007, New York, NY, 56-62.

[2] Los Alamos National Laboratory open-source
LANL-
Trace.<http://institute.lanl.gov/data/tdata>

[3] A. Aranya, C. P. Wright, E. Zadok. “Tracefs:
A File System to Trace Them All,” In
Proceedings of the 3rd USENIX Conference
on File and Storage Technologies. 2004. pp.
129-145.

[4] M. Mesnier, M. Wachs, R. Sambasivan, J.
Lopez, J. Hendricks, G. Ganger, D.
O'Hallaron. 2007. //TRACE: Parallel Trace
Replay with Approximate Causal Events. In
Proceedings 5th USENIX Conference on File
and Storage Technologies. pp. 153-167.

[5] Huang, T., Xu, T., and Lu, X. 2001. A high
resolution disk I/O trace system. SIGOPS
Oper. Syst. Rev. 35, 4 (Oct. 2001), 82-87.

[6] Carey, M.J., DeWitt, D.J. & Naughton, J.F.
“The OO7 Benchmark”. In SIGMOD

Conference on the Management of Data,
1993.

[7] Cattell, R.G.G. & Skeen, J. “Object
Operations Benchmark”. ACM Transactions
on Database Systems 17,1 (1992) pp 1-31.

[8] Ramakrishnan, K. K., Biswas, P., and
Karedla, R. 1992. Analysis of file I/O traces
in commercial computing environments.
SIGMETRICS Perform. Eval. Rev. 20, 1 (Jun.
1992), 78-90.

[9] Ousterhout, J. K., Da Costa, H., Harrison, D.,
Kunze, J. A., Kupfer, M., and Thompson, J.
G. 1985. A trace-driven analysis of the UNIX
4.2 BSD file system. SIGOPS Oper. Syst.
Rev. 19, 5 (Dec. 1985), 15-24.

[10] Howard, J. H., Kazar, M. L., Menees, S. G.,
Nichols, D. A., Satyanarayanan, M.,
Sidebotham, R. N., and West, M. J. 1988.
Scale and performance in a distributed file
system. ACM Trans. Comput. Syst. 6, 1 (Feb.
1988), 51-81.

[11] Joukov, N., Wong, T., and Zadok, E. 2005.
Accurate and efficient replaying of file
system traces. In Proceedings of the 4th
Conference on USENIX Conference on File

426

and Storage Technologies - Volume 4 (San
Francisco, CA, December 13 - 16, 2005).

[12] Thereska, E., Salmon, B., Strunk, J., Wachs,
M., Abd-El-Malek, M., Lopez, J., and
Ganger, G. R. 2006. Stardust: tracking
activity in a distributed storage system.
SIGMETRICS Perform. Eval. Rev. 34, 1 (Jun.
2006), 3-14.

[13] Paul Barham , Austin Donnelly , Rebecca
Isaacs , Richard Mortier, Using magpie for
request extraction and workload modelling,
Proceedings of the 6th conference on
Symposium on Opearting Systems Design &
Implementation, p.18-18, December 06-08,
2004, San Francisco, CA

[14] Ruth Klundt, Marlow Weston, Lee Ward.
“I/O Tracing on Catamount”, Sandia National
Laboratories. Albuquerque, New Mexico
and Livermore, California.

[15] Kelly, S.M., Brightwell, R.B. “Software
Architecture of the Lightweight Kernel,
Catamount,” In Proceedings of the 2005 Cray
Users' Group Annual Technical Conference,
Albuquerque, New Mexico, May 2005.

[16] A.C. Robinson, W.J. Rider et al., “ALEGRA:
An Arbitrary Lagrangian-Eulerian
Multimaterial, Multiphysics Code,” AIAA-
2008-1235, Proceedings of the 46th AIAA
Aerospace Sciences Meeting, Reno, NV,
January 2008.

[17] Don Monroe. “ENERGY Science with
DIGITAL Combustors,” SciDAC Review,
http://www.scidacreview.org/0602/html/com
bustion.html

[18] E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A.
V. Farnsworth, G. I. Kerley, J. M. McGlaun,
S. V. Petney, S. A. Silling, P. A. Taylor, and
L. Yarrington. “CTH: A Software Family for
Multi-Dimensional Shock Physics Analysis.”
Sandia National Laboratories, Albuquerque,
New Mexico, USA

427

