
Using Live Distributed Objects for Office Automation

Jong Hoon Ahnn, Ken Birman, Krzysztof Ostrowski, and Robbert Van Renesse

Department of Computer Science, Cornell University, Ithaca, NY 14850, USA
{ja275, ken, krzys, rvr}@cs.cornell.edu

Abstract. Web services and platforms such as .NET make it easy to integrate
interactive end-user applications with backend services. However, it remains
hard to build collaborative applications in which information is shared within
teams. This paper introduces a new drag-and-drop technology, in which stan-
dard office documents (spreadsheets, databases, etc.) are interconnected with
event-driven middleware (“live distributed objects”), to create distributed appli-
cations in which changes to underlying data propagate quickly to downstream
applications. Information is replicated in a consistent manner, making it easy
for team members to share updates and to coordinate their actions. We present
our middleware platform, and show that it offers good performance and scala-
bility, with small resource footprint. Moreover, because the approach is highly
automated, and the underlying middleware is highly configurable, we’re in a
position to automatically address security and reliability needs that might oth-
erwise be onerous. In addition to reviewing our existing system, we list open is-
sues, which include integration with external data sources, and updating stored,
but inactive objects.

Keywords: Live distributed objects, Office automation, Office information sys-
tems, SOA, Distributed systems, Middleware

1 Introduction

Since the 1970s, enterprises have experienced a paperless office automation (OA)
revolution, a trend now accelerating as web services gain wide acceptance [1]. Yet it
remains surprisingly hard to build office applications in which end-users track dynam-
ically changing data, such as databases that reflect inventory or task status or spread-
sheets that summarize financials, and even harder to build collaborative applications
in which team members cooperate to solve office tasks. The premise of our work is
that empowering users to directly create distributed office applications, much as they
create office or web documents today, would open the door to productivity advances.
Moreover, encouraging end-users to express intent in a high-level form makes it poss-
ible to automatically verify that sensitive data is transmitted over encrypted commu-
nication channels, that critical services run on highly available platforms, etc.

In this work, we report on a distributed office information system (OIS) developed
to support office employees and organizations. With our OIS, office workers can
design data pipelines, in which workflow events that update databases or spreadsheets
can be shared throughout an enterprise in a simple and seamless way. Users interact

2 J. Ahnn, K. Birman, K. Ostrowski, R. Van Renesse

with the OIS via a drag and drop interface, and although they can also write code, the
scheme is powerful enough to allow even non-programmers to build very sophisti-
cated collaborative applications. We’re not the first to pursue this direction; prior
approaches include goal-based agent systems and intelligent agent-based workflow
systems [2]. However, we’re not aware of any prior work offering the same benefits.
The contributions of this paper are as follows.
• We describe a new “live distributed objects” programming model and show how

it can be applied in office automation settings. Although we’ve published on the
basic concept and platform [6], our earlier paper focused on a virtual reality ap-
plication. This paper is the first to explore integration of this technology with
databases and office automation, a scenario posing new questions.

• We present the OIS integration tools in our platform, and discuss the challenges
we faced in implementing them. Our prototype system is powerful, but is just a
prototype. Some questions remain open, and we also review these.

• Our system incorporates type-checking and reflection mechanisms. Our proto-
type uses these mostly to prevent users from making mistakes. Down the road,
however, reflection-driven coercions could automatically secure sensitive data
and ensure that critical components run in a highly-available manner.

• We evaluate performance in free-standing configurations, and look at GUI costs
using a methodology recommended by SAP [13].

1.1 Related Work

Since the 1970’s, researchers both in academia and industry have been interested in
using middleware technologies to support office information systems (OIS) [1]. Typi-
cally, such work starts with some formal description of office objects in a modeling
language [40]. OFFICETALK-ZERO [33], OMEGA [34], OFFIS [35], and OBE [36]
are examples of systems that start with information stored in a database and assemble
it into various forms suitable for use in office settings. Office tasks are commonly
described using process-based models, an approach explored in systems such as OAM
[39] and Ticom-II [38]. Structural Model [37] describes office tasks using agents.
These approaches can also be combined, as was done in OFS [31], IML [32], and
OPAS [22], Semantic Models [23], OFFICETALK-D [24], and SOS [25].

In contrast, our system integrates office applications into a componentized event
notification framework at the end-user level. For example, if a spreadsheet cell is
linked to a live object notification channel, changes in that cell will be propagated to
other spreadsheets or databases associated with the live object. The effect is to create
a mash-up in which office workers (non-programmers) directly express the manner in
which they plan to share information. This paper focuses on issues specific to OIS
applications; other aspects of the systems are discussed in [5, 6, 12, 21].

Mash-ups are common in web applications. Such applications commonly use the
web services architecture, which our work also supports. However, most existing web
services technologies are centralized, with the services running on data centers (for
example in Web Office [43], Google Docs [40], and Microsoft Office Groove [41]).
In contrast, our platform can support applications that are peer-to-peer in flavor, and
where communication occurrs directly between collaborating users. Jini [26] and

Using Live Distributed Objects for Office Automation 3

JXTA [27] are examples of existing technologies for building peer-to-peer applica-
tions. In contrast to our work, both target programmers. Our hope is to largely
eliminate programming, allowing complex collaborative systems to be constructed in
a drag-and-drop style, with code written only in unusual situations. When coding is
needed, any of the 40 or so languages supported by .NET can be used; Jini and JXTA
are both oriented towards Java.

Our work has obvious connections to event bus architectures. For example, IBM’s
Enterprise Service Bus (ESB) [28] and TIBCO’s information bus [9] are positioned as
enterprise integration solutions. While either could support a vision like the one we
express here, neither operates at the end-user level, and neither explores scenarios in
which applications are constructed as graphs with multiple such applications con-
nected by event notification channels – a collaboration model more evocative of data
replication than of publish-subscribe.

Looking to the future, other kinds of prior work will become relevant. For exam-
ple, our live objects platform currently lacks components that can support persistence,
or manage resource allocation. Yet office documents are commonly stored, and the
average application might be in an inactive state, on a disk, much of the time, perhaps
with replicas at multiple locations. Dealing with persistence thus stands as a task for
future work; when we tackle it, we’ll need to understand how transactions (both in the
ACID sense, and in the sense of business transactions) can fit into our overall vision,
and to track and reconcile distinct versions. Our hope is that by building on the live
objects platform, which is itself componentized and easily extensible, it will be possi-
ble to incrementally extend the basic OIS over time to address such issues, ideally by
encapsulating existing technologies as new kinds of live distributed objects.

2 System Architecture

Figure 1a presents an architectural overview of our system. In this section, we start by
summarizing the assumptions underlying the platform, and then review the architec-
ture. The subsections that follow provide details on some of the key functionality,
including the live objects platform itself, reliable message delivery and event notifica-
tion it uses, and the forms of office applications currently supported by our system.

2.1 Requirements for Office Information Systems

Automated OIS systems used in distributed environments must satisfy several proper-
ties [7, 8, 10, 11]. Some of these needs are common to many kinds of systems. For
example, OIS systems are highly concurrent and new to be as autonomous as possi-
ble, automatically resolving contention when multiple users access documents con-
currently, providing interoperability between different office applications and servic-
es, etc. However, collaboration applications create unique issues. In such settings,
teams of users will often share documents that need some way to reflect changing
events within the enterprise. Our approach is to allow office workers to create new
kinds of mash-up applications by dragging and dropping dynamically changing data
from databases into other sorts of office documents (we’ll focus on spreadsheets but

4 J. Ahnn, K. Birman, K. Ostrowski, R. Van Renesse

can support all sorts of documents), and by sharing information changed within those
office documents among the team members. We adopt a fine-grained approach: we
replicate and share information at the level of individual office objects, such as indi-
vidual spreadsheet cells (or rows, or columns), figures in shared documents (which
could capture data from sensors or video sources), etc. These “live documents” can
then be shared just like any normal document, through file systems or email.

A mash-up is a graph of components, in which simpler applications, data sources,
services, and reports are interconnected by event-notification pathways. In such an
application, the failure of one component might ripple throughout the system, disrupt-
ing all sorts of downstream activities. Moreover, if a component working with sensi-
tive data fails, applications that depend on its output might be tainted. Ideally, one
would want to consider fault-tolerance and security issues from the outset. Yet in OIS
settings, applications often evolve over time as new needs arise, and these evolutio-
nary events can create new security or availability needs not present in early versions
of a system. A strength of our approach is that applications are represented in a high
level form. This makes it possible to automate many of these tasks, in a manner
driven by the component-level type system underlying our live objects platform.

For example, suppose that a database application generates events that need to be
shared in a highly available manner, and that contain private data. If constraints are
made explicit, our platform can detect these requirements by inspection of the com-
ponents. By expressing goals at a high level, and then using a type system to detect
requirements, we can potentially move away from a dependence on programmer skills
and towards automated enforcement of critical requirements. This is enabled by a
compositional type system with reflection properties: when two components are con-
nected, there are opportunities to inspect their strongly-typed interfaces, to object if
they are incompatible, and otherwise to inject additional “connective” components if
needed (in effect, to perform automated type coercion).

Documents
Integration Layer

Database
Integration
Layer

Spreadsheet
Integration
Layer

multicast

Database
change
notification

Documents
change
notification Spreadsheet

change
notification

Live object includes
distributed protocol
and Business logic

Database

Docs

Data objects
associated with
live channels

Spreadsheet

A1 A2

A3

B1 B2

Live ObjectB3

C1 C2

C3

Live Object
Replica _Presentation

Layer

_
Live
Distributed
Objects
Layer

Communication Protocols

Business Logic

_Document Integration Layer

_Database Integration Layer

_Resource
Layer

 (a) (b)

Fig. 1. (a) Live object replicas embedded in the documents and the database wrapper;
(b) Middleware layers for the OIS.

Using Live Distributed Objects for Office Automation 5

2.2 Overview of the Integration Framework

Our overall architecture is depicted on Figure 1b. The Resource Layer consists of
database systems such as Oracle and MSSQL, residing on servers within the enter-
prise network. To interface database respources to the live objects layer we use the
Database Integration Layer (DBIL), a wrapper that represents database views and
spreadsheet cells as live distributed objects. The underlying data is represented as
serialized OLE objects and hence is compatible with a wide range of office applica-
tions such as word documents, powerpoint, spreadsheets, etc. In these sorts of “pres-
entation” documents, the Document Integration Layer (DIL) allows us to link low-
level office objects such as text boxes, rectangles, pictures, or video clips to live ob-
ject channels. Finally, the Presentation Layer is a set of wrappers that lets us embed
these primitive live office objects into documents, web sites, etc.

2.3 Live Distributed Objects

Although brevity prevents a detailed discussion of live objects, we’ll give a mile-high
summary of the model [6]. Live objects are componentized representations of distri-
buted protocols, such as reliable multicast channels. When activate, these protocols
are run by live object replicas, which the live objects middleware platform dynami-
cally constructs using recipes expressed in XML. The recipes contain information
about the type of a protocol, and are designed to support drag and drop composition,
creating graphs: the mashups mentioned earlier. Each object replica consists of some
event handling code to run (we can download it from a remote repository, JIT it and
link it dynamically). A replica can contain local state, and accepts parameters. Many
replicates coordinate their states with other replicas of the same object, but a live
object replica can also interface to local resources or applications. We leverage this
option to connect the world of live objects to local instances of databases or spread-
sheets.

 The above example shows the XML recipe for a simple live object (it would be
stored in a file with a “.liveobject” extension). This particular object is associated
with a live spreadsheet; it references another object (the underlying communication
channel that will be used) and specifies that spreadsheet cells linked to the object be
colored red. The reference provides the live objects platform with enough information
to download the needed event handling code (we’ll see examples in a moment), check
event channel types for compatibility, link them together, and thus activate the mash-

01 <Object xsi:type="ReferenceObject"
02 id="{F73B571836E24614A968DE2F15092088}">
03 <Parameter id="color">
04 <Value xsi:type="xsd:string">Red</Value></Parameter>
05 <Parameter id="channel"><Value xsi:type= "Reference‐
06 Object" id="{10000000000000000000000000000020}">
07 // details omitted for brevity
08 </Value></Parameter>
09 </Object>

6 J. Ahnn, K. Birman, K. Ostrowski, R. Van Renesse

up. An application thus consists of a graph of components – with the whole graph
replicated at each machine where the application is running. When active, this live
distributed object colors the spreadsheet cell to which it is attached red, and replicates
the contents relative to other spreadsheets linked to the same cell. We should stress
that the end-user never sees this code: it was generated automatically.

2.4 Reliable Message Delivery and Scalable Event Notification

The OA platform requires a reliable, totally-ordered event notification infrastructure.
We discuss the available communication options in Section 5. The particular choice
of the transport is not important: live objects decouple the transport from the OA layer
via a strongly-typed interface, and we can easily replace the underlying transport
infrastructure to use different protocols without any changes to our OA infrastructure.

The following example illustrates the interface used to bind to a event channel.

When a mashup is activated, the communication endpoints associated with the un-
derlying objects are linked together and the corresponding code is downloaded, JITed,
and launched [6]. The Receive function (line 01) handles incoming events of type
IMyType (line 01-02). The Data_Change_Event (line 04) function sends a message
when a change occurs in the office document. Data is stored in the user-defined type,
MyType before sending a message (line 05). The checkpointed channel type is defined
(elsewhere) to have the properties mentioned above: ordered, reliable etc. Any live
object implementing the specified behavior can be connected to this endpoint.

Not shown is the code that actually initializes an object upon startup. This is done
by requesting that another replica create a checkpoint; the joining process loads state
from the checkpoint information to “catch up”. If this is the first replica of the object
to be launched, it loads its initial state from the on-disk copy of the document, in
which it was embedded. Down the road, we plan to extend persistence support to deal
with other aspects of the live object lifecycle.

2.5 Office Data Types

We’ve emphasized that live objects are strongly-typed. This was visible in our chan-
nel example, but type checking is actually used throughout the live objects platform
[6], and is used to describe data formats as well as the behavioral properties of the
protocols. For instance, any visual element dragged into a chat window has a distri-
buted type that specifies how one can interact with the element, or what services it
may provide. The user can define custom event types and live object types as .NET
interfaces annotated with descriptive attributes (line 01). The live objects runtime

01 void ICheckpointedChannelClient<IMyType, IMyType>.Receive
02 (IMyType message) {
03 this._data = message._data; }
04 void Data_Change_Event(Range target) {
05 _endpoint.Interface.Send(new MType(target._data)); }

Using Live Distributed Objects for Office Automation 7

dynamically loads new type and component libraries, scans them for annotated inter-
faces and classes. The .NET code and annotations bootstrap this distributed type sys-
tem [6].

In the example above, we define a new event type IMyType that will carry string
values (line 03). The type is annotated with identifier (line 01) that allows it to be
referenced from within the XML descriptions of the sort we saw in Section 2.4.

3 Information Flow

Our use of live objects is currently focused on two cases. In one, an information
flow originates from a monitored database view. In the second, a live office object
(such as a spreadsheet cell or an image) triggers updates. In both cases, other office
documents that import the live office object will be updated immediately when a
change occurs. Notice that the granularity of replication is rather fine-grained: we’re
not replicating entire documents or spreadsheets, just individual cells or other office
objects such as embedded images or video streams.

For the first case, we leverage a database feature called a materialized view to let
the application designer select information that will be shared in this manner. Such a
view is associated with a query, and automatically recomputed each time the
underlying database is updated. With our platform, whenever the materialized view
changes, a new event is delivered into the live object replica running on the database
server. The update can then be imported into documents such as spreadsheets, other
databases, or other kinds of applications (Figure 2). The second case is similar: we
monitor the contents of a designated live office object, such as a cell of a spreadsheet,
watching for changes. We then serialize the contents of the object and generate an
event into the associated multicast stream.

Fig. 2. Live objects can be used to integrate multiple databases, or to connect databases with
other kind of office objects such as spreadsheets or documents.

We’ve found it convenient to associate colors with live objects; in the case of a
spreadsheet, a live cell acquires the color of the underlying object. This helps the
developer, typically a non-programmer, track the different communication options.

01 [ValueClass("1’1”,”IMyType”)]
02 interface IMyType : ISerializable
03 { string _data { get; set; } }

8 J. Ahnn, K. Birman, K. Ostrowski, R. Van Renesse

Our discussion implicitly reflects rather simple pipelines, where data from databas-
es is pulled into documents, without additional processing. However, more elaborate
pipelines can easily arise in OA settings, where a single event may trigger multiple,
perhaps independent, chains of reaction. Our evaluation, in section 5.1.3, focuses on
the three scenarios shown below. To facilitate measurement of latencies, each of the
cases we consider includes a looped-back link from terminal nodes to the update
source, although in practice that last link wouldn’t be used.

1

20

2

3

4 5

6

7

8

9

10

network
event

event

1

2 3

16 17 18 19 20

1

161718 19 2014 15

2 3 4

 (a) (b) (c)
Fig. 3. Various information topologies for office systems such as (a) ring structure, (b) binary
tree structure, and (c) ternary tree structure. The “loop back” links are used in our timing
experiments but wouldn’t be present in “real” configurations (see section 5.1.3).

4 Implementation

In this section, we discuss the architecture of individual layers of our system, focusing
on the Document Integration Layer (DIL) and Database Integration Layer (DBIL).

The DIL leverages Microsoft’s Object Linking and Embedding (OLE) technology.
OLE enables elements of a compound document to communicate with one another via
COM interfaces, and also standardized data representations within the Microsoft
office product suite [20]. Our DIL leverages these interfaces but uses only a subset of
OLE, concerned with persisting object metadata within a file on the disk. OLE objects
thus serve simply as wrappers that provide persistence to the embedded live objects.
Application events are relayed by OLE to the live office objects platform. Application
events are converted into live object messages, and vice versa. With this approach,
spreadsheets, Microsoft Word documents, and other general-purpose office applica-
tions and legacy systems can be linked with the live objects framework to replicate
events that update the office object, connect it to digital cameras or sensors, etc.

Our second middleware integration layer, DBIL, is used only with databases.
Again, rather than replicating the underlying database (not a useful functionality,
since most database products offer vendor-supported replication solutions), our focus
is on relaying database events into the live objects framework, which multicasts them
to subscribers, such as spreadsheets or other office documents. As summarized earli-
er, the basic idea is to register a query, which is reevaluated each time the underlying
database is updated, computing a new dynamically materialized view, and passing an
event to a live object. The technology is very easy to use, and requires no program-
ming skills beyond the ability to compose a query. More details are given below.

Using Live Distributed Objects for Office Automation 9

Both technologies are accessed through a GUI that we describe in Section 4.1.
Startup costs and serialization are covered in Section 4.2. Event notification is dis-
cussed in Section 4.3. Object-based coordination for DIL and query-based coordina-
tion for DBIL are covered in Section 4.4.

4.1 Graphical User Interfaces (GUIs)

At design time, developers (who will often lack programming skills) work primarily
through the live objects GUI interface.

 (a) (b)

Fig. 4. (a) GUIs for DIL. (b) GUIs for DBIL.

The DIL is accessed through the two dialog windows shown in Figure 4a. The Im-
port Channel Dialog (upper) allows the user to import a live object file describing a
communication channel. The Connect a Cell To a Channel Dialog (lower) can then
be used to associate the channel with a specific cell. After selecting the cell, users are
presented with a drop-down menu, to select one of available live objects compatible
with the office automation logic. When the Connect button is pressed, the connection
is established, and the values of the cell are synchronized with other connected cells
in live documents across the network . The DBIL GUI allows the user to bind a dy-
namically materialized view to a live object, as shown in Figure 4b. The developer
registers a triggered callback, then links the monitored relation to a live object chan-
nel. Each time an update occurs, the query is recomputed and if output has changed,
a new event will be generated containing the monitored relation. A pre-recorded
demo of the whole process can be seen on our web site [3].

4.2 Startup Costs and Serialization

Startup. Opening a live document entails initializing the communication subsystem
and fetching the current version of any replicated data. There are two scenarios: (1)
The document is opened, and there are no other replicas already active. In this case,
office objects embedded within the document load stored values from the saved doc-

10 J. Ahnn, K. Birman, K. Ostrowski, R. Van Renesse

ument file. (2) Other replicas are active. Here, after loading the document, we fetch
the current state of each office object from one of the existing document replicas on
other machines. The live objects platform automatically determines which scenario
applies. The live objects platform is itself bootstrapped by using macros in Visual
Basic script embedded in a document. These macros intercept events such as opening,
closing, and saving the document, changes to spreadsheet cells etc. The macro code
segment is stored within a VB component called MyModule, which declares the cor-
responding event handlers. Keep in mind that different events may occur in document
replicas on different nodes within the network. The same module is used, but different
methods are invoked by the DIL.

For the first of our two initialization cases, when live objects request a document
checkpoint from DIL, the latter issues a call to the Workbook_BeforeSave method
(line 05). The code serializes the contents of all live spreadsheet cells, creating strings
that the DIL compiles into a checkpoint, and that are delivered by live objects to the
joining application (line 06). The ability to replicate data isn’t limited to spreadsheet
cells. Any OLE-conformant objects embedded in compound OLE documents can be
replicated using this scheme.

On the node with the newly opened document replica, the serialized strings are re-
ceived in the Workbook_Open function. This loads the checkpoint in line 02, and
then deserializes the contents, thus initializing any OLE objects with the state ob-
tained from the document replica that generated the checkpoint.

As mentioned earlier, DBIL is used only to capture events from a database, not for
database replication. DBIL uses a similar serialization/deserialization interface. The
mechanism is even simpler, and the code is similar; we omit the details for brevity.

4.3 Data Change Event Notification

Next, we turn to the question of detecting data change events in office objects such as
spreadsheets. In the DIL each live object embedded within a document is wrapped in
an OLE object. The DIL intercepts events that report changes to any of the underlying
objects (e.g. when the user types something into a cell), passes them to the embedded
live objects to propagate, and then applies the updates to all document replicas. For
this purpose, we use a .NET framework feature that allows us to define handlers for
Component Object Model (COM) events. We filter out OLE events, multicast them,
and then deliver them in a distributed manner. For simplicity, in the following discus-
sion we ignore details such as detecting which cell has changed, and we’ll just assume
that an entire worksheet has been made live.

01 Private Sub Workbook_Open()
02 MyModule.Load Workbooks(ActiveWorkbook.Name)
03 MyModule.Deserialize
04 End Sub
05 Sub Workbook_BeforeSave()
06 MyModule.Serialize
07 End Sub

Using Live Distributed Objects for Office Automation 11

During initialization, the procedure SetCurrentSheet is called by the DIL, with a
reference to the current worksheet of the spreadsheet (line 01, below). We bind a
handler to the Data_Change_Event function (line 04). Later, the worksheet changes,
an update event is raised. We intercept it, as shown below. Now, each time data is
updated in cells managed by DIL, our delegate function (EventDel_CellsChange) is
invoked. The function serializes the worksheet contents, and multicasts the modified
values. Upon delivery on spreadsheet replicas, the received values are deserialized by
OLE, and applied, in parallel, to the all copies.

01 void SetCurrentSheet(Worksheet sheet) {
02 this._sheet = sheet;
03 EventDel_CellsChange =new DocEvents_ChangeEventHandler(
04 Data_Change_Event);
05 this._sheet.Change += EventDel_CellsChange; }

The database solution is similar. To capture database changes, DBIL uses a feature
of ADO.NET 2.0, whereby a database change notification event in the data access
layer allows a .NET aplication to be notified whenever the server data it consumes is
changed. This feature is supported by most products (our prototype was tested with
Oracle Database 10g Release 2 [16] and MS SQL Server 2005 [15]). When the DBIL
is launched, it registers itself as a database client. In the code fragment below, used
with Oracle, this occurs in line 05. To detect changes in the monitored data, we asso-
ciate a function, Change_Event (line 07), with each relation we wish to monitor; this
is done using the OracleDependency interface (line 06) provided by ODP.NET.

Our code fragment monitors a relation called mytable. In general, we would regis-
ter the user’s query, and monitor the result – the dynamically materialized view men-
tioned earlier. When a database table is updated, our event handler is invoked. We can
now capture any updates and publish them to components embedded in live docu-
ments. OLE serialization is a broadly supported office standard, hence databases and
spreadsheets can be connected without additional wrapper code.

5 Performance Evaluation

Our performance evaluation focuses on two metrics: response time and throughput. In
this section, we’ll measure the overhead associated with each of the three layers in our
architecture: presentation, integration, and resource/DB. In particular, we’ll measure
CPU utilization and peak memory usage. We’ll also look at the network load

01 void DB_Connect() {
02 String query = “select * from mytable”;
03 OracleConnection con =new OracleConnection(constr);
04 OracleCommand cmd = new OracleCommand(query, con);
05 con.Open();
06 OracleDependency dep = new OracleDependency(cmd);
07 dep.OnChange+=newOnChangeEventHandler(Change_Event); }

12 J. Ahnn, K. Birman, K. Ostrowski, R. Van Renesse

The live objects platform currently provides two types of communication channels:
one uses a simple TCP-based application level multicast (ALM) substrate, and the
other using Quicksilver Scalable Multicast [5], and based on IP multicast (with more
options expected later in 2008). For the purposes of this evaluation, we use TCP-
based channels to mimic SOA eventing architectures, in which senders maintain TCP
connections to receivers (WS-eventing standards assume this sort of architecture,
hence even though our simple ALM isn’t fully WS-* compliant, the performance seen
here is similar to what we would expect when working with a commercial WS-*
product that runs over TCP). Communication overhead in this model increases linear-
ly as a function of the number of document replicas. Were we to use QSM, which is
highly scalable, overheads would rise much more slowly. In fact, we doubt that
extreme scalability will be in an issue in OA settings. In most anticipated use scena-
rios, individual office documents would be accessed by just a few users at a time. A
comprehensive discussion of throughput and scalability of the multicast substrates
provided by the live objects platform can be found in [5].

The evaluation presented below focuses on resource footprint and latency, the two
metrics most relevant to performance in our layered OIS architecture. The experi-
ments reported here use a cluster of 22 nodes, with Pentium III 1.3 GHz CPUs, 512
MB memory, on a 100 Mbps LAN, running Microsoft Windows Server 2003 Enter-
prise Edition SP2. One machine is dedicated to running the Oracle database server.
Another machine serves as a controller for the TCP-based multicast substrate. The
remaining 20 nodes act as clients accessing our replicated office documents. We show
overheads involved in opening live documents, data change event notification, and
evaluate various topologies in terms of efficiency, concurrency, and scalability in
Section 5.1. We summarize the results in Section 5.2.

5.1 Performance Measurements

5.1.1 Startup costs

We begin by evaluating the costs associated with opening office documents that use
live objects. The first experiment evaluates initialization time and resource consump-
tion as the number of live objects grows in a spreadsheet and an oracle wrapper.

DIL. From the discussion in Section 4, we can see that each live object has two kinds
of associated costs: those due to our interception of events, initialization from a
checkpoint, etc, and those due to the underlying OLE wrapper used locally within
each replica. Our experiments seek to tease out the respective costs.

For each of the tests reported below, we selected one replica, launched the spread-
sheet application, and then recorded processing time and resource consumption while
varying the number of live objects embedded in the spreadsheet. We then broke down
costs by category: that associated with live objects per-se, and that due to the underly-
ing OLE technology. The results in Figure 6a-c show that OLE is the more expensive
of the two: the costs of activating OLE objects are high and rise with the number of
embedded objects. The maximum number of OLE objects embedded in the spread-
sheet is 200; beyond this, we exhaust memory resources. In contrast, although the

Using Live Distributed Objects for Office Automation 13

very first live objects we activate incur a sharp cost (the blue curve in Figure 6a),
subsequent objects add very little additional overhead. In practice, the limiting factor
is the cost of using OLE: OLE hits its limits well before we get to 200 objects: in
Figure 6c we see that with more than about 60 OLE objects CPU utilization plunges
because the application begins to page heavily. Overall, roughly 0.43 live objects can
be initialized per second.

0

5

10

15

1 20 40 60 80 100120140160180200

Live Object Culumlative
OLE Culumlative
Embedding Cumulative

Processing Tim
e (secs)

of OLE Objects embedded in Spreadsheet

0

5

10

15

20

1 20 40 60 80 100120140160180200

OLE Cumulative
Spreadsheet+OLE Cumulative
OLE
Spreadsheet

of OLE Objects embedded in Spreadsheet

M
em

ory U
sage (%

)

 (a) (b)

0

20

40

60

80

100

1 20 40 60 80 100120140160180200

OLE Cumulative
Spreadsheet+OLE
Spreadsheet

C
PU

 U
tilization (%

)

of OLE Objects embedded in Spreadsheet

0

0.5

1

1.5

2

2.5

3

3.5

1 10 20 30 40 50 60 70 80 90 100

Live Objects Embedding
Cumulative
Live Object Embedding

Processing Tim
e (secs)

of Objects embedded in Oracle Wrapper
 (c) (d)

0

2

4

6

0

20

40

60

80

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

CPU Util.
Memory Usage
10 per. Mov. Avg. (CPU Util.)

C
PU

 U
tilization (%

)

of Objects embedded in an Oracle Wrapper

M
em

ory U
sage (%

)

0

200

400

0

200

400

600

10 20 30 40 50

Time (DB)
Time (Spreadsheet)
Steps (Spreadsheet)
Steps (DB)

Tim
e consum

ed (secs)

of Live Objects

N
um

ber of Steps

 (e) (f)

Fig. 6. (a) Processing Time while embedding live objects in a spreadsheet. (b) Memory
Usage while embedding live objects in a spreadsheet. (c) CPU Utilization while embedding live
objects in a spreadsheet. (d) Process Time while embedding database live objects as the number
of live objects increase. (e) Memory Usage and CPU Utilization while embedding live objects
in a database wrapper. (f) Time consumed and Number of Steps when the number of live ob-
jects grows.

DBIL. The startup process for our Oracle wrapper involves processing live objects
descriptions and registering query statements with the database. Figure 6d shows
processing time while live objects are embedded. 100 live objects are running in one
machine in which each live object creates its own ODBC connection. Processing time
increases linearly as the number of live objects grows, but still takes less than 3
seconds with 100 live objects. In Figure 6e, memory usage grows linearly but slowly

14 J. Ahnn, K. Birman, K. Ostrowski, R. Van Renesse

with 100 live objects, particularly if we compare these figures with the OLE perfor-
mance described earlier. The average CPU utilization is 32%, but exhibits a substan-
tial fluctuation between 8% and 64%. We suspect that cache effects in the embedding
process are associated with low utilization, and latency on ODBC connections with in
high utilization, but it is difficult to pin down costs in a system such as ours, where
Oracle and Microsoft Excel are being treated as “components”. Overall, 0.13 live
objects can be embedded per second during the startup process. Note that the re-
source consumption figures include costs associated with creation of TCP connections
to implement WS-notification multicast channels as described in [3].

We conclude that processing time, memory usage, and the CPU utilization is linear
in the number of live objects to be bootstrapped in both DIL and DBIL. Since these
costs are reasonably low, the system should be stable and predictable.

5.1.2 Data Change Event Notification

As we saw in section 3, event notification occurs when data changes in a live spread-
sheet or an Oracle database linked to a live object channel. We quantify performance
with regard to three metrics: processing time, memory usage and CPU utilization,
again showing the overall cost and the live object component of the cost in each case.
Figure 7a-b show the average processing time for the spreadsheet and the Oracle
wrapper, which increases linearly in the number of data change events. The peak at
the 138th iteration in Figure 7a is due to the relatively high CPU utilization shown in
Figure 7d. Figure 7d also shows that the average CPU utilization for the spreadsheet
decreases slightly after the peak because of cache effects. With a steady rate of
events, CPU loads actually drop after an initial startup period of higher costs. Memory
use is stable at roughly 2%. Figure 7d presents the average CPU utilization, showing
fluctuation between 30% and 80% average utilization at 60%. Memory usage in-
creases nonlinearly; we attribute this to the CPU-intense nature of the ODBC inter-
face code.

5.1.3 Information Flow (Event Pipeline) and Efficiency

Information Flow. Live office applications will often be structured into pipelined
processing configurations, with each application passing data to another office appli-
cation that does some processing and then generates its own change events for propa-
gation further downstream. To understand performance in such cases, we evaluated
three topologies: a ring, binary tree and ternary tree in 20 nodes of our cluster. All of
these “loop” the events back to the source, as a simple way to measure end-to-end
latency without worrying about clock synchronization. As will be seen below, costs
are sufficiently high for these kinds of office application pipelines that the extra load
imposed on the root node has no significant impact on the overall picture.

Cycle trip time (CTT) grows as a function both of payload size and path length, as
seen in Figures 7a-7f. The payload costs are dominated by OLE’s XML serialization
and deserialization overheads; as the paths grow longer and these are incurred again

Using Live Distributed Objects for Office Automation 15

and again, they become significant. The overall picture suggests that the system is
reasonably stable and offers reasonable performance, although the costs associated
with the Oracle configuration are fairly high (stemming mostly from Oracle itself, as
seen in Figure 7b and 7c). We attribute this to costs of the Oracle dynamic view mate-
rialization and to the overheads associated with the trigger mechanism.

0

0.2

0.4

0.6

0.8

1

1.2

0

0.0005

0.001

0.0015

0.002
50 15

0
25

0
35

0
45

0
55

0
65

0
75

0
85

0
95

0

Spreadsheet
Spreadsheet(Cumulative)

Avg. Process
Tim

e (secs)

of Change Events in Spreadsheet

Process
Tim

e (secs)

0
5000
10000
15000
20000
25000
30000
35000
40000

0

5

10

15

20

25

30

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

Oracle
Oracle(Cumulative)

A
vg. P

rocess
Tim

e (secs)

of Change Events in Oracle

A
vg. C

um
ulative

P
rocess

Tim
e (secs)

 (a) (b)

0

5

10

15

20

25

30

2.14
2.16
2.18

2.2
2.22
2.24
2.26
2.28

2.3

50 15
0

25
0

35
0

45
0

55
0

65
0

75
0

85
0

95
0

Avg Memory Usage
CPU Util.

of Change Events in Spreadsheet

A
vg. M

em
ory U

sage (%
)

C
PU

 U
tilizatoin (%

)

50

52

54

56

58

60

62

64

2.2
2.22
2.24
2.26
2.28
2.3

2.32
2.34
2.36
2.38

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

Memory Usage
CPU Util.

of Change Events in Oracle

M
em

ory U
sage (%

)

C
PU

 U
tilizatoin (%

)

 (c) (d)

0

1

2

3

4

5

6

1k 5k 10k 20k

ring
binary tree
ternary tree

Size of payload (bytes)

M
axim

um
 Average C

ycle
Trip Tim

e (secs)

0

1

2

3

4

5

5 10 15 20

ring
binary tree

M
axim

um
 A

verage C
ycle Trip

Tim
e (secs)

System Size (Number of Nodes)
 (e) (f)

Fig. 7. (a) Processing Time while propagating data change events in a spreadsheet. (b)
Processing Time with database events. (c) Memory Usage and CPU Utilization for the spread-
sheet. (d) Memory Usage and CPU Utilization for the Oracle wrapper. (e) Maximum average
cycle trip time when size of payload varies under various topologies. (f) Maximum average
cycle trip.

Efficiency. Performance evaluations of commercial OA products, such as SAP’s
product line, typically evaluate the productivity of application developers by measur-
ing the time needed to build a new application. To evaluate this in our OIS, we
designed an experiment patterned on SAP’s standard benchmarks. Table I lists the
steps needed to construct a completely new collaborative application, using either the
DIL or the DBIL. We asked how much time a trained end-user would expend in per-
forming these steps. We assume all necessary applications are pre-installed in the

16 J. Ahnn, K. Birman, K. Ostrowski, R. Van Renesse

system. Since user input times vary widely, we performed the sequence of operations
20 times and averaged the result.

For example, we created a sales report which needs 40 data fields connected to live
objects, associated with 40 live channels that we connected to database fields based
on queries. Setting up the 40 live spreadsheet objects took 120.7 seconds and 127
steps; 40 live databases objects took 326 seconds and 284 steps as shown in Figure 6f.
Overall, our sales report was constructed in 447 seconds and required a total of 411
user-input steps. This seems quite reasonable to us. Once built, such an applica-
tion would be shared through the network file system, or by email. The eventual
users pay no additional costs at all: they simply open the application and use it.

Table 1. User Interaction Steps for efficiency testing of the system

Document Integration Layer Database Integration Layer
Step Instruction Step Instruction

1 Launch a spreadsheet. 1 Launch an Oracle wrapper.
2 Start an Import Channel dialog. 2 Press an Add Live Database button.
3 Import all live objects into the dialog by a

drag/drop interface or a file browsing
dialog.

3 Type information for database connection
in text boxes.

4 Close the dialog. 4 Test database connection pressing a
Connect DB button.

5 Start a Channel Coordination dialog. 5 Type a query statement in a text box.
6 Select a cell to be connected to live object

in the spreadsheet.
6 Execute the query to see the result.

7 Choose a live object file already imported
in a drop-down box.

7 Import all live objects into the dialog by a
drag/drop interface or a file browsing
dialog.

8 Press a Connection button. 8 Choose a live object file already imported
in a list box.

9 Close the dialog. 9 Press a Connect button.
10 Save the spreadsheet. 10 Close the Oracle wrapper
11 Close the spreadsheet. Repeated steps 3 through 9

Repeated steps 6 through 8

5.1.5 Concurrency and Scalability

Concurrency. When a single machine must support large numbers of live objects, or
form large numbers of database bindings, scalability of our platform will determine
the associated costs. Our experiments show that as many as 136 live objects can be
used on a single machine, mostly because of the memory limitations discussed earlier
(arising from the underlying OLE object). Communication costs are also an issue.

We sent 1kbytes payload for each trial, and measured delays, averaging over 30
trials. Figure 8a shows that the DIL is faster than the DBIL (we traced this to the cost
of event notifications in ODBC which, as was seen earlier, is quite expensive). Figure
8b shows that the CPU utilization for the DIL in a spreadsheet is close to that of the
DBIL in Oracle, although DBIL memory use grows with the number of live objects.
This memory is associated with the connections to the database. In the case of the
spreadsheet, the packet dissemination latency increases linearly up to the 70th live
object embedded, but then soars as paging kicks in. A similar phenomenon is seen

Using Live Distributed Objects for Office Automation 17

with Oracle as the system reaches 60th live objects. Memory growth for this test is
graphed in Figure 8b.

The results show that substantial numbers of live objects can run concurrently in
spreadsheets and databases. Memory sizes appear to be the primary limiting factor,
and from these experiments, one can even predict the limits at design time.

8.32

38.48

13.83

22.63

0.00

10.00

20.00

30.00

40.00

50.00

10 20 30 40 50 60 70 100 130

Spreadsheet
Oracle Wrapper

of objects embedded in Spreadsheet/Oracle

PacketD
issem

ination Tim
e

(secs)

0

100

200

0

1000

2000

10 20 30 40 50 60 70 10
0

13
0

Memory (Spreadsheet)
Memory (Oracle)
Max. CPU (Spreadsheet)
Max. CPU (Oracle)

M
em

ory
U

sage (M
bytes)

of objects embedded in Spreadsheet

C
P

U
 U

tilization (%
)

 (a) (b)

 (c) (d)

Fig. 8. (a) Packet Dissemination Time using the same channel. (b) Packet Dissemination Time
using different channels. (c) CTT in one channel scenario. (d) CTT in various channels scena-
rio.

Scalability. Scalability of the OIS is important criteria when considering business
applications in distributed domains. Users will need to know that our system is capa-
ble of handling existing transactional workloads while continuing to maintain perfor-
mance even as the workloads increase significantly. Our experiments shed light on
this question. The first experiment shown in Figure 8c forms a ring topology and
measures cycle time as we vary the number of participating nodes, forcing the nodes
to share updates using a single multicast channel. This results in an extreme case
because as many as 1530 live objects ultimately communicate through one channel.
The CTT rises starting when more than 200 live objects run (20 nodes with 10 live
objects running on each machine) because of channel contention.

In figure 8d varying numbers of live objects communicate side by side with differ-
ent multicast channels. Recall that these experiments run over a WS-notification layer
that uses point-to-point TCP connections, hence each of these channels requires its
own set of TCP channels. With 20 nodes running 10 live objects each, one would
need approximately 4000 TCP connections. In fact, performance degrades sharply
even before we reach that scale. In practice, we believe that only smaller applications
would be able to operate over TCP; scaled up applications such as these larger confi-
gurations would need to migrate to Quicksilver, to exploit its much better scalability
properties. Earlier, we commented that our TCP-based ALM is intended to con-
form with WS-* eventing standards, whereas Quicksilver, which uses IP multicast to
disseminate data quickly, deviates from those standards. Our tests make it clear that

18 J. Ahnn, K. Birman, K. Ostrowski, R. Van Renesse

live distributed objects can be used in OA settings, but that rigid adherence to the
WS-* standards results in scalability limits that could be avoided if the WS-* stan-
dards were more flexible. In a different setting, we discuss possible extensions to
the WS-* standards aimed at this issue.

5.2 Discussion

In summary, we have seen that resource consumption is roughly linear in the number
of live objects used within a live office document while activating a live document,
and that subsequent event processing time of our system is easily predictable as the
number of live objects grows. We were somewhat disappointed that Oracle perfor-
mance was so low, but this reflects performance issues within Oracle itself, presuma-
bly related to the way it implements materialized views and triggers. In the informa-
tion flow section, we explored a variety of flow topologies and showed that live ob-
jects can be used in pipelines; the pipeline length was the main performance-limiting
factor. Finally, we evaluated performance in situations that stress the TCP-based
multicast channels and showed that they work well for smaller configurations, but
degrade sharply with scale; in production settings that employ large numbers of inter-
connected live documents, users would need to employ a scalable substrate, such as
Quicksilver.

A number of issues lie beyond the scope of this paper. Future challenges include
implementing security and privacy, and in particular, integration of the OIS and the
live objects platform with existing security infrastructure, such as Active Directory,
X.509 certification and other such services, We’re also working on adapting our plat-
form for use in WAN settings. Beyond these near term issues lie hard questions asso-
ciated with supporting transactions and dealing with enterprise life-cycle manage-
ment.

7 Conclusion

This paper described the design and implementation of a middleware architecture for
office information systems. The design builds upon a concept we call live distributed
objects, adapting them to office automation settings. This yields a new style of live
office documents, in which office applications and replication technologies are clean-
ly integrated. We’ve created a visual drag and drop environment, in which end-users
with little or no programming ability can create distributed applications by leveraging
existing documents and databases. Our evaluation shows that the system is very easy
to use, performs well, and scales well in realistic LAN settings.

Using Live Distributed Objects for Office Automation 19

Acknowledgement. Our work was funded by AFRL/IF, AFOSR, NSF, I3P and Intel.
We’d like to thank Mahesh Balakrishnan, Lakshmi Ganesh, Chi Ho, Maya Haridasan,
Tudor Marian, Yee Jiun Song, Einar Vollset, Hakim Weatherspoon, and Eric Suss for
the feedback they provided.

References

1. Dirk E. Mahling, Noel Craven, W. Bruce Croft. From Office Automation to Intelligent
Workflow Systems. IEEE Expert: Intelligent Systems and Their Applications,
vol. 10, no. 3, pp. 41-47, Jun., 1995

2. Kenha Park, Jintae Kim, Sooyong Park. Goal based agent-oriented software modeling. Pro-
ceedings of the Seventh Asia-Pacific Software Engineering Conference, pp.320, December
05-08, 2000

3. Live Distributed Objects at Cornell. http://liveobjects.cs.cornell.edu
4. K. Ostrowski, K. Birman, and D. Dolev. Declarative Reliable Multi-Party Protocols. Cornell

University Technical Report, http://hdl.handle.net/1813/8221
5. K. Ostrowski, K. Birman, D. Dolev. Quicksilver Scalable Multicast. In submission
6. K. Ostrowski, K. Birman, D. Dolev, J. Ahnn. Programming with Live Distributed Objects. In

Proceedings of 22nd European Conference on Object-Oriented Programming (ECOOP’08)
7. Giampio Bracchi, Barbara Pernici. The design requirements of office systems. ACM Trans-

actions on Information Systems (TOIS), vol. 2 no. 2, pp. 151-170, April 1984
8. Umeshwar Dayal , Meichun Hsu , Rivka Ladin. Business Process Coordination: State of the

Art, Trends, and Open Issues. Proceedings of the 27th International Conference on Very
Large Data Bases, pp. 3-13, September 11-14, 2001

9. Brian Oki , Manfred Pfluegl , Alex Siegel , Dale Skeen. The Information Bus: an architecture
for extensible distributed systems. Proceedings of the fourteenth ACM symposium on Oper-
ating systems principles, pp. 58-68, December 05-08, 1993, Asheville, North Carolina,
United States

10. Giampio Bracchi , Barbara Pernici. The design requirements of office systems. ACM
Transactions on Information Systems (TOIS), vol. 2 no. 2, pp. 151-170, April 1984

11. Jammes, F.; Smit, H.; Service-Oriented Paradigms in Industrial Automation. IEEE Trans.
on Industrial Informatics, 2005, vol. 1, no. 1, pp. 62-70

12. K. Ostrowski, K. Birman, and D. Dolev. Live Distributed Objects: Enabling the Active
Web. IEEE Internet Computing, vol. 11, no. 6, pp. 72-78, Nov/Dec, 2007

13. SAP. SAP Standard Benchmark https://www.sdn.sap.com
14. Traudt, Erin, Amy Konary (June 2005). 2005 Software as a Service Taxonomy and Re-

search Guide 7. IDC. Retrieved on 2006-08-25
15. Microsoft. Microsoft SQL Database. http://www.microsoft.com/sql
16. Oracle. Oracle Database. http://www.oracle.com/database
17. Business Scenarios. http://www.microsoft.com/office/solutions/default.mspx
18. K. Birman. The process group approach to reliable distributed computing. Communications

of the ACM (CACM) 16:12 (Dec. 1993)
19. F. Schneider. Implementing Fault-Tolerant Services Using the State Machine Approach: a

Tutorial. ACM Computng Surveys. 22, 4 (Dec. 1990), pp. 299-319
20. Microsoft Corporation (December 1993). OLE 2 Programmer's Reference: Creating Pro-

grammable Applications with OLE Automation. vol. 2, Programmer's Reference Library,
Microsoft Press

21. Ken Birman, Mahesh Balakrishnan, Danny Dolev, Tudor Marian, Krzysztof Ostrowski,
Amar Phanishayee. Scalable Multicast Platforms for a New Generation of Robust Distri-
buted Applications. Proceedings of the Second IEEE/Create-Net/ICST International Confe-

20 J. Ahnn, K. Birman, K. Ostrowski, R. Van Renesse

rence on Communication System software and Middleware (COMSWARE). Bangalore, In-
dia, January 7-12, 2007

22. LUM, V., CHOY, D., AND SHU, N. OPAS: An office procedure automation system. IBM
Syst. J. 21, 3 (1982), 327-350

23. GIBBS, S. Office information models and the representation of 'office objects'. In Proceed-
ings ACM SIGOA Conference on Office Systems (Philadelphia, June 1982), ACM, New
York, 21-26

24. ELLIS, C., AND BERNAL, M. OFFICETALK-D: An experimental office information
system. In Proceedings ACM SIGOA Conference on Office Systems (Philadelphia, June
1982), ACM, New York, 131-140

25. BRACCHI, G., AND PERNICI, B. SOS: A conceptual model for office information sys-
tems. In Proceedings of ACM SIGMOD Database Week Conference (San Jose, Calif., May
1983), ACM, New York, 108-116

26. Sun Microsystems, Inc. Jini http://www.jini.org
27. Sun Microsystems, Inc. JXTA v2.0 Protocols Specification. http://www.jxta.org
28. Dave Chappell, Enterprise Service Bus, O’Reilly: June 2004
29. IBM. WebSphere Enterprise Service Bus

http://www-306.ibm.com/software/integration/wsesb
30. Zloof, M. M. and deJong, S. P. (1977). The System for Business Automation (SBA): Pro-

gramming Language, Communications of the ACM. vol. 20, no. 6, pp. 385–396
31. TSICHRITZIS, D. Form management. Commun. ACM 25, 7 (July 1982), 453-478
32. RICHTER, G. IML-inscribed nets for modeling text processing and database management

systems. In Proceedings Very Large Data Bases Conference (Cannes, Sept. 1981), 363-375
33. ELLIS, C., AND NUTT, G. Office information systems and computer science. ACM Com-

put. Surv. 12, 1 (Mar. 1980), 27-60
34. BARBER, G. Supporting organizational problem solving with a work station. ACM Trans.

Office Inf. Syst. 1, 1 (Jan. 1983), 45-67
35. KONSYNSKI, B., BRACKER, L., AND BRACKER, W. A model for specification of

office communications. IEEE Trans. Commun. COM-30, 1 (Jan. 1982), 27-36
36. ZLOOF, M. QBE/OBE: A language for office and business automation. IEEE Computer

14, 5 (May 1981), 13-22
37. AIELLO, L., NARDI, D., AND PANTI, M. Structural office modeling: A first step toward

the office expert system. To appear in Proceedings 2nd ACM Conference on Office Infor-
mation Systems (Toronto, June 1984), ACM, New York

38. BAILEY, A., GERLACH, J., MCAFEE, P., AND WHINSTON, A. An OIS model for
internal accounting control evaluation. ACM Trans. Office Inf. Syst. 1, 1 (Jan. 1983), 25-44.

39. SIRBU, M., SCHOICHET, S., KUNIN, J., AND HAMMER, M. OAM: An office analysis
methodology. MIT, Office Automation Group Memo OAM-016, 1981

40. Giampio Bracchi, Barbara Pernici. The Design Requirements of Office Systems. ACM
Trans. Inf. Syst. 2(2): 151-170 (1984)

41. Microsoft. Microsoft Office Groove. http://office.microsoft.com/en-us/groove
42. Google. Google Docs. http://documents.google.com
43. WebEx. Web Office. http://www.weboffice.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

