
Nearly-Linear Time Positive LP Solver

with Faster Convergence Rate

Zeyuan Allen-Zhu
zeyuan@csail.mit.edu

MIT CSAIL

Lorenzo Orecchia
orecchia@mit.edu

MIT Math

June 14, 2015

Abstract

Positive linear programs (LP), also known as packing and covering linear programs, are an
important class of problems that bridges computer science, operation research, and optimization.
Efficient algorithms for solving such LPs have received significant attention in the past 20
years [LN93, PST95, BBR97, You01, Nem04, BI04, BBR04, Nes05, CE05, AK08, Nes08, AHK12,
KY13, You14, AO15]. Unfortunately, all known nearly-linear time algorithms for producing
(1 + ε)-approximate solutions to positive LPs have a running time dependence that is at least
proportional to ε−2. This is also known as an O(1/

√
T) convergence rate and is particularly

poor in many applications.
In this paper, we leverage insights from optimization theory to break this longstanding

barrier. Our algorithms solve the packing LP in time Õ(Nε−1) and the covering LP in time

Õ(Nε−1.5). At high level, they can be described as linear couplings of several first-order descent
steps. This is the first application of our linear coupling technique (see [AO14]) to problems that
are not amenable to blackbox applications known iterative algorithms in convex optimization.
Our work also introduces a sequence of new techniques, including the stochastic and the non-
symmetric execution of gradient truncation operations, which may be of independent interest.

mailto:zeyuan@csail.mit.edu
mailto:orecchia@mit.edu

1 Introduction

A generic packing linear program (LP) takes the form max{cTx : Ax ≤ b} where c ∈ Rn≥0, b ∈ Rm≥0,

and A ∈ Rm×n≥0 ; similarly, a generic covering LP can be written as min{bT y : AT y ≥ c}, with the
same requirements on A, b, and c. We denote by N the number of non-zero elements in matrix A.
They are also known as positive LPs as originally studied by Luby and Nisan [LN93].

We assume without loss of generality that the LP is in its standard form: b = 1 and c = 1.

Packing LP: maxx≥0{1Tx : Ax ≤ 1} , (1.1)

Covering LP: miny≥0{1T y : AT y ≥ 1} . (1.2)

Since the two programs are dual to each other, we denote by OPT their shared optimal value. We
say that x is a (1− ε)-approximation for the packing LP if Ax ≤ 1 and 1Tx ≥ (1− ε)OPT, and y
a (1 + ε)-approximation for the covering LP if AT y ≥ 1 and 1T y ≤ (1 + ε)OPT.

Of course, it is possible to adopt the general Interior Point or Ellipsoid Methods to obtain
approximate solvers with a log(1/ε) dependence on the number of iterations. However, the com-
putational cost of such algorithms is typically very high, as each iteration requires the solution
of a system of linear equations in ATA. As a consequence, this approach is simply not suitable
to the solution of large-scale problems. To address this issue, researchers have developed iterative
approximate solvers that achieve a better dependence on the problem size (e.g., nearly-linear time
N) at the cost of having a poly(1/ε) dependence on the approximation parameter ε.

Fast approximate packing and covering LP solvers have been widely used in approximation algo-
rithms (e.g., MinSetCover [LN93], MaxSet, MaxDiCut, Max-k-CSP [Tre98], bipartite match-
ing), probabilistic checkable proofs [Tre98], zero-sum matrix games [Nes05], scheduling [PST95],
graph embedding [PST95], flow controls [BBR97, BBR04], auction mechanisms [ZN01], wireless
sensor networks [BN00], and many other areas. In addition, techniques developed in this line of
research have also inspired many other important results, most notably regarding fast algorithms
for multi-commodity flow problems [PST95, Fle00, GK07, Mad10, AKR12].

Previous approximate solvers can be further divided into two classes (see Table 1).

Width-Dependent Solvers. These algorithms1 require a running time that is at least N mul-
tiplied with ρ · OPT, where ρ is the largest entry, i.e. the width, of matrix A. Since OPT ≥ 1/ρ,
this value ρ · OPT is at least 1. However, since OPT can easily be as large as 1 or even more
than n, this resulting running time is not polynomial, but only pseudo-polynomial. More precisely,

packing and covering LPs can be solved in O(Nρ
2OPT2 logm

ε2
) time [PST95], or O(NρOPT logm

ε2
) time

using negative-width techniques [AHK12]. These algorithms strongly rely on multiplicative weight
updates and only require “oracle-access” to the matrix A.

When A is given explicitly like in this paper, the number of iterations can be reduced to
O(ρOPT logm

ε) by deploying more advanced optimization tools such as Nesterov’s accelerated gradi-
ent method [Nes05], or Nemirovski’s mirror prox method [Nem04]. Bienstock and Iyengar [BI04]
have converted this dependence on ρOPT into a more benign, yet linear dependence on n. More
specifically, their running time is O(ε−1N

√
Kn logm) where K is the maximum number of non-

zeros per row of A. This is O(ε−1Nn
√

logm) in the worst case. The results of [Nes08, CE05] have
improved this convergence rate (for packing LP only) to Õ(ε−1N

√
n), but at a cost of enduring an

Õ(Nn)-time preprocessing stage.

1Note that most width-dependent solvers are studied under the minmax form of positive LPs, whose optimal value
equals 1/OPT. Their approximation guarantees are often written in terms of additive error. We have translated their
performances to multiplicative error for a fair comparison.

2d is the maximum number of constraints each variable is in; md may be larger than N .

1

Paper Running Time Width Independent?

[PST95] O(N × ρ2OPT2 logm
ε2

) no

[AHK12] O(N × ρOPT logm
ε2

) no

[Nes05, Nem04] O(N × ρOPT logm
ε) no

[BI04] O(N ×
√
Kn logm

ε) no

[Nes08, CE05]: packing LP Õ(N ×
(
n+

√
n
ε

)
) no

[LN93, BBR97, You01,
BBR04, AK08, AO15]

O(N × log2N
ε3

) at best yes

[You01] O((md+N)× logN
ε2

) 2 yes

[BBR97, BBR04] O(nm× logN
ε2

) yes

[You14] O(N × logN
ε2

) yes

[KY13] O(N+(n+m)× logN
ε2

) yes

[this paper]: packing LP O(N × logN log ε−1

ε) yes

[this paper]: covering LP O(N × logN log ε−1

ε1.5
) yes

Table 1: Comparisons among iterative approximate solvers for packing and covering LPs.

Width-Independent Solvers. In this paper, we are interested in a second, more efficient class
of methods, i.e. width-independent,3 truly polynomial-time approximate solvers (see Table 1).

This line of research was initiated by a seminal paper of Luby and Nisan [LN93], who gave an

algorithm running in O
(N log2N

ε4

)
time with no dependance on ρ. This is the first nearly-linear-time

approximate solver for solving packing and covering LPs, and also the first to run in parallel in
nearly-linear-work and polylogarithmic depth.

The parallel algorithm of Luby and Nisan was extended by a sequence of works [BBR97, You01,
AK08, AO15]s. Most notably, the algorithm of the same authors of this paper [AO15] runs in

O(log2N
ε3

) iterations, each costing a matrix-vector multiplication operation that can be implemented
in O(N) total work and logarithmic depth.

The ideas of Luby and Nisan also led to sequential width-independent solvers for packing and
covering LPs [You01, BBR04, You14, KY13]. Most notably, the algorithm of Koufogiannakis and
Young [KY13] runs in time O

(
N + logN

ε2
× (n + m)

)
. Despite the amount of work in this area,

the O(1/ε2) convergence rate has not been improved since 1997. On a separate note, Klein and
Young [KY99] have shown that essentially any Dantzig-Wolfe type algorithm has to pay for a
O(1/ε2) convergence rate. This lack of progress constitutes a significant limitation, as the ε−2-
dependence on the approximation parameter ε is particularly pour. This ε−2 dependence is also
known as the O(1/

√
T) convergence rate in the optimization language, because the error decreases

only at the rate ε ∝ 1/
√
T .

1.1 Our Results

Packing LP Solver. We present an algorithm PacLPSolver that can be implemented to run in
O(log(nm/ε) log(1/ε)

ε N) total time. This gives the first nearly-linear time solver for packing LP whose

3Some of these solvers may still have a polylog(ρ) dependence. Since each occurrence of log(ρ) can typically
be replaced with log(nm) after slightly modifying the instance matrix A, we have done so in Table 1 for a fair
comparisons.

2

running time has an ε−1-dependence; this running time is also known as the Õ(1/T) convergence
rate in the optimization literature. No nearly-linear time algorithm has achieved any convergence
rate that is faster than O(1/

√
T) before our work (see Table 1).

Interestingly, the maximum (weighted) bipartite matching is just one instance of a packing LP.
Therefore, our algorithm yields an Õ(mε−1) approximate algorithm and an Õ(m

√
n) exact algo-

rithm4 that arise purely from optimization for bipartite matching, without the use of any dynamic
trees. This matches the best known combinatorial algorithms for maximum weighted bipartite
matching. Any further improvement over the dependence on ε−1 would result in a maximum
matching algorithm that runs in time m · õ(

√
n), which may require very significantly different

ideas.
Our algorithms optimizes a relaxation of the original packing LP, where the hard constraint

Ax ≤ 1 is replaced by an exponential penalty function for violating the constraint. In other words,
we reduce the problem of approximately solving packing LP into approximately minimizing some
function fµ(x) over the positive orthant x ≥ 0 —see (2.3). This interpretation of the solution
of packing and covering linear programs was recently suggested by the same authors of this pa-
per [AO15]. However, the techniques in our previous work [AO15] only lead to very slow sequential
solvers (see Table 1). Furthermore, to the best of our knowledge, our objective fµ(x) cannot be
turned into any class of smooth functions, and therefore traditional accelerated gradient methods
such as [Nes83, Nes05] no longer apply. We thus need fundamentally new ideas.

Our proposed algorithm is an iterative first-order method, and has a flavor of “stochastic co-
ordinate descent” (cf. [ST11, FR13]). Suppose that we are given point x ≥ 0 at some iteration,
and observe the gradient ∇f(x) ∈ [−1,∞)n. Then, we randomly pick a coordinate i ∈ [m], and
focus only on the coordinate gradient ∇if(x) ∈ [−1,∞). (In fact, we do not even need to compute
∇`f(x) for ` 6= i, thus ensuring that each iteration can be implemented very efficiently.)

We divide ∇if(x) = η + ξ, where η ∈ [0,∞) is the large component, and ξ ∈ [−1, 1] is the
small (and truncated) component. This gradient-truncation technique was developed in our prior
work [AO15], but has never been applied to coordinate gradient.

We perform essentially three coordinate descent steps.

• A gradient (descent) step with respect to η, guaranteeing a large decrement on the objective.
• A mirror (descent) step and a gradient (descent) step, both with respect to ξ.

Both gradient and mirror descent are well-known tools from optimization (see for instance [Nes04,
BN13], and for starters, mirror descent is a generalization of multiplicative weight updates).5 Mo-
tivated by the linear coupling technique developed in [AO14], we combine the analysis of the above
three descent steps for a faster algorithm.

To push through the idea sketched above, we also develop two independent techniques. The
redundant-constraint technique imposes an additional box constraint; it requires each xi to be upper
bounded by a carefully chosen constant ci. While this constraint xi ≤ ci is provably redundant from
the viewpoint of minimizing fµ(x), it is surprisingly crucial for our linear coupling to work. Our
gradient-mirror scaling technique restricts our attention to a special type of gradient step, which
is always a constant factor of the mirror step. Our two techniques together play an important role
in enabling the three descent steps mentioned above to be effectively coupled.

Covering LP Solver. Unlike our most relevant prior work [AO15], it is not clear how one can
extract an (approximate) covering LP solution from the packing LP solver mentioned above. There

4It is not hard to turn an Õ(mε−1) approximate algorithm into an Õ(m
√
n) algorithm, see for instance [DP14].

5It is important to note here that we have generalized the notion of “gradient descent” to indicate any descent
step that is guaranteed to decrease the objective. This is in contrast to mirror descent, which is a “dual approach”
that does not necessarily decrease the objective at any iteration, but minimizes the so-called regularized regret.

3

are at least two main issues behind this difficulty. Firstly, the dual guarantee naturally arising from
PacLPSolver is on the history of the full gradients ∇f(xk), rather than the randomly selected
coordinate gradients ∇if(xk), over all iterations k. As we mentioned earlier, it is computationally
heavy to compute full gradients. Secondly, even if the dual guarantee is on the coordinate gradients
∇if(xk), it is not clear how one can compute them efficiently in only nearly-linear time.

We therefore are forced to design a new algorithm CovLPSolver that works directly for covering
LP. On one hand, this new algorithm relies on similar idea that are present in PacLPSolver: the
linear coupling of gradient and mirror steps and the gradient truncation. On the other hand, we
need a different version of the redundant-constraint technique (over a simplex constraint), as well
as a negative-width technique.

Our CovLPSolver can be implemented to run in O(log(nm/ε) log(1/ε)
ε1.5

N) total time. This gives
the first nearly-linear time solver for covering LP whose running time has a faster dependence than
ε−2 (or equivalently, the first one whose convergence rate is faster than Õ(1/

√
T)).

Leveraging the Optimization Viewpoint. Our optimization approach to solving packing and
covering LPs is yet another example on designing algorithms based on insights from optimization.
Before our work, the updates on x for all sequential algorithms were combinatorial in flavor. For
instance, the algorithm of Young [You01] updates each coordinate of xi in a maximally aggressive
way, so that one of the constraints becomes tight. The optimization interpretation behind our two
algorithms allows us to use more general steps and facilitates the analysis of the algorithm.

1.2 Roadmap

We transfer the packing LP problem into an optimization question in Section 2, and provide our
packing LP solver in Section 3. We sketch the main ideas needed for our covering LP solver
in Section 4, and defer the technical details to the appendix. Note that our PacLPSolver and
CovLPSolver are stated in an implicit optimization language, and their (efficient) implementation
details will be addressed in Appendix F and Appendix G.

2 Relaxation of the Packing Linear Program

Recall that, for input matrix A ∈ Rm×n≥0 , the packing LP in its standard form is maxx≥0{1Tx : Ax ≤
1}. Let us denote by OPT the optimal value of this linear program, and x∗ any optimal solution.
We say that x is a (1− ε)-approximation for the packing LP if Ax ≤ 1 and 1Tx ≥ (1− ε)OPT.

Throughout this paper, we use the indices i ∈ [n] to denote the columns of A, and the indices
j ∈ [m] to denote the rows of A. We let A:i be the i-th column vector of A, and Aj: the j-th row

vector of A. Given any vector x, we denote by ‖x‖A =
√∑

i∈[n] x
2
i · ‖A:i‖∞ the A-norm of x.

By scaling the matrix A and the optimum value, we can assume without loss of generality that

min
i∈[n]
{‖A:i‖∞} = 1 . (2.1)

We can now restrict the range of values x and OPT can take. The following is proved in Appendix A.

Fact 2.1. Define the bounding box ∆
def
= {x ∈ Rn : xi ∈

[
0, 1
‖A:i‖∞

]
}. Under assumption (2.1), we

have OPT ∈ [1, n] and {x : x ≥ 0 ∧Ax ≤ 1} ⊆ ∆.

This bounding-box constraint allows us to optimize over a bounded set for x.

Smoothed Objective. We now introduce the smoothed objective fµ(x) that we minimize over
∆ in order to approximately solve the packing LP. This objective fµ(x) turns each row of the non-
smooth LP constraint Ax ≤ 1 into an exponential penalty function so that we only need to require
x ∈ ∆ throughout the algorithm. More formally, the packing LP can be written as the following

4

minimizaton problem by introducing the Lagrangian variable y ∈ Rm:

min
x∈∆

−1Tx + max
y≥0
{yTAx− 1T y} . (2.2)

The problem can be now smoothened by introducing a strongly concave regularizer over y ≥ 0.
This is regularizer is usually taken to be the entropy function over all possible y ≥ 0 satisfying

1T y = 1, which yields the width-independent solvers in for instance [Nes05] and [Nem04], and is
closely related to that of the multiplicative weight update in [AHK12].

In this paper, we take this regularizer to be the generalized entropyH(y) = −
∑m

j=1 yj log yj + yj
over the first orthant y ≥ 0, and minimize the following smoothened objective fµ(x) over x ∈ ∆:

fµ(x)
def
= −1Tx + max

y≥0
{yTAx− 1T y + µ ·H(y) } . (2.3)

Above, µ > 0 is some smoothing parameter to be chosen later. By explicitly computing the
maximization over y ≥ 0, fµ(x) can be rewritten as

Lemma 2.2. fµ(x) = µ
∑m

j=1 exp
1
µ

((Ax)j−1)−1Tx .

We wish to study the minimization problem on fµ(x) over x ∈ ∆. Intuitively fµ(x) captures
the original packing LP (1.1) as follows. Firstly, since we want to maximize 1Tx, the negative
term −1Tx shows up in fµ(x). Secondly, if a packing constraint j ∈ [m] is violated by ε, that is,
(Ax)j ≥ 1 + ε, the exponential penalty in fµ(x) introduces a penalty at least expε/µ; this will be
a large penalty if µ ≤ O(ε/ log n). Notice that this smoothed objective also appeared in previous
works [AO15], albeit without this smoothening interpretation and without the constraint x ∈ ∆.

The regularization of Lemma 2.2 will give us both some smoothness properties for fµ(x), dis-
cussed in Lemma 2.6, and a regularization error, as we are now solving an objective different from
our original packing LP. This error is quantified in the following lemma for our choice of µ. This
follows a similar treatment in a previous paper of the authors [AO15] and is proved in Appendix A.

Proposition 2.3. Let µ = ε
4 log(nm/ε) and x∗ be an optimal solution for the packing LP (1.1). Then:

(a) fµ(u∗) ≤ −(1− ε)OPT for u∗
def
= (1− ε/2)x∗ ∈ ∆.

(b) fµ(x) ≥ −(1 + ε)OPT for every x ∈ ∆.
(c) If x ∈ ∆ satisfies fµ(x) ≤ −(1− O(ε))OPT, then 1

1+εx is a (1− O(ε))-approximate solution
to the packing LP.

In short, they together imply that the minimum of fµ(x) is around −OPT, and if one can
approximately find the minimum of fµ(x), up to a multiplicative error 1 ± O(ε), this corresponds
to a (1−O(ε))-approximate solution to the packing LP (1.1).

Remark 2.4. We emphasize that our constraint xi ≤ 1
‖A:i‖∞ is essentially redundant from the

viewpoint of minimizing fµ(x): whenever x ≥ 0 and fµ(x) ≤ 0, one should automatically have
xi ≤ 1+ε

‖A:i‖∞ . However, this redundant constraint shall become very crucial at the point we analyze
the mirror-descent component our algorithm; after all, mirror descent steps do not necessarily
decrease the objective, and thus may not guarantee fµ(x) ≤ 0.

Smoothness properties. Thanks to the smoothing of Lemma 2.2 and the choice of regularizer,
our objective fµ(x) enjoys a number of good smoothness properties. First, it is differentiable and
the gradient is easy to compute:

Fact 2.5. ∇fµ(x) = AT p(x)− 1 where pj(x)
def
= exp

1
µ

((Ax)j−1)
.

Second, fµ(x) enjoys two kinds of coordinate-wise smoothness properties in different regimes.
These will be extremely useful in applying gradient descent arguments in Section 3.2, and are the

5

Algorithm 1 PacLPSolver(A, xstart, ε)

Input: A ∈ Rm×n≥0 , xstart ∈ ∆, ε ∈ (0, 1/10].
Output: x ∈ ∆.

1: µ← ε
4 log(nm/ε) , L← 4

µ , τ ← 1
3·nL and α0 ← 1

nL . . parameters

2: T ← d3nL log(1/ε)e = O(n · log(nm/ε)·log(1/ε)
ε). . number of iterations

3: x0 = y0 ← xstart, z0 ← 0.
4: for k ← 1 to T do
5: αk ← 1

1−τ αk−1

6: xk ← τzk−1 + (1− τ)yk−1.
7: Randomly select i ∈ [n] uniformly at random.

8: Define the vector ξ
(i)
k to be all-zero except at coordinate i, where it equals Tp(∇ifµ(xk)).

9: zk ← z
(i)
k

def
= arg minz∈∆

{
1
2‖z − zk−1‖2A + 〈nαkξ

(i)
k , z〉

}
. . See Proposition 3.6

10: yk ← y
(i)
k

def
= xk + 1

nαkL
(z

(i)
k − zk−1).

11: end for
12: return yT .

main motivation for us to adopt the ‖ · ‖A norm for our proposed algorithms. The proof appears
in Appendix A and it is a simple manipulation of the Hessian.

Lemma 2.6. Define the smoothness parameter L
def
= 4

µ . Then, for every x ∈ ∆, and every i ∈ [n]:

(a) If |∇ifµ(x)| ≤ 1, then for all λ ≤ 1
L‖A:i‖∞ , we have

∣∣∇ifµ(x+λei)−∇ifµ(x)
∣∣ ≤ L‖A:i‖∞ ·|λ| .

(b) If |∇ifµ(x)| ≥ 1, then for all λ ≤ 1
L‖A:i‖∞ , we have ∇ifµ(x+λei) ≥

(
1− ‖A:i‖∞L

2 |λ|
)
∇ifµ(x) .

The first property is the same as the traditional (coordinate) Lipschitz-smoothness property, i.e.
the Lipschitz continuity of the (coordinate) gradient ∇if(x), but holds only conditionally and not
for all x ≥ 0. The second property is a salient characteristic of this work and requires the positivity
of A. It can be seen as a formalization of the “multiplicative Lipschitz” property used in our
previous work [AO15].

Initialization. Iterative methods require the choice of a good starting point. We have

Fact 2.7. Defining xstarti
def
= 1−ε/2

n‖A:i‖∞ for for each i ∈ [n], we have xstart ∈ ∆ and fµ(xstart) ≤ −1−ε
n .

3 Packing LP Solver
To describe our algorithm, we first make the following choice of thresholding function

Definition 3.1. The thresholding function Tp : [−1,∞)→ [−1, 1] is defined as follows

Tp(v)
def
=

{
v, v ∈ [−1, 1];
1, v > 1.

Our algorithm PacLPSolver starts with some initial vector x0 = y0 = xstart (introduced in Fact 2.7)
and z0 = 0, and is divided into T iterations. In each iteration, we start by computing a weighted
midpoint xk ← τzk−1 + (1− τ)yk−1 for some parameter τ ∈ (0, 1), and then proceed to compute yk
and zk as follows.

• Select i ∈ [n] uniformly at random, and let ξ
(i)
k = (0, . . . , 0,Tp(v), 0, . . . , 0) be the vector that is

only non-zero at coordinate i, where v = ∇ifµ(xk) =
∑m

j=1Aj,i exp
1
µ

((Axk)j−1)−1 ∈ [−1,∞).

• Perform a mirror (descent) step zk ← z
(i)
k

def
= arg minz∈∆

{
1
2‖z − zk−1‖2A + 〈nαkξ

(i)
k , z〉

}
for

some parameter αk � 1/n to be chosen later.

6

• Perform a gradient (descent) step yk ← y
(i)
k

def
= xk + 1

nαkL
(z

(i)
k − zk−1).

Above, the reason that the the two steps on yk and zk are named after “gradient step” and “mirror

step” will become clear in the follow-up sections. We use the superscript (i) on ξ
(i)
i , y

(i)
k and z

(i)
k to

emphasize that the value depends on the choice of i. We have used generic parameters τ, αk, T in
the above description and their precise values are presented in Algorithm 1. 6

For readers familiar with optimization tools, the above triple sequence {xk, yk, zk}k is reminiscent
of Nesterov’s accelerated gradient method [Nes05]. However, our algorithm is not an instance of any
variant of the known accelerated gradient method. (This is so because, for instance, our objective
fµ(x) is not globally Lipschitz smooth.)

In fact, our algorithm PacLPSolver is strongly motivated by our linear-coupling technique
introduced in [AO14], a technique that allows one to linearly combine gradient and mirror steps
for a better performance. This linear coupling requires one to use a triple sequence {xk, yk, zk}k.

We emphasize here that our iterates xk, yk, zk never leave the bounding box ∆:

Lemma 3.2. We have xk, yk, zk ∈ ∆ for all k = 0, 1, . . . , T .

The proof of Lemma 3.2 is deferred to Appendix B, and crucially relies on the fact that our

gradient and mirror steps are multiples of each other: y
(i)
k − xk = 1

nαkL
(z

(i)
k − zk−1). The key idea

of this lemma was also known by Fercoq and Richtárik [FR13].

We shall also prove in Section F that

Lemma 3.3. Each iteration of PacLPSolver can be implemented to run in expected O(N/n) time.

The key idea used in the implementation is to compute xk and yk only implicitly. For instance,
explicitly maintaining xk and computing p(xk) require O(N) time per iteration, but representing
xk implicitly as a linear combination of two less-frequently-modified vectors reduces it to O(N/n).

In this section, we shall prove the following theorem in three steps.

Theorem 3.4. PacLPSolver(A, xstart, ε) outputs some yT satisfying E[fµ(yT)] ≤ −(1− 3ε)OPT.

3.1 Step 1: Mirror Descent Guarantee

Since our update z
(i)
k = arg minz∈∆

{
1
2‖z− zk−1‖2A + 〈nαkξ

(i)
k , z〉

}
—see Line 9 of PacLPSolver— is

written in the form of a mirror descent step from optimization, the following inequality is a classical
upper bound on the “regret” of mirror descent. Its proof can be found in Appendix B.

Lemma 3.5.
〈
nαkξ

(i)
k , zk−1 − u

〉
≤ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
+ 1

2‖zk−1 − u‖2A −
1
2‖z

(i)
k − u‖

2
A .

Although defined in a variational way, it is perhaps beneficial to explicitly describe how to
implement this mirror step. Its proof is straightforward but can be found in Appendix B.

Proposition 3.6. If zk−1 ∈ ∆, the minimizer z = arg minz∈∆

{
1
2‖z − zk−1‖2A + 〈δei, z〉

}
for any

scalar δ ∈ R and basis vector ei can be computed as follows:
1. z ← zk−1.
2. zi ← zi − δ/‖A:i‖∞.
3. If zi < 0, then zi ← 0; if zi > 1/‖A:i‖∞, zi ← 1/‖A:i‖∞.
4. Return z.

As a simple corollary, we have the following fact

6We encourage the readers to ignore their specific values for now. Our specific choices of the parameters shall
become clearer and natural at the end of this section, and be discussed whenever they are used.

7

Fact 3.7. We have |z(i)
k,i−zk−1,i| ≤

nαk|ξ
(i)
k,i|

‖A:i‖∞ and |y(i)
k,i−xk,i| =

1
nαkL

|z(i)
k,i−zk−1,i| ≤

|ξ(k)k,i |
L‖A:i‖∞ ≤

1
L‖A:i‖∞ .

3.2 Step 2: Gradient Descent Guarantee

We call our update rule y
(i)
k ← xk + 1

nαkL
(z

(i)
k − zk−1) a gradient descent step, because the following

lemma guarantees fµ(y
(i)
k) ≤ fµ(xk), that is, the objective only decreases; moreover, the objective

decreases at least by 1
2〈∇fµ(xk), xk − y

(i)
k 〉.

Lemma 3.8. We have fµ(xk)−fµ(y
(i)
k) ≥ 1

2〈∇fµ(xk), xk−y
(i)
k 〉. In particular, this implies fµ(xk) ≥

fµ(y
(i)
k) because ∇ifµ(xk) and xk,i − y

(i)
k,i have the same sign, while xk,` = y

(i)
k,` for ` 6= i.

Proof. Note that y
(i)
k = xk + λei for some step length λ such that |λ| ≤ 1

L‖A:i‖∞ according to

Fact 3.7. We first prove this lemma in the case of ∇ifµ(xk) ∈ [−1, 1] so that ξ
(i)
k,i = ∇ifµ(xk).

fµ(xk)− fµ(y
(i)
k) = fµ(xk)− fµ(xk + λei) = −

∫ λ

0

(
∇ifµ(xk + χei)

)
dχ

¬
≥
∫ λ

0

(
−∇ifµ(xk)− L‖A:i‖∞ · |χ|

)
dχ = −∇ifµ(xk) · |λ| −

L‖A:i‖∞
2

· λ2

­
≥ −∇ifµ(xk) · |λ| −

L‖A:i‖∞
2

· |λ| ·
|ξ(k)
k,i |

L‖A:i‖∞
= −1

2
〈∇fµ(xk), y

(i)
k − xk〉 .

Above, ¬ uses Lemma 2.6.a, and ­ uses Fact 3.7.
Next, we turn to the case of ∇ifµ(xk) > 1.

fµ(xk)− fµ(y
(i)
k) = fµ(xk)− fµ(xk + λei) = −

∫ λ

0
∇ifµ(xk + χei)dχ

¬
≥
∫ λ

0

(
1− ‖A:i‖∞L

2
|χ|
)
∇ifµ(x)dχ

­
≥
∫ λ

0

1

2
∇ifµ(x)dχ =

1

2
〈∇fµ(xk), xk − y

(i)
k 〉 .

Above, ¬ uses Lemma 2.6.b and ­ uses |χ| ≤ |λ| ≤ 1
L‖A:i‖∞ . �

3.3 Step 3: Putting All Together

In the following, we denote by η
(i)
k ∈ Rn≥0 the vector that is only non-zero at coordinate i, and

satisfies η
(i)
k,i = ∇ifµ(xk)− ξ

(i)
k,i ∈ [0,∞). In other words, the full gradient

∇fµ(xk) = Ei[n∇ifµ(xk)] = Ei[nη
(i)
k + nξ

(i)
k]

can be (in expectation) decomposed into the a large but non-negative component η
(i)
k ∈ [0,∞)n and

a small component ξ
(i)
k ∈ [−1, 1]n. Recall that η

(i)
k is the part of the gradient that was truncated,

and did not contribute to the mirror step (see Line 9 of PacLPSolver). Next, for any u ∈ ∆, we
can use a basic convexity argument and the mirror descent lemma to compute that

αk(fµ(xk)− fµ(u)) ≤
〈
αk∇fµ(xk), xk − u

〉
=
〈
αk∇fµ(xk), xk − zk−1

〉
+
〈
αk∇fµ(xk), zk−1 − u

〉
=
〈
αk∇fµ(xk), xk − zk−1

〉
+ Ei

[〈
nαkη

(i)
k , zk−1 − u

〉
+
〈
nαkξ

(i)
k , zk−1 − u

〉]
¬
=

(1− τ)αk
τ

〈
∇fµ(xk), yk−1 − xk

〉
+ Ei

[〈
nαkη

(i)
k , zk−1 − u

〉
+
〈
nαkξ

(i)
k , zk−1 − u

〉]
(3.1)

­
≤ (1− τ)αk

τ
(fµ(yk−1)− fµ(xk))

8

+ Ei

[〈
nαkη

(i)
k , zk−1 − u

〉
+ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
+

1

2
‖zk−1 − u‖2A −

1

2
‖z(i)
k − u‖

2
A

]
(3.2)

Above, ¬ is because xk = τzk−1 + (1− τ)yk−1, which implies that τ(xk− zk−1) = (1− τ)(yk−1− xk).
­ uses convexity and Lemma 3.5. This above computation is motivated by [AO14], and as we shall
see below, it allows one to linearly couple gradient and mirror steps.

Intuitively, the first (non-negative) term in the box of (3.2) is the loss introduced by the large

gradient η
(i)
k . This part was truncated so did not contribute to the mirror step. The second

(non-negative) term in the box is the loss introduced by mirror descent on the small gradient ξ
(i)
k .

Now comes an important observation. As shown by Lemma 3.9 below, the performance of the

gradient step —that is, the objective decrease of fµ(xk)− fµ(y
(i)
k)— is at least proportional to the

loss incurred in the box.

Lemma 3.9.
〈
nαkη

(i)
k , zk−1 − u

〉
+ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
≤ 3nαkL · (fµ(xk)− fµ(y

(i)
k)) .

Since the proof of the above lemma is a careful case analysis and several simple applications of
Lemma 3.8, we defer it to Appendix B. We make two important remarks.
• First, Lemma 3.9 is why we stated in the introduction that our PacLPSolver incorporates two

gradient steps: one with respect to η
(i)
k and one with respect to ξ

(i)
k . We have intentionally

forced the two steps to be identical, in order to present our algorithm more cleanly.7

• Second, to properly upper bound 〈nαkη
(i)
k , zk−1 − u〉, one needs to have some good upper

bound the coordinates of zk−1. This is exactly the place we need our redundant-constraint
technique, which guarantees that each zk−1,i ≤ 1

‖A:i‖∞ .

Plugging the above lemma into (3.2), we have

αk(fµ(xk)− fµ(u)) ≤
〈
αk∇fµ(xk), xk − u

〉
¬
≤ (1− τ)αk

τ
(fµ(yk−1)− fµ(xk)) + Ei

[
3nαkL · (fµ(xk)− fµ(y

(i)
k)) +

1

2
‖zk−1 − u‖2A −

1

2
‖zk − u‖2A

]
­
≤ αkfµ(xk) +

(
3nαkL− αk

)
fµ(yk−1) + Ei

[
− 3nαkL · fµ(y

(i)
k) +

1

2
‖zk−1 − u‖2A −

1

2
‖zk − u‖2A

]
. (3.3)

Above, ¬ is because we have chosen αk so that nαk ≤ nαT = 1
εL ≤

1
4 ; and ­ is because we have

chosen τ to satisfy 1
τ = 3nL.

Next, recall that we have picked αk so that (3nL−1)αk = 3nL·αk−1 in Algorithm 1. Telescoping
(3.3) for k = 1, . . . , T and choosing u∗ = (1− ε/2)x∗, we have

−
∑T

k=1αkfµ(u∗) ≤ 3fµ(y0)− 3nαTL ·E[fµ(yT)] + ‖z0 − u∗‖2A ≤ −3nαTL ·E[fµ(yT)] + OPT .

Here, the second inequality is due to fµ(y0) = fµ(xstart) ≤ 0 from Fact 2.7, and the fact that

‖z0 − u∗‖2A = ‖u∗‖2A =
∑n

i=1(u∗i)
2 · ‖A:i‖∞ ≤

∑n
i=1(x∗i)

2 · ‖A:i‖∞ ≤
∑n

i=1 x
∗
i = OPT .

Finally, using the fact that
∑T

k=1 αk = αT ·
∑T−1

k=0

(
1 − 1

3nL

)k
= 3nαTL

(
1 − (1 − 1

3nL)T
)
, we

rearrange and obtain that

E[fµ(yT)] ≤
∑

k αk
3nαTL

fµ(u∗) +
1

3nαTL
OPT =

(
1− (1− 1

3nL
)T
)
fµ(u∗) +

1

3nαTL
OPT .

Choosing T = d3nL log(1/ε)e so that 1
nαTL

= (1 − 1
3nL)T ≤ ε. Combining this with the fact that

fµ(u∗) ≤ −(1− ε)OPT < 0 (see Proposition 2.3.a), we obtain

E[fµ(yT)] ≤ (1− ε)fµ(u∗) + ε/3 · OPT < −(1− 3ε)OPT .

Therefore, we have finished proving Theorem 3.4. �
7One can in fact separate the two gradient steps as xk → yk and xk → y′k, but that will make the algorithm

description only more involved.

9

It is now straightforward (but anyways proved in Appendix B) to use Markov inequality to turn
the expected guarantee in Theorem 3.4 into a probabilistic one:

Corollary 3.10. With probability at least 9/10, PacLPSolver(A, xstart, ε) outputs a (1−O(ε)) ap-

proximate solution to the packing LP program. The expected running time is O(log(nm/ε) log(1/ε)
ε N).

4 Sketching the Main Ideas for Our Covering LP Solver
For the reasons stated in the introduction, we are forced to build a covering LP solver from scratch,
rather than implicitly from PacLPSolver. We begin with a similar relaxation of the covering
LP (1.2). That is, we show in Appendix C that it suffices to minimize

fµ(x)
def
= µ

∑m
j=1 exp

1
µ

(1−(Ax)j) +1Tx

over all x ≥ 0. For technical reasons, this objective is much harder to work with than that of (2.3),
because its gradient ∇fµ(x) ∈ (−∞, 1]n may be very negative. (This is why our prior work [AO15]
intentionally avoided to solve covering LP directly.)

This time, we again pick a random coordinate i ∈ [n] at each iteration, and then decompose
∇if(xk) = ξ + η. Quite different from PacLPSolver, we define η ∈ (−∞, 0] to be the (negative)
large gradient component, and ξ ∈ [−

√
ε, 1] to be the small gradient component. Our main idea is

to perform

• a gradient (descent) step with respect to η, and
• a mirror (descent) step with respect to ξ.

Note that we have intentionally truncated the gradient ∇if(xk) at (negative)
√
ε, rather than at

1 as in PacLPSolver. This is so because, as it is much harder to deal with negative gradients in
the covering LP case, we cannot perform both a mirror and a gradient step anymore on the small
component ξ, as it was in PacLPSolver; instead, we can only perform a single mirror step on ξ.
If ξ were between −1 and 1, and even if η were always zero, classical theory of mirror descent (or
multiplicative weight update) could only imply that the mirror step converges at a rate of ∝ ε−2.
Instead, we discover that if we truncate the gradient to ξ ∈ [−

√
ε, 1], a negative-width technique

allows us to improve this convergence from ε−2 to ε−1.5. This is the first time that this gradient
truncation technique is performed non-symmetrically.8

Due to this weaker truncation at −
√
ε instead of −1, our gradient step enjoys a convergence

rate that is only ∝ ε−1.5, matching that of the mirror step. This is precisely why we truncate the
gradient at

√
ε, as it provides the best truncation tradeoff between gradient and mirror descent.

It is perhaps worth mentioning that our gradient step is equipped with an novel analysis quite
different from its classical counterpart in optimization theory. Traditionally, given convex function
g(x), the convergence analysis only uses the simple upper bound g(x)− g(x∗) ≤ 〈∇g(x), x−x∗〉 on
the objective distance to optimum. If g(x) = e−x is a univariate function, x = −1, and x∗ = −100,
this upper bound becomes e−1 ≈ e−1 − e−100 ≤ e−1 · 99, which is too weak to be used. This is the
place we need to use a distance-adjustment technique, which will effectively improve the distance
estimation to the optimum.

The detailed description and the analysis of our CovLPSolver can be found in Appendix D.

8It is perhaps interesting to point out that this negative-width technique is already reused into a separate paper
of ours on spectral sparsification [ALO14].

10

Appendix
A Missing Proofs for Section 2

Fact 2.1. Define the bounding box ∆
def
= {x ∈ Rn : xi ∈

[
0, 1
‖A:i‖∞

]
}. Under assumption (2.1), we

have OPT ∈ [1, n] and {x : x ≥ 0 ∧Ax ≤ 1} ⊆ ∆.

Proof. Suppose that i∗ is the column that achieves the smallest infinite norm ‖A:i‖∞ over all
columns. Letting x be such that xi = 1 at i = i∗ and xi = 0 elsewhere, we have obtained a feasible
solution for the packing LP (1.1), owing to our choice of mini∈[n]{‖A:i‖∞} = 1 in (2.1). This

feasible x gives an objective 1Tx = 1, showing that OPT ≥ 1.
On the other hand, for any solution x ∈ Rn≥0 satisfying Ax ≤ 1, we must have xi ≤ 1

‖A:i‖∞ for

each i. Therefore, 1Tx ≤
∑

i
1

‖A:i‖∞ ≤ n, showing that OPT ≤ n.

The inclusion {x : x ≥ 0 ∧ Ax ≤ 1} ⊆ ∆ is obvious, since if xi >
1

‖A:i‖∞ for some i, that must

violate the constraint Ax ≤ 1. �

Proposition 2.3. Let µ = ε
4 log(nm/ε) and x∗ be an optimal solution for the packing LP (1.1). Then:

(a) fµ(u∗) ≤ −(1− ε)OPT for u∗
def
= (1− ε/2)x∗ ∈ ∆.

(b) fµ(x) ≥ −(1 + ε)OPT for every x ∈ ∆.
(c) If x ∈ ∆ satisfies fµ(x) ≤ −(1− O(ε))OPT, then 1

1+εx is a (1− O(ε))-approximate solution
to the packing LP.

Proof.

(a) We have 1Tu∗ = (1− ε/2)OPT by the definition of OPT. Also, from the feasibility constraint
Ax∗ ≤ 1 in the packing LP, we have Au∗ − 1 ≤ −ε/2 · 1, and can compute fµ(u∗) as follows:

fµ(u∗) = µ
∑
j

exp
1
µ

((Au∗)j−1)−1Tu∗ ≤ µ
∑
j

exp
−ε/2
µ −(1− ε/2)OPT

≤ µm

(nm)2
− (1− ε/2)OPT ≤ −(1− ε)OPT .

(b) Suppose towards contradiction that fµ(x) < −(1 + ε)OPT. Since fµ(x) > −1Tx, it must
satisfy that 1Tx > (1 + ε)OPT. Suppose that 1Tx = (1 + v)OPT for some v > ε. By the
definition of OPT, we must have that Ax < (1 + v)1 is broken, and therefore there exists
some j ∈ [m] satisfying that (Ax)j ≥ 1 + v. In such a case, the objective

fµ(x) ≥ µ expv/µ−(1+v)OPT =
ε

4 log(nm)

(
(
nm

ε
)4
)v/ε
−(1+v)OPT ≥

((
(
nm

ε

)2
)v/ε−(1+v)

)
OPT > 0

giving a contradiction to the assumption that fµ(x) < 0.

(c) Suppose x satisfies fµ(x) ≤ −(1 − O(ε))OPT ≤ 0 and we first want to show Ax ≤ (1 + ε)1.
Let us assume that v = maxj((Ax)j − 1) ≥ 0 because otherwise we will have Ax ≤ 1. Under
this definition, we have Ax ≤ (1 + v)1 and therefore 1Tx ≤ (1 + v)OPT by the definition of
OPT. We compute fµ(x) as follows.

fµ(x) ≥ µ exp
v
µ −(1+v)OPT ≥ µ

(
(
nm

ε
)4
)v/ε
− (1+v)n =

ε

4 log(nm)

(
(
nm

ε
)4
)v/ε
− (1+v)n .

It is easy to see that the above quantity is positive whenever v ≥ ε, and therefore, to satisfy
fµ(x) ≤ 0 we must have v ≤ ε, which is equivalent to Ax ≤ (1 + ε)1.

11

Next, because −1Tx ≤ fµ(x) ≤ −(1−O(ε))OPT, we know that x yields an objective 1Tx ≥
(1 − O(ε))OPT. Letting x′ = 1

1+εx, we both have that x′ is feasible (i.e., Ax′ ≤ 1), and x′

has an objective 1Tx′ at least as large as (1−O(ε))OPT. �

Lemma 2.6. Define the smoothness parameter L
def
= 4

µ . Then, for every x ∈ ∆, and every i ∈ [n]:

(a) If |∇ifµ(x)| ≤ 1, then for all λ ≤ 1
L‖A:i‖∞

|∇ifµ(x+ λei)−∇ifµ(x)| ≤ L‖A:i‖∞ · |λ| .
(b) If |∇ifµ(x)| ≥ 1, then for all λ ≤ 1

L‖A:i‖∞ :

∇ifµ(x+ λei) ≥
(

1− ‖A:i‖∞L
2

|λ|
)
∇ifµ(x) .

Proof of Lemma 2.6. Using the fact that ∇ifµ(x) > −1 for all x, we have:∣∣∣ log
∇ifµ(x+ λei) + 1

∇ifµ(x) + 1

∣∣∣ =
∣∣∣ ∫ λ

0

∇2
iifµ(x+ νei)

∇ifµ(x+ νei) + 1
dν
∣∣∣ =

1

µ

∣∣∣ ∫ λ

0

(ATdiag{p(x+ νei)}A)ii
(AT p(x+ νei))i

dν
∣∣∣

≤ ‖A:i‖∞
µ
|λ| = ‖A:i‖∞L

4
|λ| .

The last equality holds as L = 4
µ . This immediately implies the following multiplicative bound:

e−
‖A:i‖∞L

4
|λ| ≤ ∇ifµ(x+ λei) + 1

∇ifµ(x) + 1
≤ e

‖A:i‖∞L
4

|λ|.

By our assumption on λ, we know that ‖A:i‖∞L
4 |λ| ≤ 1

4 , so that we can use the approximation
x ≤ ex − 1 ≤ 1.2x over x ∈ [−1

4 ,
1
4]. This yields the simpler bound:

−‖A:i‖∞L
4

|λ| ≤ ∇ifµ(x+ λei)−∇ifµ(x)

∇ifµ(x) + 1
≤ 1.2

‖A:i‖∞L
4

|λ|.

Now we are ready to prove the two points of the lemma.
(a) Assuming that ∇ifµ(x) ∈ (−1, 1], we have:∣∣∣∇ifµ(x+ λei)−∇ifµ(x)

∣∣∣ ≤ 2.4 · ‖A:i‖∞L
4

|λ| ≤ ‖A:i‖∞L|λ| .

(b) Assuming ∇ifµ(x) ≥ 1, we have

∇ifµ(x+ λei) ≥ ∇ifµ(x)− ‖A:i‖∞L
4

|λ|
(
∇ifµ(x) + 1

)
≥
(

1− ‖A:i‖∞L
2

|λ|
)
∇ifµ(x) . �

Fact 2.7. Defining xstarti
def
= 1−ε/2

n‖A:i‖∞ for for each i ∈ [n], we have xstart ∈ ∆ and fµ(xstart) ≤ −1−ε
n .

Proof. Using the fact that Axstart − 1 ≤ −ε/2 · 1, we compute fµ(xstart) as follows:

fµ(xstart) = µ
∑
j

exp
1
µ

((Axstart)j−1)−1Txstart ≤ µ
∑
j

exp
−ε/2
µ −1− ε/2

n
≤ µm

(nm)2
−1− ε/2

n
≤ −1− ε

n
.

Above, we have used that 1Txstart ≥ xstarti = 1−ε/2
n , where i is the column such that ‖A:i‖∞ = 1. �

12

B Missing Proofs for Section 3
Lemma 3.2. We have xk, yk, zk ∈ ∆ for all k = 0, 1, . . . , T .

Proof. This is true at the beginning as x0 = y0 = xstart ∈ ∆ (see Fact 2.7) and z0 = 0 ∈ ∆.
In fact, it suffices for us to show that for every k ≥ 0, yk =

∑k
l=0 γ

l
kzl for some scalers γlk

satisfying
∑

l γ
l
k = 1 and γlk ≥ 0 for each l = 0, . . . , k. If this is true, we can prove the lemma by

induction: at each iteration k,
1. xk = τzk−1 + (1− τ)yk−1 must be in ∆ because yk−1 and zk−1 are and τ ∈ [0, 1],
2. zk is in ∆ by the definition that zk = arg minz∈∆{· · · }, and

3. yk is also in ∆ because yk =
∑k

l=0 γ
l
kzl is a convex combination of the zl’s and ∆ is convex.

For the rest of the proof, we only need to show that yk =
∑k

l=0 γ
l
kzl for9

γlk =


(1− τ)γlk−1, l = 0, . . . , k − 2;(

1
nαk−1L

− 1
nαkL

)
+ τ
(
1− 1

nαk−1L

)
, l = k − 1;

1
nαkL

, l = k.

This is true at the base case because α0 = 1
nL . It is also true at k = 1 because y1 = x1 + 1

nα1L
(z1−

z0) = 1
nα1L

z1 +
(
1− 1

nα1L

)
z0. For the general k, we have

yk = xk +
1

nαkL
(zk − zk−1)

= τzk−1 + (1− τ)yk−1 +
1

nαkL
(zk − zk−1)

= τzk−1 + (1− τ)
(k−2∑
l=0

γlk−1zl +
1

nαk−1L
zk−1

)
+

1

nαkL
(zk − zk−1)

=
(k−2∑
l=0

(1− τ)γlk−1zl

)
+

((1

nαk−1L
− 1

nαkL

)
+ τ
(

1− 1

nαk−1L

))
zk−1 +

1

nαkL
zk .

Therefore, we obtain yk =
∑k

l=0 γ
l
kzl as desired.

It is now easy to check that under our definition of αk (which satisfies αk ≥ αk−1 and αk ≥
α0 = 1

nL , we must have γlk ≥ 0 for all k and l. Also,∑
l

γlk =
k−2∑
l=0

(1− τ)γlk−1 +

((1

nαk−1L
− 1

nαkL

)
+ τ
(

1− 1

nαk−1L

))
+

1

nαkL

= (1− τ)
(

1− 1

nαk−1L

)
+

((1

nαk−1L
− 1

nαkL

)
+ τ
(

1− 1

nαk−1L

))
+

1

nαkL
= 1 .

�

Lemma 3.5. When z
(i)
k = arg minz∈∆

{
1
2‖z − zk−1‖2A + 〈nαkξ

(i)
k , z〉

}
, we have〈

nαkξ
(i)
k , zk−1 − u

〉
≤ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
+

1

2
‖zk−1 − u‖2A −

1

2
‖z(i)
k − u‖

2
A .

Proof. Denoting by Va(b) = 1
2‖b−a‖

2
A as a function of b ∈ ∆ parameterized at a ∈ ∆, we have that

∇iVa(b) = ‖A:i‖∞ · (ai−bi). In optimization theory, Va(b) is also known as the Bregman divergence
of the ‖ · ‖2A regularizer.

9We wish to point out that this proof coincides with a lemma from the accelerated coordinate descent theory of
Fercoq and Richtárik [FR13]. Their paper is about optimizing an objective function that is Lipschitz smooth, and
thus irrelevant to our work.

13

We deduce the following sequence of inequalities:〈
nαkξ

(i)
k , zk−1 − u

〉
=
〈
nαkξ

(i)
k , zk−1 − z

(i)
k

〉
+
〈
nαkξ

(i)
k , z

(i)
k − u

〉
¬
≤
〈
nαkξ

(i)
k , zk−1 − z

(i)
k

〉
+
〈
−∇Vzk−1

(z
(i)
k), z

(i)
k − u

〉
­
=
〈
nαkξ

(i)
k , zk−1 − z

(i)
k

〉
− 1

2
‖zk−1 − z

(i)
k ‖

2
A +

1

2
‖zk−1 − u‖2A −

1

2
‖z(i)
k − u‖

2
A

®
= n2α2

kL
(〈
ξ

(i)
k , xk − yk

〉
− L

2
‖xk − yk‖2A

)
+

1

2
‖zk−1 − u‖2A −

1

2
‖z(i)
k − u‖

2
A

≤ n2α2
kL ·

〈
ξ

(i)
k , xk − yk

〉
+

1

2
‖zk−1 − u‖2A −

1

2
‖z(i)
k − u‖

2
A .

Here, ¬ is due to the minimality of z
(i)
k = arg minz∈∆

{
Vzk−1

(z) +
〈
nαkξ

(i)
k , z

〉}
, which implies that〈

∇Vzk−1
(z

(i)
k) + nαξ

(i)
k , u − z

(i)
k

〉
≥ 0 for all u ∈ ∆. Step ­ is due to the “three-point equality” of

Bregman divergence (cf. [CL06]), which can be checked for every coordinate ` ∈ [n] as follows:

−∇`Vzk−1
(z

(i)
k) · (z(i)

k,` − u`) = ‖A:i‖∞(zk−1,` − z
(i)
k,`) · (z

(i)
k,` − u`)

= ‖A:i‖∞
(
− 1

2
(zk−1,` − z

(i)
k,`)

2 +
1

2
(u` − zk−1,`)

2 − 1

2
(z

(i)
k,` − u`)

2
)
.

® is by our choice of yk which satisfies that zk−1 − z
(i)
k = nαkL(xk − y

(i)
k). �

Proposition 3.6. If zk−1 ∈ ∆, the minimizer z = arg minz∈∆

{
1
2‖z − zk−1‖2A + 〈δei, z〉

}
for any

scalar δ ∈ R and basis vector ei can be computed as follows:
1. z ← zk−1.
2. zi ← zi − δ/‖A:i‖∞.
3. If zi < 0, then zi ← 0; if zi > 1/‖A:i‖∞, zi ← 1/‖A:i‖∞.
4. Return z.

Proof of Proposition 3.6. Let us denote by z the returned value of the described procedure, and
g(u)

def
= 1

2‖u − zk−1‖2A + 〈δei, u〉. Since ∆ is a convex body and g(·) is convex, to show z =
arg minz∈∆{g(z)}, it suffices for us to prove that for every u ∈ ∆, 〈∇g(z), u − z〉 ≥ 0. Since the
gradient ∇g(z) can be written explicitly, this is equivalent to

δ(ui − zi) +
n∑
`=1

‖A:`‖∞ ·
(
z` − zk−1,`

)
· (u` − z`) ≥ 0 .

However, since z` = zk−1,` for every ` 6= i, this is equivalent to(
δ + ‖A:i‖∞ ·

(
zi − zk−1,i

))
· (ui − zi) ≥ 0 .

There are three possibilities here. If zi = zk−1,i − δ/‖A:i‖∞ then the left-hand side is zero and
we are done. Otherwise, if zi > zk−1,i − δ/‖A:i‖∞, then it must satisfy that zi = 0; in such a
case the left-hand side is the multiplication of two non-negatives, and therefore non-positive. If
zi < zk−1,i− δ/‖A:i‖∞, then it must satisfy that zi = 1/‖A:i‖∞; in such a case the left-hand side is
the multiplication of two non-positives, and therefore non-positive. �

Lemma 3.9.
〈
nαkη

(i)
k , zk−1 − u

〉
+ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
≤ 3nαkL · (fµ(xk)− fµ(y

(i)
k)) .

Proof. Now there are three possibilities:

• If η
(i)
k = 0, then we must have ξ

(i)
k,i = ∇ifµ(xk) ∈ [−1, 1], and Lemma 3.8 immediately implies〈

nαkη
(i)
k , zk−1−u

〉
+n2α2

kL·
〈
ξ

(i)
k , xk−y

(i)
k

〉
= n2α2

kL·
〈
∇fµ(xk), xk−y

(i)
k

〉
≤ 2n2α2

kL·(fµ(xk)−fµ(y
(i)
k))

14

• If η
(i)
k > 0 and z

(i)
k,i > 0, then we precisely have z

(i)
k,i = zk−1,i − nαk

‖A:i‖∞ (see Proposition 3.6),

and accordingly y
(i)
k,i = xk,i − 1

L‖A:i‖∞ < xk,i. In this case,〈
nαkη

(i)
k , zk−1 − u

〉
+ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
¬
≤ nαk · ∇fµ(xk) ·

1

‖A:i‖∞
+ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
­
< nαk · ∇fµ(xk) ·

1

‖A:i‖∞
+ n2α2

kL ·
〈
∇fµ(xk), xk − y

(i)
k

〉
®
= nαkL ·

〈
∇fµ(xk), xk − y

(i)
k

〉
+ n2α2

kL ·
〈
∇fµ(xk), xk − y

(i)
k

〉 ¯
≤
(
2nαkL+ 2n2α2

kL
)
· (fµ(xk)− fµ(y

(i)
k)) .

Above, ¬ follows from the fact that zk−1 ∈ ∆ and therefore zk−1,i ≤ 1
‖A:i‖∞ by the definition

of ∆, and u ≥ 0; ­ follows from the fact that xk and y
(i)
k are only different at coordinate i,

and ξ
(i)
k,i = 1 < ∇ifµ(xk) (since η

(i)
k,i > 0); ® follows from the fact that y

(i)
k = xk− ei

L‖A:i‖∞ ; and

¯ uses Lemma 3.8.

• If η
(i)
k > 0 and z

(i)
k,i = 0, then we have〈

nαkη
(i)
k , zk−1 − u

〉
+ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
¬
≤
(
nαk∇fµ(xk) · zk−1,i

)
+ n2α2

kL ·
〈
∇fµ(xk), xk − y

(i)
k

〉
­
=
〈
nαk∇fµ(xk), zk−1 − z

(i)
k

〉
+ n2α2

kL ·
〈
∇fµ(xk), xk − y

(i)
k

〉
®
= n2α2

kL ·
〈
∇fµ(xk), xk − y

(i)
k

〉
+ n2α2

kL ·
〈
∇fµ(xk), xk − y

(i)
k

〉 ¯
≤ 4n2α2

kL · (fµ(xk)− fµ(y
(i)
k)) .

Above, ¬ is because u ≥ 0, ∇ifµ(xk) = η
(i)
k,i + 1 > η

(i)
k,i and ∇ifµ(xk) > ξ

(i)
k,i; ­ uses the

assumption that z
(i)
k,i = 0 and the fact that zk−1,` = z

(i)
k,` for every ` 6= i; ® is from our choice

of yk which satisfies that zk−1 − z
(i)
k = nαkL(xk − y

(i)
k); and ¯ uses Lemma 3.8.

Combining the three cases above, and using the fact that fµ(xk)− fµ(y
(i)
k) ≥ 0, we conclude that〈

nαkη
(i)
k , zk−1 − u

〉
+ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
≤ (2nαkL+ 4n2α2

kL) · (fµ(xk)− fµ(y
(i)
k))

≤ 3nαkL · (fµ(xk)− fµ(y
(i)
k)) .

Above, the last inequality uses our choice of αk (see Algorithm 1). �

Corollary 3.10. With probability at least 9/10, PacLPSolver(A, xstart, ε) outputs a (1−O(ε)) ap-

proximate solution to the packing LP program. The expected running time is O(log(nm/ε) log(1/ε)
ε N).

Proof. Since for every x ∈ ∆ it satisfies fµ(x) ≥ −(1 + ε)OPT according to Proposition 2.3.b, we
obtain that fµ(yT) + (1 + ε)OPT is a random variable that is non-negative, whose expectation
E[fµ(yT)+(1+ε)OPT] ≤ 4ε. By Markov bound, with at least probability 9/10, we obtain some yT
satisfying fµ(yT) ≤ −(1−O(ε))OPT, which yields some (1−O(ε)) approximate solution according
to Proposition 2.3.c.

The running time follows from our efficient implementation in Section G. �

15

C Relaxation of the Covering Linear Program

Recall that, for input matrix A ∈ Rm×n≥0 , the covering LP in its standard form is

Covering LP: min
x≥0
{1Tx : Ax ≥ 1} .

Let us denote by OPT the optimal value to this linear program, and by x∗ any optimal solution of
the covering LP (1.2). We say that x is a (1 + ε)-approximation for the covering LP if Ax ≥ 1 and
1Tx ≤ (1 + ε)OPT. In our covering LP solver, we assume that some 2-approximate solution x] is
given to the algorithm, and 1Tx] = OPT′ for some OPT′ ∈ [OPT, 2OPT].10

Again, we use the indices i ∈ [n] for the columns of A, and the indices j ∈ [m] for the rows of
A. We denote by A:i the i-th column vector of A, and Aj: the j-th row vector of A. We can assume
without loss of generality that11

min
j∈[m]
{‖Aj:‖∞} = 1 . (C.1)

We now introduce the smoothed objective fµ(x) that we are going to minimize in order to
approximately solve the covering LP. We skip the details regarding how it arises from a relaxation
using the generalized entropy regularizer, because it is essentially a repetition of Section 2.

This smoothed objective turns each row of the LP constraint Ax ≥ 1 into an exponential
penalty function so that we only need to require x ≥ 0 throughout the algorithm.

Definition C.1. Letting parameter µ
def
= ε

4 log(nm/ε) , we define the smoothed objective fµ(x) as

fµ(x)
def
= µ

m∑
j=1

exp
1
µ

(1−(Ax)j) +1Tx

over the simplex x ∈ ∆
def
= {x ∈ Rn : xi ≥ 0 ∧ 1Tx ≤ 2OPT′}.

We wish to study the minimization problem on fµ(x), subject to the constraint that each
coordinate xi is non-negative and the coordinates sum up to at most 2OPT′. The intuition that
this smoothed objective fµ(x) captures the original covering LP (1.2) is similar to that of the
packing LP one. Note that our constraint 1Tx ≤ 2OPT′ is of course redundant; it will play some
other important role in our algorithm.

We begin with several simple but important properties about OPT and fµ(x). In short, they
together imply that the minimum of fµ(x) is around OPT, and if one can approximately find the
minimum of fµ(x) (up to an error O(εOPT)), this corresponds to a (1+O(ε))-approximate solution
to the covering LP (1.2).

Proposition C.2.
(a) OPT ∈ [1,m].

(b) fµ(u∗) ≤ (1 + ε)OPT for u∗
def
= (1 + ε/2)x∗ ∈ ∆.

(c) fµ(x) ≥ (1− ε)OPT for every x ≥ 0.
(d) Letting xstart = (1 + ε/2) · x] + (1

n , . . . ,
1
n), we have 1Txstart ≤ 2OPT′ and fµ(xstart) ≤ 4OPT.

(e) For any x ≥ 0 satisfying fµ(x) ≤ 2OPT, we must have Ax ≥ (1− ε)1.
(f) If x ≥ 0 satisfies fµ(x) ≤ (1 +O(ε))OPT, then 1

1−εx is a (1 +O(ε))-approximate solution to
the covering LP.

10This can be obtained via for instance the covering LP solver from Young [You14], whose running time is
O(N logN). It can be relaxed to any constant approximation rather than 2-approximation.

11We can do so because first of all, we can assume minj∈[n]{‖Aj:‖∞} > 0 since otherwise the covering LP is
infeasible. Next, we can scale A down by a factor of minj∈[n]{‖Aj:‖∞}; this also scales down the optimal value OPT
and solution x∗ by this same factor.

16

(g) The gradient of fµ(x) can be written as

∇fµ(x) = 1−AT p(x) where pj(x)
def
= exp

1
µ

(1−(Ax)j) (C.2)

Proof.

(a) Suppose that j∗ is the row that achieves the smallest infinite norm ‖Aj:‖∞ over all rows.
Then, for any solution x ∈ Rn≥0 satisfying 〈A:j∗ , x〉 ≥ 1, we must have 1Tx ≥ 1/‖A:j∗‖∞ = 1.

On the other hand, we can construct a feasible solution x as follows. Initialize x = 0, and
then for each row j, let us find the coordinate i that maximizes the value of Aij among all
columns i. Then, we increase xi by 1/Aij = 1/‖Aj:‖∞. After we have exhausted all the m
rows, we arrive at some x ≥ 0 satisfying Ax ≥ 1 as well as 1Tx =

∑
j 1/‖Aj:‖∞ ≤ m.

(b) We have 1Tu∗ = (1 + ε/2)OPT by the definition of OPT. Also, from the feasibility constraint
Ax∗ ≥ 1 in the covering LP, we have Au∗ − 1 ≥ ε/2 · 1, and can compute fµ(u∗) as follows:

fµ(u∗) = µ
∑
j

exp
1
µ

(1−(Au∗)j) +1Tu∗ ≤ µ
∑
j

exp
−ε/2
µ +(1 + ε/2)OPT

≤ µm

(nm)2
+ (1 + ε/2)OPT ≤ (1 + ε)OPT .

(c) Suppose towards contradiction that fµ(x) < (1 − ε)OPT. Since fµ(x) < OPT ≤ m, we

must have that for every j ∈ [m], it satisfies that exp
1
µ

(1−(Ax)j) ≤ fµ(x)/µ ≤ m/µ. This
further implies (Ax)j ≥ 1 − ε by the definition of µ. In other words, Ax ≥ (1 − ε)1.
By the definition of OPT, we must then have 1Tx ≥ (1 − ε)OPT, finishing the proof that
fµ(x) ≥ 1Tx ≥ (1− ε)OPT, giving a contradiction.

(d) Using the fact that Axstart−1 ≥ (1 + ε/2)Ax]−1 ≥ ε/2 ·1, we compute fµ(xstart) as follows:

fµ(xstart) = µ
∑
j

exp
1
µ

(1−(Axstart)j) +1Txstart ≤ µ
∑
j

exp
−ε/2
µ +2OPT+1 ≤ µm

(nm)2
+3OPT < 4OPT .

Also, we have 1Txstart ≤ (1 + ε/2)OPT′ + 1 ≤ 2OPT′.

(e) To show Ax ≥ (1− ε)1, we can assume that v = maxj(1− (Ax)j) > ε because otherwise we
are done. Under this definition, we have

fµ(x) ≥ µ exp
v
µ = µ

(
(
nm

ε
)4
)v/ε

≥ ε

4 log(nm)
(
nm

ε
)4 � 2OPT ,

contradicting to our assumption that fµ(x) ≤ 2OPT. Therefore, we must have v ≤ ε, that is,
Ax ≥ (1− ε)1.

(f) For any x satisfying fµ(x) ≤ (1 + O(ε))OPT ≤ 2OPT, owing to Proposition C.2.e, we first
have that x is approximately feasible, i.e., Ax ≥ (1 − ε)1. Next, because 1Tx ≤ fµ(x) ≤
(1 + O(ε))OPT, we know that x yields an objective 1Tx ≤ (1 + O(ε))OPT. Letting x′ =

1
1−εx, we both have that x′ is feasible (i.e., Ax′ ≥ 1), and x′ has an objective 1Tx′ at most
(1 +O(ε))OPT.

(g) Straightforward by some simple computation. �

17

Algorithm 2 CovLPSolver(A, xstart, ε)

Input: A ∈ Rm×n≥0 , xstart ∈ ∆, ε ∈ (0, 1/10].
Output: x ∈ ∆.

1: µ← ε
4 log(nm/ε) , β ←

√
ε, τ ← µβ

12n . . parameters

2: T ← d 1
τ log(1/ε)e = O(log(nm/ε) log(1/ε)

ε1.5
n). . number of iterations

3: α0 ← (1− τ)T ε
12nβ and γ ← ε

6β . . so that αT = ε
12nβ and γ = 2αTn

4: x0 = y0 = z0 ← xstart.
5: for k ← 1 to T do
6: αk ← 1

1−τ αk−1.
7: xk ← τzk−1 + (1− τ)yk−1.
8: Randomly select i uniformly at random from [n].

9: Define ξ
(i)
k to be a vector that is only non-zero at coordinate i, and equals to Tc(∇ifµ(xk)).

. recall from (C.2) that ∇ifµ(xk) = 1−
∑m

j=1Aj,i exp
1
µ

(1−(Axk)j)

. recall from Definition D.1 that Tc(v)
def
=

{
v, v ∈ [−β, 1];
−β, v < −β.

10: zk ← z
(i)
k

def
= arg minz∈∆

{
Vzk−1

(z) + 〈(1 + γ)nαkξ
(i)
k , z〉

}
. . See Proposition D.9

11: if ∇ifµ(xk) < −β then
12: Denote by π the permutation that sorts the entries of A:i into Aπ(1),i ≤ · · · ≤ Aπ(m),i .
13: Pick j∗ ∈ [m] such that

∑
j<j∗ Aπ(j),i·pπ(j)(xk) < 1+β but

∑
j≤j∗ Aπ(j),i·pπ(j)(xk) ≥ 1+β.

. Such a j∗ ∈ [m] must exist because
∑m

j=1Aji · pj(xk) ≥ 1 + β.

14: yk ← y
(i)
k

def
= xk + δ · ei where δ = µβ

2Aπ(j∗),i
.

15: else
16: yk ← y

(i)
k

def
= xk.

17: end if
18: end for
19: return yT .

D Covering LP Solver
To describe our covering LP solver we make the following choice of the thresholding function. Recall
in the packing LP case, we have truncated each coordinate gradient from [−1,∞) to [−1, 1]. For
this covering LP case, we truncate each such gradient from (−∞, 1] to [−β, 1], for some parameter

β
def
=
√
ε. The reason for this choice of β =

√
ε shall become clear in later sections; at high level,√

ε is the best tradeoff between gradient and mirror descent.

Definition D.1. The thresholding function Tc : (−∞, 1]→ [−β, 1] is defined as follows

Tc(v)
def
=

{
v, v ∈ [−β, 1];
−β, v < −β.

Our algorithm CovLPSolver starts with the initial vector x0 = y0 = z0 = xstart introduced in
Proposition C.2.d, and is divided into T iterations. In each iteration, we start by computing a
weighted midpoint xk ← τzk−1 + (1 − τ)yk−1 for some parameter τ ∈ (0, 1), and then proceed to
compute yk and zk as follows.

• Select i ∈ [n] uniformly at random, and let ξ
(i)
k = (0, . . . , 0,Tp(v), 0, . . . , 0) be the vector that

is only non-zero at coordinate i, where v = ∇ifµ(xk) = 1−
∑m

j=1Aj,i exp
1
µ

(1−(Axk)j) ∈ (−∞, 1].

18

• Perform a mirror (descent) step zk ← z
(i)
k

def
= arg minz∈∆

{
Vzk−1

(z) + 〈(1 + γ)nαkξ
(i)
k , z〉

}
for

some parameters γ � 1 and αk � 1/n, where Vx(y) =
∑n

i=1 yi log yi
xi

+xi− yi is the so-called
Bregman divergence of the generalized entropy function (see Proposition D.9 below).

• Perform a gradient (descent) step yk ← y
(i)
k

def
= xk + δei for some value δ that is zero if

∇ifµ(xk) < −β, and strictly positive otherwise. The precise definition of δ can be found in
the pseudocode described in Algorithm 2.

Above, the reason that the the two steps on yk and zk are named after “gradient step” and “mirror

step” will become clear in the follow-up sections. We use the superscript (i) on ξ
(i)
i , y

(i)
k and z

(i)
k to

emphasize that the value depends on the choice of i. We have used generic parameters τ, αk, T in
the above description and their precise values are presented in Algorithm 2.12

Since the xstart satisfies 1Txstart ≤ 2OPT′ by Proposition C.2.d, we have z0 = xstart ∈ ∆. Also,
the mirror descent step ensures that zk,i > 0 for all rounds k and coordinates i, as well as zk ∈ ∆
for all rounds k. However, we note that xk and yk may not necessarily lie inside ∆, but will always
stay non-negative. We summarize these properties as follows:

∀k ∈ {0, 1, . . . , T}, xk, yk ≥ 0, zk > 0, zk ∈ ∆ .

We shall also prove in Section G that

Lemma D.2. Each iteration of CovLPSolver can be implemented to run in expected O(N/n) time.

The key idea is similar to that of the efficient implementation of PacLPSolver, that is to
implementation the updates implicitly.

In this section, we prove the following theorem in five steps.

Theorem D.3. CovLPSolver(A, xstart, ε) outputs some yT satisfying E[fµ(yT)] ≤ (1 + 9ε)OPT.

D.1 Step 1: Distance Adjustment

Classically, using the convexity argument one can obtain fµ(xk) − fµ(u) ≤ 〈∇fµ(xk), xk − u〉 for
every u ∈ ∆. In particular, if u is the optimal point, the right hand side is a simple upper bound
on the objective distance from the current point fµ(xk) to the optimum. This simple upper bound
is essentially used by all the convergence analyses for first-order methods.

In this section, we strengthen this upper bound in the special case of u = u∗
def
= (1 + ε/2)x∗.

Define Ã be the adjusted matrix of A described as follows.

Definition D.4 (Adjusted matrix Ã). For each row j ∈ [m], if (Au∗)j ≤ 2 then we keep this row

and define Ãj:
def
= Aj:. Otherwise, —that is, if (Au∗)j > 2— we define Ãj:

def
= 2

(Au∗)j
· Aj: to be the

same j-th row Aj:, but scaled down by a factor of 2
(Au∗)j

. It is clear from this definition that

Aji ≥ Ãji for all i ∈ [n] and j ∈ [m], while (1 + ε)1 ≤ Ãu∗ ≤ 21.

We now strengthen the classical bound fµ(xk)− fµ(u) ≤ 〈∇fµ(xk), xk − u〉 as follows.

Lemma D.5 (Distance Adjustment).

fµ(xk)− fµ(u∗) ≤ 〈1−AT p(xk), xk − u∗〉+ 〈ÃT p(xk)−AT p(xk), u∗〉+ εOPT

= 〈∇fµ(xk), xk − u∗〉+ 〈ÃT p(xk)−AT p(xk), u∗〉+ εOPT

12We encourage the readers to ignore their specific values for now. Our specific choices of the parameters shall
become clearer and natural at the end of this section, and be discussed whenever they are used.

19

At high level, ignoring the negligible term εOPT on the right hand side, the above upper bound
strengthens the classical bound due to the extra term of 〈ÃT p(xk)−AT p(xk), u∗〉. This extra term
is always non-positive since Ã ≤ A coordinate-wisely, but may be very negative in certain cases.

The intuition behind the proof is to realize that the convexity inequality eb − ea ≤ 〈eb, b − a〉
on the exponential function becomes far from tight when a � 0. For instance, when b = 2 and
a = −10, we have e2 − e−10 ≤ 12e2; when b = 2 and a = −100, we only get e2 − e−100 ≤ 102e2.
Although e−100 ≈ e−10, the two upper bounds are off from each other by a factor of 10. Therefore,
when necessary, we can ‘elevate’ a to some higher value in order to obtain a tighter upper bound.
We defer the detailed proof to Appendix E.

D.2 Step 2: Gradient Truncation

Let us separate the indices i ∈ [n] into large and small ones.

Definition D.6. We make the following definitions.

• Let ξk ∈ [−β, 1]n be the truncated gradient so that ξk,i = Tc(∇ifµ(xk)) for each i ∈ [n].

• Let Bk
def
= {i ∈ [n] : ξk,i 6= ∇ifµ(xk)} be the set of large indices.

• Let ηk ∈ (−∞, 0]n be the large gradient so that ∇fµ(xk) = ξk + ηk. It is clear that

ηk,i = 0 for every i 6∈ B, and ηk,i = (1 + β)− (AT p(xk))i for every i ∈ B.

• Let η̃k ∈ (−∞,∞)n be the adjusted large gradient so that

η̃k,i = 0 for every i 6∈ B, and η̃k,i = (1 + β)− (ÃT p(xk))i for every i ∈ B.

For the rest of this section, we denote by η
(i)
k = (0, . . . , 0, ηk,i, 0, . . . , 0), the vector that is zero at all

coordinates other than i, and equals to ηk,i at location i. We similarly define ξ
(i)
k as well as η̃

(i)
k .

We next state the following key lemma that is very analogous to (3.1) from packing LP. Note

that if one uses η
(i)
k instead of η̃

(i)
k , the proof becomes identical to that of (3.1). The reason that we

can use η̃
(i)
k rather than η

(i)
k —thus giving a stricter upper bound— is precisely due to the distance

adjustment introduced in Lemma D.5.

Lemma D.7.

fµ(xk)− fµ(u∗) ≤ (1− τ)

τ
(fµ(yk−1)− fµ(xk)) + Ei

[
〈nξ(i)

k , zk−1 − u∗〉
]

+ Ei

[
〈nη̃(i)

k ,−u∗〉
]

+ εOPT .

The proof of the above lemma is a simple repetition of that of (3.1), but replacing the classical
distance upper bound with our adjusted one. See Appendix E for details.

D.3 Step 3: Mirror Descent Guarantee

Our update z
(i)
k

def
= arg minz∈∆

{
Vzk−1

(z) + 〈(1 + γ)nαkξ
(i)
k , z〉

}
is known as a mirror descent step

from optimization theory.
We begin by explaining an attempt that is too weak for obtaining the ε−1.5 convergence rate.
Using the classical theory of mirror descent (or multiplicative weight update), it is not hard to

repeat the proof of Lemma 3.5 —although changing the distance function from ‖ · ‖2A to Vx(y)—
and obtain that, for every u ∈ ∆,

Ei

[
αk
〈
nξ

(i)
k , zk−1 − u

〉]
≤ Vzk−1

(u)−Ei

[
V
z
(i)
k

(u)
]

+O(α2
kn)OPT .

The above inequality can be made true whenever ξi is between −1 and 1 for each coordinate i, but
only yields the known ε−2 convergence rate. Here, ±1 is also know as the width from multiplicative-
weight-update languages [AHK12].

20

Fortunately, since we have required ξi to be only between −β and 1, the O(α2
kn) factor can

essentially be improved to O(α2
kβn). This is an improvement whenever β � 1, and we call it the

negative-width technique.13 Formally, we prove that

Lemma D.8. Denoting by γ
def
= 2αTn, we have

Ei

[
αk
〈
nξ

(i)
k , zk−1 − u∗

〉]
≤ Vzk−1

(u∗

1 + γ

)
−Ei

[
V
z
(i)
k

(u∗

1 + γ

)]
+ 12OPT · γαkβ .

The proof can be found in Appendix E.
Although defined in a variational way, it is perhaps beneficial to explicitly describe how to

implement this mirror step. The following proposition is straightforward but anyways proved in
Appendix E:

Proposition D.9. If zk−1 ∈ ∆ and zk−1 > 0, the minimizer z = arg minz∈∆

{
Vzk−1

(z) + 〈δei, z〉
}

for any scalar δ ∈ R and basis vector ei can be computed as follows:
1. z ← zk−1.
2. zi ← zi · e−δ.
3. If 1T z > 2OPT′, z ← 2OPT′

1T z
z.

4. Return z.

D.4 Step 4: Gradient Descent Guarantee

We claim that our gradient step xk → y
(i)
k never increases the objective for all choices of i. In

addition, it decreases the objective by an amount proportional to the adjusted large gradient η̃
(i)
k .

Lemma D.10. For every i ∈ [n], we have

(a) fµ(xk)− fµ(y
(i)
k) ≥ 0, and

(b) fµ(xk)− fµ(y
(i)
k) ≥ µβ

12 · 〈−η̃
(i)
k , u∗〉 .

The proof of Lemma D.10 is quite technical and can be found in Appendix E.
At high level, one would generally hope to prove that the gradient step decreases the objective

by an amount proportional to the large gradient η
(i)
k , rather than the adjusted large gradient η̃

(i)
k .

If that were true, the entire proof structure of our covering LP convergence would become much
closer to that of packing LP, and there would be absolutely no need for the introduction of the
distance adjustment in Section D.1, as well as the definitions of Ã and η̃.

Unfortunately, if one replaces η̃ with η in the above lemma, the inequality is far from being
correct. The reason behind it is very similar to that we have summarized in Section D.1, and
related to the unpleasant behavior of the exponential penalty function.

D.5 Step 5: Putting All Together

Combining Lemma D.7, Lemma D.8, and Lemma D.10, we obtain that

αk
(
fµ(xk)− fµ(u∗)

)
− αkεOPT

≤ (1− τ)αk
τ

(fµ(yk−1)− fµ(xk)) + Ei

[
αk〈nξ

(i)
k , zk−1 − u∗〉

]
+ Ei

[
αk〈nη̃

(i)
k ,−u∗〉

]
≤ (1− τ)αk

τ
(fµ(yk−1)− fµ(xk)) + Vzk−1

(u∗

1 + γ

)
−Ei

[
V
z
(i)
k

(u∗

1 + γ

)]
13This negative width technique is strongly related to [AHK12, Definition 3.2], where the authors analyze the

classical multiplicative weight update method in a special case when the oracle returns loss values only between −`
and ρ, for `� ρ. This technique is in fact related to a more general theory of mirror descent, known as the local-norm
convergence, that we have summarized in a separate paper [ALO14].

21

+ 12OPT · γαkβ + Ei

[12αkn

µβ

(
fµ(xk)− fµ(y

(i)
k)
)]

Remark D.11. Above, the quantity “12OPT · γαkβ” is the loss term introduced by the mirror
descent. Unlike the packing LP case —see (3.2)— this loss term is not dominated by the gradient
step. (If one could do so, this would turn our CovLPSolver into an ε−1 convergence rate.)

The quantity “αk〈nξ
(i)
k , zk−1−u∗〉” is the loss introduced by the (adjusted) large gradient η̃, and

is dominated by our gradient step progress owing to Lemma D.10. This is similar to the packing
LP case —see Lemma 3.9.

From here, let us use the special choice of τ = µβ
12n . We obtain that

− αk
(
fµ(u∗) + εOPT

)
≤ 12γαkβOPT +

(1− τ)αk
τ

fµ(yk−1) + Vzk−1

(u∗

1 + γ

)
−Ei

[αk
τ
fµ(y

(i)
k) + V

z
(i)
k

(u∗

1 + γ

)]
.

Use the choice αk =
αk−1

1−τ and telescoping the above inequality for k = 1, . . . , T , we have

−
(T∑
k=1

αk
)(
fµ(u∗) + εOPT

)
≤
(T∑
k=1

αk
)
· 12γβOPT +

α0

τ
fµ(y0) + Vz0

(u∗

1 + γ

)
− αT

τ
E
[
fµ(yT)

]
.

We compute that
∑T

k=1 αk = αT ·
∑T−1

k=0 (1− τ)k = αT · 1−(1−τ)T

τ < αT
τ , and recall that γ = 2αTn.

Therefore, we rearrange and get

αT
τ

E
[
fµ(yT)

]
≤ αT

τ

(
fµ(u∗) + εOPT

)
+
αT
τ
· 12γβOPT +

α0

τ
fµ(y0) + Vz0

(u∗

1 + γ

)
,

=⇒ E
[
fµ(yT)

]
≤ fµ(u∗) + εOPT + 24αTnβOPT + (1− τ)T fµ(y0) +

τ

αT
Vz0
(u∗

1 + γ

)
. (D.1)

From this point, we need to use our special choice of the initial point x0 = y0 = z0 = xstart (see
Proposition C.2.d), which implies that fµ(y0) ≤ 4OPT and 1Txstart ≤ 4OPT. We also have

Vz0
(u∗

1 + γ

)
= Vxstart

(u∗

1 + γ

)
=

n∑
i=1

u∗i
1 + γ

log
u∗i

(1 + γ)xstarti

+ xstarti − u∗i
1 + γ

¬
≤

n∑
i=1

u∗i log(u∗i · n) + 4OPT
­
≤ (2 log(nm) + 4) · OPT .

Above, inequality ¬ follows because xstarti ≥ 1/n for all i ∈ [n] according to the definition in
Proposition C.2.d; inequality ­ follows because u∗i ≤ (1 + ε/2)x∗i ≤ (1 + ε/2)OPT ≤ (1 + ε/2)m
and 1Tu∗i = (1 + ε/2)OPT, as well as the fact that ε is sufficiently small.

Finally, we choose β =
√
ε, αT = ε

12nβ , and T = d 1
τ log(1/ε)e. Substituting into (D.1) all

of these parameters, along with the aforementioned inequalities fµ(y0) ≤ 4OPT and Vz0
(
u∗

1+γ

)
≤

(2 log(nm) + 4) · OPT, as well as fµ(u∗) ≤ (1 + ε)OPT from Proposition C.2.b, we obtain that

E
[
fµ(yT)

]
≤ (1+ε)OPT+εOPT+2εOPT+εfµ(y0)+

µβ/12n

ε/12nβ
(2 log(nm)+4)OPT = (1+9ε)OPT .

This finishes the proof of Theorem D.3. �
It is now straightforward to use Markov inequality to turn the expected guarantee in Theorem D.3

into a probabilistic one:

Corollary D.12. With probability at least 9/10, CovLPSolver(A, xstart, ε) outputs a (1+O(ε)) ap-

proximate solution to the covering LP program. The expected running time is O(log(nm/ε) log(1/ε)
ε1.5

N).

22

Proof. Since for every x ∈ ∆ it satisfies fµ(x) ≥ (1 − ε)OPT according to Proposition C.2.c, we
obtain that fµ(yT) − (1 − ε)OPT is a random variable that is non-negative, whose expectation
E[fµ(yT)− (1− ε)OPT] ≤ 10ε. By Markov bound, with at least probability 9/10, we obtain some
yT satisfying fµ(yT) ≤ (1+O(ε))OPT, which yields some (1+O(ε)) approximate solution according
to Proposition C.2.f.

The running time follows from our efficient implementation in Section G. �

E Missing Proofs for Section D
Lemma D.5.

fµ(xk)− fµ(u∗) ≤ 〈1−AT p(xk), xk − u∗〉+ 〈ÃT p(xk)−AT p(xk), u∗〉+ εOPT

= 〈∇fµ(xk), xk − u∗〉+ 〈ÃT p(xk)−AT p(xk), u∗〉+ εOPT

Proof.

fµ(xk)− fµ(u∗) = µ

m∑
j=1

(
exp

1
µ

(1−(Axk)j)− exp
1
µ

(1−(Au∗)j)
)

+ 〈1, xk − u∗〉

¬
≤ µ

m∑
j=1

(
exp

1
µ

(1−(Axk)j)− exp
1
µ

(1−(Ãu∗)j)
)

+ 〈1, xk − u∗〉+ µ ·m · exp−1/µ

­
≤

m∑
j=1

exp
1
µ

(1−(Axk)j) ·
(
(Ãu∗)j − (Axk)j

)
+ 〈1, xk − u∗〉+ εOPT

=
m∑
j=1

pj(xk) ·
(
(Ãu∗)j − (Axk)j

)
+ 〈1, xk − u∗〉+ εOPT

=

m∑
j=1

pj(xk) ·
(
(Au∗)j − (Axk)j

)
+ 〈1, xk − u∗〉+

m∑
j=1

pj(xk) ·
(
(Ãu∗)j − (Au∗)j

)
+ εOPT

= 〈−Ap(xk), xk − u∗〉+ 〈1, xk − u∗〉+ 〈ÃT p(xk)−AT p(xk), u∗〉+ εOPT .

Above, ¬ is because if (Au∗)j 6= (Ãu∗)j for some j, then it must satisfy that (Ãu∗)j = 2, and

therefore − exp
1
µ

(1−(Au∗)j) ≤ − exp
1
µ

(1−(Ãu∗)j) + exp−1/µ. ­ uses the convexity inequality of eb −
ea ≤ 〈eb, b− a〉, and the fact that µm exp−1/µ � εOPT. �

Lemma D.7.

fµ(xk)− fµ(u∗) ≤ (1− τ)

τ
(fµ(yk−1)− fµ(xk)) + Ei

[
〈nξ(i)

k , zk−1 − u∗〉
]

+ Ei

[
〈nη̃(i)

k ,−u∗〉
]

+ εOPT .

Proof. (
fµ(xk)− fµ(u∗)

)
− εOPT

¬
≤ 〈∇fµ(xk), xk − u∗〉+ 〈ÃT p(xk)−AT p(xk), u∗〉

= 〈∇fµ(xk), xk − zk−1〉+ 〈∇fµ(xk), zk−1 − u∗〉+ 〈ÃT p(xk)−AT p(xk), u∗〉
­
=

(1− τ)

τ
〈∇fµ(xk), yk−1 − xk〉+ 〈∇fµ(xk), zk−1 − u∗〉+ 〈ÃT p(xk)−AT p(xk), u∗〉

®
≤ (1− τ)

τ
(fµ(yk−1)− fµ(xk)) + 〈∇fµ(xk), zk−1 − u∗〉+ 〈ÃT p(xk)−AT p(xk), u∗〉

=
(1− τ)

τ
(fµ(yk−1)− fµ(xk)) + 〈ξk + ηk, zk−1 − u∗〉+ 〈ÃT p(xk)−AT p(xk), u∗〉

23

¯
≤ (1− τ)

τ
(fµ(yk−1)− fµ(xk)) + 〈ξk, zk−1 − u∗〉+ 〈ÃT p(xk)−AT p(xk)− ηk, u∗〉

°
≤ (1− τ)

τ
(fµ(yk−1)− fµ(xk)) + 〈ξk, zk−1 − u∗〉+ 〈−η̃k, u∗〉

=
(1− τ)

τ
(fµ(yk−1)− fµ(xk)) + Ei

[
〈nξ(i)

k , zk−1 − u∗〉+ 〈−nη̃(i)
k , u∗〉

]
.

Above, ¬ is due to Lemma D.5. ­ is because xk = τzk−1 + (1 − τ)yk−1, which implies that
τ(xk − zk−1) = (1− τ)(yk−1− xk). ® is by the convexity of fµ(·). ¯ is because 〈ηk, zk−1〉 ≤ 0, since
ηk ≤ 0 while zk−1 ≥ 0.

° needs some careful justification: for every i 6∈ Bk, we have (ÃT p(xk) − AT p(xk))i − ηk,i ≤
0− 0 = −η̃k,i; for every i ∈ Bk, we have

(ÃT p(xk)−AT p(xk))i − ηk,i = (ÃT p(xk)−AT p(xk))i −
(
(1 + β)− (AT p(xk))i

)
= −

(
(1 + β)− (ÃT p(xk))i

)
= −η̃k,i ,

where the two equalities follow from the definitions of ηk,i and η̃k,i (see Definition D.6). �

Lemma D.8. Denoting by γ
def
= 2αTn, we have

Ei

[
αk
〈
nξ

(i)
k , zk−1 − u∗

〉]
≤ Vzk−1

(u∗

1 + γ

)
−Ei

[
V
z
(i)
k

(u∗

1 + γ

)]
+ 12OPT · γαkβ .

Proof. Define w(x)
def
=
∑

i xi log(xi) − xi and accordingly, Vx(y) = w(y) − 〈w′(x), y − x〉 − w(x) =∑
i yi log yi

xi
+xi−yi. We first compute using the classical analysis of mirror descent step as follows:

γαk
〈
nξ

(i)
k , zk−1

〉
+ αk

〈
nξ

(i)
k , zk−1 − u∗

〉
= (1 + γ)αk

〈
nξ

(i)
k , z

(i)
k −

u∗

1 + γ

〉
+ (1 + γ)αk

〈
nξ

(i)
k , zk−1 − z

(i)
k

〉
¬
≤
〈
w′(zk−1)− w′(z(i)

k), z
(i)
k −

u∗

1 + γ

〉
+ (1 + γ)αk

〈
nξ

(i)
k , zk−1 − z

(i)
k

〉
=
(
w
(u∗

1 + γ

)
− w(zk−1)−

〈
w′(zk−1),

u∗

1 + γ
− zk−1

〉)
−
(
w
(u∗

1 + γ

)
− w(z

(i)
k)−

〈
w′(z

(i)
k),

u∗

1 + γ
− z

(i)
k

〉)
+
(
w(zk−1)− w(z

(i)
k)−

〈
w′(zk−1), zk−1 − z

(i)
k

〉)
+ (1 + γ)αk

〈
nξ

(i)
k , zk−1 − z

(i)
k

〉
= Vzk−1

(u∗

1 + γ

)
− V

z
(i)
k

(u∗

1 + γ

)
+ (1 + γ)αk

〈
nξ

(i)
k , zk−1 − z

(i)
k

〉
− Vzk−1

(z
(i)
k) . (E.1)

Above, ¬ is because z
(i)
k = arg minz∈∆

{
Vzk−1

(z)+〈(1+γ)αknξ
(i)
k , z〉

}
, which is equivalent to saying

∀u ∈ ∆, 〈V ′zk−1
(z

(i)
k) + (1 + γ)αknξ

(i)
k , u− z

(i)
k 〉 ≥ 0

⇐⇒ ∀u ∈ ∆, 〈w′(z(i)
k)− w′(zk−1) + (1 + γ)αknξ

(i)
k , u− z

(i)
k 〉 ≥ 0 .

In particular, we have 1T u∗

1+γ = 1T
(1+ε/2)x∗

1+γ < 2OPT ≤ 2OPT′ and therefore substituting u =
u∗

1+γ ∈ ∆ into the above inequality we get ¬.
Next, we upper bound the term in the box:

(1 + γ)αk〈nξ
(i)
k , zk−1 − z

(i)
k 〉 − Vzk−1

(z
(i)
k)

¬
≤ (1 + γ)αknξk,i · (zk−1,i − z

(i)
k,i)−

(
z

(i)
k,i log

z
(i)
k,i

zk−1,i
+ zk−1,i − z

(i)
k,i

)

24

­
≤ (1 + γ)αknξk,i · (zk−1,i − z

(i)
k,i)−

|z(i)
k,i − zk−1,i|2

2 max{z(i)
k,i, zk−1,i}

®
≤ (1 + γ)αknξk,i · (zk−1,i − z

(i)
k,i)−

|z(i)
k,i − zk−1,i|2

4zk−1,i

¯
≤ (1 + γ)2zk−1,i · (αknξk,i)2

°
≤ 2zk−1,i · (αknξk,i)2

±
≤ zk−1,i · γαkn|ξk,i|

²
≤ zk−1,i · γαknξk,i + 2zk−1,i · γαknβ = γαk〈nξ

(i)
k , zk−1〉+ 2zk−1,i · γαknβ . (E.2)

Above, ¬ uses the fact that for every i′ 6= i, z
(i)
k,i′ log

z
(i)

k,i′
zk−1,i′

+ zk−1,i′ − z
(i)
k,i ≥ 0. ­ uses the inequality

that for every a, b > 0, we have a log a
b +b−a ≥ (a−b)2

2 max{a,b} .
14 ® uses the fact that z

(i)
k,i ≤ 2zk−1,i.

15 ¯

uses Cauchy-Shwarz: ab− b2/4 ≤ a2. ° uses (1 + γ)2 < 2. ± uses |ξk,i| ≤ 1 and γ = 2αTn ≥ 2αkn.
² uses ξk,i ≥ −β.

Next, we combine (E.1) and (E.2) to conclude that

αk
〈
nξ

(i)
k , zk−1 − u∗

〉
≤ Vzk−1

(u∗

1 + γ

)
− V

z
(i)
k

(u∗

1 + γ

)
+ 2zk−1,i · γαknβ .

Taking expectation on both sides with respect to i, and using the property that 1T zk−1 ≤
3OPT′ ≤ 6OPT, we obtain that

Ei

[
αk
〈
nξ

(i)
k , zk−1 − u∗

〉]
≤ Vzk−1

(u∗

1 + γ

)
−Ei

[
V
z
(i)
k

(u∗

1 + γ

)]
+ 12OPT · γαkβ . �

Proposition D.9. If zk−1 ∈ ∆ and zk−1 > 0, the minimizer z = arg minz∈∆

{
Vzk−1

(z) + 〈δei, z〉
}

for any scalar δ ∈ R and basis vector ei can be computed as follows:
1. z ← zk−1.
2. zi ← zi · e−δ.
3. If 1T z > 2OPT′, z ← 2OPT′

1T z
z.

4. Return z.

Proof. Let us denote by z the returned value of the described procedure, and g(u)
def
= Vzk−1

(u) +
〈δei, u〉. Since ∆ is a convex body and g(·) is convex, to show z = arg minz∈∆{g(u)}, it suffices
for us to prove that for every u ∈ ∆, 〈∇g(z), u− z〉 ≥ 0. Since the gradient ∇g(z) can be written
explicitly, this is equivalent to

δ(ui − zi) +
n∑
`=1

log
z`

zk−1,`
· (u` − z`) ≥ 0 .

If the re-scaling in step 3 is not executed, then we have z` = zk−1,` for every ` 6= i, and zi =
zk−1,i · e−δ; thus, the left-hand side is zero so the above inequality is true for every u ∈ ∆.

Otherwise, we have 1T z = 2OPT′ and there exists some constant factor Z > 1 such that,
z` = zk−1,`/Z for every ` 6= i, and zi = zk−1,i · e−δ/Z. In such a case, the left-hand side equals to

(ui − zi) · (δ − δ) +

n∑
`=1

− logZ · (u` − z`) .

14This inequality in fact corresponds to a local strong convexity property of w(·). We have used this technique in
our paper [AO15].

15This is because, our parameter choices ensure that (1+γ)αkn < 1/2β, which further means −(1+γ)αknξ
(i)
k ≤ 1/2.

As a result, we must have z
(i)
k,i ≤ zk−1,i ·e0.5 < 2zk−1,i (see the explicit definition of the mirror step at Proposition D.9).

25

It is clear at this moment that since logZ > 0 and 1Tu ≤ 2OPT′ = 1T z, the above quantity is
always non-negative, finishing the proof. �

Lemma D.10. For every i ∈ [n], we have

(a) fµ(xk)− fµ(y
(i)
k) ≥ 0, and

(b) fµ(xk)− fµ(y
(i)
k) ≥ µβ

12 · 〈−η̃
(i)
k , u∗〉 .

Proof of Lemma D.10 part (a). Since if i 6∈ Bk is not a large index we have y
(i)
k = xk and the claim

is trivial, we focus on i ∈ Bk in the remaining proof. Recall that y
(i)
k = xk + δei for some δ > 0

defined in Algorithm 2, so we have

fµ(xk)− fµ(y
(i)
k) =

∫ δ

τ=0
〈−∇fµ(xk + τei), ei〉dτ =

∫ δ

τ=0

(
〈A:i, p(xk + τei)〉 − 1

)
dτ .

It is clear that 〈A:i, p(xk + τei)〉 decreases as τ increases, and therefore it suffices to prove that
〈A:i, p(xk + δei)〉 ≥ 1.

Suppose that the rows of A:i are sorted (for the simplicity of notation) by the increasing order
of Aj,i. Now, by the definition of the algorithm, there exists some j∗ ∈ [m] satisfying that∑

j<j∗

Aj,i · pj(xk) < 1 + β and
∑
j≤j∗

Aj,i · pj(xk) ≥ 1 + β .

Next, by our choice of δ which satisfies δ = µβ
2Aj∗,i

≤ µβ
2Aj,i

for every j ≤ j∗, we have

pj(xk + δei) = pj(xk) · exp
−
Aj,iδ

µ ≥ pj(xk) · exp−β/2 ≥ pj(xk) · (1− β/2) ,

and as a result,

〈A:i, p(xk + δei) ≥
∑
j≤j∗

Aj,i · pj(xk + δei) ≥ (1− β/2)
∑
j≤j∗

Aj,i · pj(xk) ≥ (1− β/2)(1 + β) ≥ 1 . �

Proof of Lemma D.10 part (b). Owing to part (a), for every coordinate i such that η̃k,i ≥ 0, we

automatically have fµ(xk) − fµ(y
(i)
k) ≥ 0 so the lemma is obvious. Therefore, let us focus only on

coordinates i such that η̃k,i < 0; these are necessarily large indices i ∈ B. Recall from Definition D.6

that η̃k,i = (1 + β)− (ÃT p(xk))i, so we have
m∑
j=1

Ãj,i · pj(xk)− (1 + β) > 0 .

For the simplicity of description, suppose again that the rows of the i-th column is sorted in
the non-decreasing order of Aj,i. That is, A1,i ≤ · · ·Am,i. The definition of j∗ can be simplified as∑

j<j∗

Aj,i · pj(xk) < 1 + β and
∑
j≤j∗

Aj,i · pj(xk) ≥ 1 + β .

Let j[∈ [m] be the row such that∑
j<j[

Ãj,i · pj(xk) < 1 + β and
∑
j≤j[

Ãj,i · pj(xk) ≥ 1 + β .

Note that such a j[must exist because
∑m

j=1 Ãj,i · pj > 1 + β. It is clear that j[≥ j∗, owing to the

definition that Ãji ≤ Aji for all i ∈ [n], j ∈ [m]. Defining δ[= µβ
2A

j[,i
≤ δ, the objective decrease is

lower bounded as

fµ(xk)− fµ(y
(i)
k) =

∫ δ

τ=0
〈−∇fµ(xk + τei), ei〉dτ =

∫ δ

τ=0

(
〈A:i, p(xk + τei)〉 − 1

)
dτ

26

≥
∫ δ[

τ=0

(
〈A:i, p(xk + τei)〉 − 1

)
dτ

=

∫ δ[

τ=0

(∑
j≤j[

Aj,i · pj(xk + τei)− 1
)
dτ

︸ ︷︷ ︸
I

+
∑
j>j[

∫ δ[

τ=0
Aj,i · pj(xk + τei)dτ︸ ︷︷ ︸

I′

where the inequality is because δ[≤ δ and 〈A:i, p(xk + τei)〉 ≥ 1 for all τ ≤ δ (see the proof of part
(a)).

Part I. To lower bound I, we use the monotonicity of pj(·) and obtain that

I =

∫ δ[

τ=0

(∑
j≤j[

Aj,i · pj(xk + τei)− 1
)
dτ ≥ δ[·

(∑
j≤j[

Aj,i · pj(xk + δ[ei)− 1
)
.

However, our choice of δ[= µβ
2A

j[,i
≤ µβ

2Aj,i
for all j ≤ j[ensures that∑

j≤j[
Aj,i · pj(xk + δ[ei) ≥

∑
j≤j[

Aj,i · pj(xk) · exp
−Aj,i·δ

[

µ ≥
∑
j≤j[

Aj,i · pj(xk) · (1− β/2) .

Therefore, we obtain that

I ≥ δ[
(

(1− β/2)
∑
j≤j[

Aj,i · pj(xk)− 1
)
≥ δ[

3

(∑
j≤j[

Aj,i · pj(xk)− 1
)
,

where the inequality is because
(

2
3 −

β
2

)∑
j≤j[Aj,i · pj(xk) ≥

4−3β
6 · (1 + β) ≥ 2

3 whenever β ≤ 1
3 (or

equivalently, whenever ε ≤ 1/9).
Now, suppose that

∑
j≤j[Ãj,i · pj(xk)− (1 + β) = b · Ãj[,i · pj[(xk) for some b ∈ [0, 1]. Note that

we can do so by the very definition of j[. Then, we must have∑
j≤j[

Aj,i · pj(xk)− 1 ≥
∑
j<j[

Ãj,i · pj(xk) +Aj[,i · pj[(xk)− 1

= (1 + β)− (1− b)Ãj[,i · pj[(xk) +Aj[,i · pj[− 1

≥ β + b ·Aj[,i · pj[(xk) .

Therefore, we conclude that

I ≥ δ[

3

(∑
j≤j[

Aj,i · pj(xk)− 1
)
>
δ[

3
· b ·Aj[,i · pj[(xk) =

µβ

6Ãj[,i
· b · Ãj[,i · pj[(xk)

=
µβ

6Ãj[,i
·
(∑
j≤j[

Ãj,i · pj(xk)− (1 + β)
)
≥ µβ

12
· u∗i ·

(∑
j≤j[

Ãj,i · pj(xk)− (1 + β)
)
.

Above, the last inequality is because u∗i · Ãj[,i ≤ 〈Ãj[:, u∗〉 ≤ 2 by our definition of the adjusted Ã.

Part I′. To lower bound I ′, consider every j > j[and the integral∫ δ[

τ=0
Aj,i · pj(xk + τei)dτ .

Note that whenever τ ≤ µβ
2Aj,i

≤ µβ
2A

j[,i
= δ[, we have that pj(xk + τei) ≥ pj(xk) · e−β/2 ≥ 1

2pj(xk).

Therefore, the above integral is at least µβ
2Aj,i

·Aj,i · 1
2pj(xk). This implies a lower bound on I ′:

I ′ ≥
∑
j>j[

µβ

4Aj,i
·Aj,i · pj(xk) ≥

µβ

8
·
∑
j>j[

u∗i · Ãj,i · pj(xk) ,

27

where again in the last inequality we have used u∗i · Ãj[,i ≤ 〈Ãj[:, u∗〉 ≤ 2 by our definition of Ã.

Together. Combining the lower bounds on I and I ′, we obtain

fµ(xk)− fµ(y
(i)
k) ≥ I + I ′ ≥ µβ

12
· u∗i ·

(m∑
j=1

Ãj,i · pj(xk)− (1 + β)
)

=
µβ

12
· 〈−η̃(i)

k , u∗〉 . �

F Efficient Implementation of PacLPSolver
In this section, we illustrate how to implement each iteration of PacLPSolver to run in an expected
O(N/n) time. We maintain the following quantities

zk ∈ Rn≥0, azk ∈ Rm≥0, y′k ∈ Rn, ayk ∈ Rm, Bk,1, Bk,2 ∈ R+

throughout the algorithm, so as to ensure the following invariants are always satisfied

Azk = azk , (F.1)

yk = Bk,1 · zk +Bk,2 · y′k , Ayk = Bk,1 ·Azk +Bk,2 · ayk . (F.2)

It is clear that when k = 0, letting azk = Az0, y′k = y0, ayk = Ay0, Bk,1 = 0, and Bk,2 = 1, we
can ensure that all the invariants are satisfied initially. We denote ‖A:i‖0 the number of nonzeros
elements in vector A:i. In each iteration k = 1, 2, . . . , T :

• The step xk = τzk−1 + (1− τ)yk−1 does not need to be implemented.

• The value ∇if(xk) requires the knowledge of pj(xk) = exp
1
µ

((Axk)j−1)
for each j such that

Aij 6= 0. Accordingly, we need to know the value

(Axk)j = τ(Azk−1)j + (1− τ)(Ayk−1)j =
(
τ + (1− τ)Bk−1,1

)
(Azk−1)j + (1− τ)Bk−1,2ayk−1,j

for each such j. This can be computed in O(1) time for each j, and O(‖A:i‖0) time in total.

• Recall that the step zk ← arg minz∈∆

{
1
2‖z − zk−1‖2A + 〈nαkξ

(i)
k , z〉

}
can be written as zk =

zk−1 + δei for some δ ∈ R that can be computed in O(1) time (see Proposition 3.6). Observe
also that zk = zk−1 + δei yields yk = τzk−1 + (1 − τ)yk−1 + δei

nαkL
due to Line 6 and Line 10

of Algorithm 1. Therefore, we can perform two explicit updates on zk and azk as

zk ← zk−1 + δei , azk ← Azk−1 + δA:i

and two implicit updates on yk as

Bk,1 = τ + (1− τ)Bk−1,1 , Bk,2 = (1− τ)Bk−1,2 ,

y′k ← y′k−1 + δei ·
(
− Bk,1

Bk,2
+ 1

nαkL
1

Bk,2

)
, ayk ← ayk−1 + δA:i ·

(
− Bk,1

Bk,2
+ 1

nαkL
1

Bk,2

)
It is not hard to verify that after these updates, we have

yk = Bk,1 · zk +Bk,2 · y′k = Bk,1 ·
(
zk−1 + δei

)
+Bk,2 ·

(
y′k−1 + δei ·

(
−
Bk,1
Bk,2

+
1

nαkL

1

Bk,2

))
= Bk,1 · zk−1 +Bk,2 ·

(
y′k−1 + δei ·

(1

nαkL

1

Bk,2

))
= Bk,1 · zk−1 +Bk,2 · y′k−1 +

δei
nαkL

=
(
τ + (1− τ)Bk−1,1

)
· zk−1 +

(
(1− τ)Bk−1,2

)
· y′k−1 +

δei
nαkL

= τzk−1 + (1− τ)yk−1 +
δei
nαkL

.

28

One can similarly verify that Ayk = Bk,1 ·Azk+Bk,2 ·ayk equals Ayk = τAzk−1+(1−τ)Ayk−1+
δAei
nαkL

. In sum, these updates are dominated by the updates on Azk and ayk, each costing
an O(‖A:i‖0) running time, and ensure that the invariants in (F.1) and (F.2) are satisfied at
iteration k.

In sum, we only need O(‖A:i‖0) time to perform the updates in PacLPSolver for an iteration
k if the coordinate i is selected. Therefore, each iteration of PacLPSolver can be implemented to
run in an expected O(Ei[‖A:i‖0]) = O(N/n) time.

G Efficient Implementation of CovLPSolver
In this section we illustrate how to implement each iteration of CovLPSolver to run in an expected
O(N/n) time. We maintain the following quantities

z′k ∈ Rn+, szk ∈ R+, sumzk ∈ R+, azk ∈ Rm≥0, y′k ∈ Rn, ayk ∈ Rm, Bk,1, Bk,2 ∈ R+

throughout the algorithm, so as to maintain the following invariants are always satisfies

zk = z′k/szk, sumzk = 1T z′k, Azk = azk/szk, (G.1)

yk = Bk,1 · z′k +Bk,2 · y′k, Ayk = Bk,1 · azk +Bk,2 · ayk . (G.2)

It is clear that when k = 0, letting z′k = z0, szk = 1, sumzk = 1T z0, azk = Az0, y′k = y0, ayk = Ay0,
Bk,1 = 0, and Bk,2 = 1, we can ensure that all the invariants are satisfied initially.

We denote by ‖A:i‖0 the number of nonzero elements in vector A:i. In each iteration k =
1, 2, . . . , T :

• The step xk = τzk−1 + (1− τ)yk−1 does not need to be implemented.

• The value pj(xk) = exp
1
µ

(1−(Axk)j) for each j only requires the knowledge of

(Axk)j = τ(Azk−1)j + (1− τ)(Ayk−1)j =
(
τ + (1− τ)Bk−1,1

)azk−1,j

szk−1
+ (1− τ)Bk−1,2ayk−1,j .

This can be computed in O(1) time.

• The value ∇if(xk) requires the knowledge of pj(xk) for each j ∈ [m] such that Aij 6= 0. Since
we have ‖A:i‖0 such j’s, we can compute ∇if(xk) in O(‖A:i‖0) time.

• Letting δ = (1 + γ)nαkξ
(i)
k,i, recall that the mirror step zk ← arg minz∈∆

{
Vzk−1

(z) + 〈δei, z〉
}

has a very simple form (see Proposition D.9): first multiply the i-th coordinate of zk−1 by
e−δ and then, if the sum of all coordinates have exceeded 2OPT′, scale everything down so
as to sum up to 2OPT′. This can be implemented as follows: setting δ1 = z′k−1,i(e

−δ − 1),

z′k ← z′k−1 + δ1ei , azk ← azk−1 + δ1A:i ,

sumzk ← sumzk−1 + δ1 , szk ← szk ·max
{

1, sumzk
szk−1·2OPT′

}
.

These updates can be implemented to run in O(‖A:i‖0) time, and they together ensure that
the invariants in (G.1) are satisfied at iteration k.

• Recall that the gradient step is of the form yk ← xk + δ2 ·ei for some value δ2 ≥ 0. This value
δ2 can be computed in O(‖A:i‖0) time, since each pj(xk) can be computed in O(1) time, and
we can sort the rows of each column of A by preprocessing.

Since yk = xk + δ2 · ei = τzk−1 + (1− τ)yk−1 + δ2ei, we can implement this update by letting

Bk,1 = τ
szk−1

+ (1− τ)Bk−1,1 , Bk,2 = (1− τ)Bk−1,2

y′k ← y′k−1 + ei ·
(
− Bk,1δ1

Bk,2
+ δ2

Bk,2

)
, ayk ← ayk−1 +A:i ·

(
− Bk,1δ1

Bk,2
+ δ2

Bk,2

)
29

It is not hard to verify that after these updates, we have

yk = Bk,1 · z′k +Bk,2 · y′k = Bk,1 ·
(
z′k−1 + δ1ei

)
+Bk,2 ·

(
y′k−1 + ei ·

(
−
Bk,1δ1

Bk,2
+

δ2

Bk,2

))
= Bk,1 · z′k−1 +Bk,2 ·

(
y′k−1 + δ2ei/Bk,2

)
= Bk,1 · z′k−1 +Bk,2 · y′k−1 + δ2ei

=
(τ

szk−1
+ (1− τ)Bk−1,1

)
· z′k−1 +

(
(1− τ)Bk−1,2

)
· y′k−1 + δ2ei

= τzk−1 + (1− τ)yk−1 + δ2ei .

One can similarly verify that Ayk = Bk,1 ·azk+Bk,2 ·ayk equals Ayk = τAzk−1+(1−τ)Ayk−1+
δ2A:i. These updates can be implemented to run in O(‖A:i‖0) time, and they together ensure
that the invariants in (G.2) are satisfied at iteration k.

In sum, we only need O(‖A:i‖0) time to perform the updates in CovLPSolver for an iteration
k if the coordinate i is selected. Therefore, each iteration of CovLPSolver can be implemented to
run in an expected O(Ei[‖A:i‖0]) = O(N/n) time.

References

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The Multiplicative Weights Update
Method: a Meta-Algorithm and Applications. Theory of Computing, 8:121–164, 2012.

[AK08] Baruch Awerbuch and Rohit Khandekar. Stateless distributed gradient descent for posi-
tive linear programs. Proceedings of the fourtieth annual ACM symposium on Theory of
computing - STOC 08, page 691, 2008.

[AKR12] Baruch Awerbuch, Rohit Khandekar, and Satish Rao. Distributed algorithms for multi-
commodity flow problems via approximate steepest descent framework. ACM Transac-
tions on Algorithms, 9(1):1–14, December 2012.

[ALO14] Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. Linear-sized spectral sparsifi-
cation in almost quadratic time and regret minimization beyond matrix multiplicative
weight updates. Technical report, November 2014. Manuscript.

[AO14] Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling of gradient and mirror de-
scent: A novel simple interpretation of Nesterov’s accelerated method. ArXiv e-prints,
abs/1407.1537, July 2014.

[AO15] Zeyuan Allen-Zhu and Lorenzo Orecchia. Using optimization to break the epsilon barrier:
A faster and simpler width-independent algorithm for solving positive linear programs
in parallel. In Proceedings of the 26th ACM-SIAM Symposium on Discrete Algorithms,
SODA ’15, 2015.

[BBR97] Yair Bartal, John W. Byers, and Danny Raz. Global optimization using local information
with applications to flow control. In Proceedings 38th Annual Symposium on Foundations
of Computer Science, pages 303–312. IEEE Comput. Soc, 1997.

[BBR04] Yair Bartal, John W. Byers, and Danny Raz. Fast, Distributed Approximation Al-
gorithms for Positive Linear Programming with Applications to Flow Control. SIAM
Journal on Computing, 33(6):1261–1279, January 2004.

30

[BI04] D. Bienstock and G. Iyengar. Faster approximation algorithms for packing and covering
problems. Technical report, 2004. Preliminary version published in STOC ’04.

[BN00] John Byers and Gabriel Nasser. Utility-based decision-making in wireless sensor networks.
In Mobile and Ad Hoc Networking and Computing, 2000. MobiHOC. 2000 First Annual
Workshop on, pages 143–144. IEEE, 2000.

[BN13] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization. So-
ciety for Industrial and Applied Mathematics, January 2013.

[CE05] Fabián A. Chudak and Vânia Eleutério. Improved Approximation Schemes for Linear
Programming Relaxations of Combinatorial Optimization Problems. In Proceedings of
the 11th International IPCO Conference on Integer Programming and Combinatorial
Optimization, pages 81–96, 2005.

[CL06] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge
University Press, Cambridge, 2006.

[DP14] Ran Duan and Seth Pettie. Linear-Time Approximation for Maximum Weight Matching.
Journal of the ACM, 61(1):1–23, January 2014.

[Fle00] Lisa K. Fleischer. Approximating Fractional Multicommodity Flow Independent of the
Number of Commodities. SIAM Journal on Discrete Mathematics, 13(4):505–520, Jan-
uary 2000.

[FR13] Olivier Fercoq and Peter Richtárik. Accelerated, Parallel and Proximal Coordinate De-
scent. ArXiv e-prints, abs/1312.5799:25, December 2013.

[GK07] Naveen Garg and Jochen Könemann. Faster and Simpler Algorithms for Multicommodity
Flow and Other Fractional Packing Problems. SIAM Journal on Computing, 37(2):630–
652, January 2007.

[KY99] Philip Klein and Neal Young. On the number of iterations for dantzig-wolfe optimiza-
tion and packing-covering approximation algorithms. In Gérard Cornuéjols, Rainer E.
Burkard, and Gerhard J. Woeginger, editors, Integer Programming and Combinato-
rial Optimization, volume 1610 of Lecture Notes in Computer Science, pages 320–327.
Springer Berlin Heidelberg, 1999.

[KY13] Christos Koufogiannakis and Neal E. Young. A Nearly Linear-Time PTAS for Explicit
Fractional Packing and Covering Linear Programs. Algorithmica, pages 494–506, March
2013. Previously appeared in FOCS ’07.

[LN93] Michael Luby and Noam Nisan. A parallel approximation algorithm for positive linear
programming. In Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing - STOC ’93, pages 448–457, New York, New York, USA, 1993. ACM Press.

[Mad10] Aleksander Madry. Faster approximation schemes for fractional multicommodity flow
problems via dynamic graph algorithms. In Proceedings of the 42nd ACM symposium
on Theory of computing - STOC ’10, page 121, New York, New York, USA, 2010. ACM
Press.

31

[Nem04] Arkadi Nemirovski. Prox-Method with Rate of Convergence O(1/t) for Variational In-
equalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave
Saddle Point Problems. SIAM Journal on Optimization, 15(1):229–251, January 2004.

[Nes83] Yurii Nesterov. A method of solving a convex programming problem with convergence
rate O(1/k2). In Doklady AN SSSR (translated as Soviet Mathematics Doklady), volume
269, pages 543–547, 1983.

[Nes04] Yurii Nesterov. Introductory Lectures on Convex Programming Volume: A Basic course,
volume I. Kluwer Academic Publishers, 2004.

[Nes05] Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical Program-
ming, 103(1):127–152, December 2005.

[Nes08] Yu Nesterov. Rounding of convex sets and efficient gradient methods for linear program-
ming problems. Optimisation Methods and Software, 23(1):109–128, 2008.

[PST95] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast Approximation Algorithms
for Fractional Packing and Covering Problems. Mathematics of Operations Research,
20(2):257–301, May 1995.

[ST11] Shai Shalev-Shwartz and Ambuj Tewari. Stochastic methods for l1-regularized loss min-
imization. Journal of Machine Learning Research, 12:1865–1892, 2011.

[Tre98] Luca Trevisan. Parallel Approximation Algorithms by Positive Linear Programming.
Algorithmica, 21(1):72–88, May 1998.

[You01] Neal E. Young. Sequential and parallel algorithms for mixed packing and covering. In
42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS’01), pages
538–546. IEEE Comput. Soc, 2001.

[You14] Neal E. Young. Nearly linear-time approximation schemes for mixed packing/covering
and facility-location linear programs. ArXiv e-prints, abs/1407.3015, July 2014.

[ZN01] Edo Zurel and Noam Nisan. An efficient approximate allocation algorithm for combi-
natorial auctions. In Proceedings of the 3rd ACM conference on Electronic Commerce,
pages 125–136. ACM, 2001.

32

	1 Introduction
	1.1 Our Results
	1.2 Roadmap

	2 Relaxation of the Packing Linear Program
	3 Packing LP Solver
	3.1 Step 1: Mirror Descent Guarantee
	3.2 Step 2: Gradient Descent Guarantee
	3.3 Step 3: Putting All Together

	4 Sketching the Main Ideas for Our Covering LP Solver
	A Missing Proofs for Section 2
	B Missing Proofs for Section 3
	C Relaxation of the Covering Linear Program
	D Covering LP Solver
	D.1 Step 1: Distance Adjustment
	D.2 Step 2: Gradient Truncation
	D.3 Step 3: Mirror Descent Guarantee
	D.4 Step 4: Gradient Descent Guarantee
	D.5 Step 5: Putting All Together

	E Missing Proofs for Section D
	F Efficient Implementation of [alg:cor-packing]PacLPSolver
	G Efficient Implementation of [alg:cor-covering]CovLPSolver

