
RAID Triple Parity

Atul Goel
NetApp Inc

atul.goel@netapp.com

Peter Corbett
NetApp Inc

peter.corbett@netapp.com

ABSTRACT

RAID triple parity (RTP) is a new algorithm for protecting
against three-disk failures. It is an extension of the double
failure correction Row-Diagonal Parity code. For any num-
ber of data disks, RTP uses only three parity disks. This is
optimal with respect to the amount of redundant informa-
tion required and accessed. RTP uses XOR operations and
stores all data un-encoded. The algorithm’s parity compu-
tation complexity is provably optimal. The decoding com-
plexity is also much lower than that of existing comparable
codes. This paper also describes a symmetric variant of the
algorithm where parity computation is identical to triple re-
construction.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance; D.4.2 [Operating Systems]: Stor-
age Management—Secondary storage

General Terms

Algorithms, Reliability, Theory

Keywords

Disk failure, RAID recovery, RDP code, recovery algorithm

1. INTRODUCTION
Enterprise customers expect very high availability, relia-

bility, and performance guarantees from storage servers. As
storage systems expand, it becomes increasingly important
to protect against multiple simultaneous failure events. In
the context of disks, failure events can typically be catego-
rized as whole disk failures, partial failures, or intermittent
failures. Traditional parity-based fault tolerance schemes
like RAID 4 and RAID 5 [7] cannot protect against multi-
ple failures. Mirroring-based schemes like RAID 1 or RAID
10 [7] are typically used to survive such failures. However,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
c© 2012 NetApp, Inc. All rights reserved.

the substantially higher storage overhead makes mirroring
unattractive from a cost perspective.

Various technology trends, for example, the use of cheap
and unreliable ATA/SATA drives within data centers, fur-
ther place new demands on software-based solutions to help
compensate for less-reliable hardware. The high bit error
rate (BER) on these drives, coupled with their large sizes,
implies a significantly higher probability of encountering a
partial failure, like a latent sector error, during reconstruc-
tion. While parity-based double failure protection schemes
like RDP [3] and EVENODD [1] are currently able to ad-
dress some of these issues, a triple erasure correction scheme
can help further increase tolerance of the failure events, es-
pecially when an array is already degraded.

The primary motivation behind a triple fault tolerant scheme
is the ability to survive shelf failures without exposing a
RAID group to a potential data loss event due to media er-
rors during reconstruction. Three simultaneous disk failures
due to unrelated and independent reasons are probabilisti-
cally highly unlikely. However, such failures can occur due
either to a loss of connectivity or a fault in a shelf. The
technology trend towards bigger drives, combined with non-
decreasing bit error rates, implies that the probability of
data loss events due to media errors will increase propor-
tionately. If two disks are lost due to a shelf failure, even
double-parity RDP groups would be exposed to this fail-
ure during reconstruction. To prevent such scenarios, cus-
tomers would have to configure RAID groups with only one
disk per shelf. For example, in an 8-shelf system this would
mean 6 data + 2 parity disks per RAID group, resulting in
a data:parity ratio of 3:1. However, by striping two disks
per shelf, a triple fault tolerant scheme can protect against
similar failures by using 16-disk RAID groups (13 data + 3
parity). This results in much better storage utilization since
it achieves a data:parity ratio of 4.3:1.

Another motivation for a triple fault tolerant scheme is
that it provides a viable alternative to mirroring schemes
such as RAID 1. As storage systems evolve, most hard-
ware modules like adapters, loops, power supplies, shelf-
controllers, heads, etc. can now be configured in a redun-
dant mode to prevent a single point of failure. This implies
that mirroring, which was originally intended to survive the
failure of these components as well, is now relegated primar-
ily to protecting against multiple simultaneous disk failures.
Although mirroring is still essential for disaster recovery con-
figurations, many customers use it within local data centers
to help protect against multiple failures. As stated previ-
ously, shelf failures represent the most frequent cause of such



incidents. By striping disks across shelves, a triple failure
protection scheme can be used to survive multiple failures
with storage utilization significantly superior to mirroring.
Hence, such a scheme helps lower the cost of storage while
ensuring high levels of reliability and availability.
This paper describes a new algorithm, called RTP, for pro-

tecting against three-disk failures. The algorithm satisfies
the Singleton bound [6] since it requires only three redun-
dant disks to protect against three failures. Besides storage
arrays, this algorithm can also be used to provide triple era-
sure correction capability to other applications relying on a
redundant data stream. Data communication applications,
where additional data is transmitted to reduce the reliance
on retransmissions, can also use this algorithm to recover
from a maximum of three erasures.
RTP can be efficiently incorporated within a log-structured

file system. While other write in-place data layout schemes
are forced to incur the parity-update overhead for small ran-
dom writes, a log structured file system does a significantly
better job owing to its write-anywhere nature and thereby
provide a unique opportunity to implement advanced parity-
based fault tolerance schemes which have a significantly higher
storage efficiency compared to mirroring. In this paper we
detail the construction of an RTP array, the parity compu-
tation scheme, and the reconstruction algorithm. We also
present a variant of the algorithm, called Symmetric RTP,
which can be used in distributed parity organizations sup-
porting disk additions. Finally, we analyze the algorithm’s
performance and compare it against other known triple era-
sure correction schemes.

2. BASIC RTP ALGORITHM
RTP can be viewed as an extension of the double disk

failure correction scheme, Row-Diagonal Parity (RDP) [3].
Recall that an RDP array requires a total of p+1 disks,
where p is a prime > 2. The array is comprised of p−1 data
disks, a row parity disk, and a diagonal parity disk. The
array is divided into groups of p − 1 stripes, each forming
a self-contained row and diagonal parity set. Each stripe
consists of a different block from each disk. Each block on
the row parity disk stores the horizontal XOR sum of all
data blocks within the same stripe. Blocks on the diagonal
parity disk, on the other hand, store the XOR sum of p− 1
diagonals which cover the row parity disk and all data disks.
The diagonals are constructed over a group of p− 1 stripes.
Since there are p such diagonals, but space to store only p−1,
the XOR sum of one of the diagonals is not computed. An
important property of the diagonal formation used by RDP
is that each diagonal misses a different disk (data or row
parity) in the array.
An RTP array is constructed by adding a third parity disk,

called anti-diagonal parity, to an RDP array. Thus, an RTP
array consists of p+2 disks, where p is a prime greater than
2. In addition to the diagonals used by RDP, RTP defines
a set of p anti-diagonals which have an orthogonal slope to
the diagonals. These anti-diagonals cover the row parity disk
and the data disks. Anti-diagonals do not cover the diagonal
parity disk, and vice versa. Anti-diagonals are constructed
over the same group of p − 1 stripes as the diagonals. The
anti-diagonal parity disk stores the XOR sum of p− 1 anti-
diagonals. As with diagonals, since there are a total of p
anti-diagonals but only sufficient space to store p − 1, the
XOR sum of one of the anti-diagonals is not computed. The

Figure 1: Diagonal Parity Sets
D0 D1 D2 D3 D4 D5 R Diag A-Diag
0 1 2 3 4 5 6 0
1 2 3 4 5 6 0 1
2 3 4 5 6 0 1 2
3 4 5 6 0 1 2 3
4 5 6 0 1 2 3 4
5 6 0 1 2 3 4 5

Figure 2: Anti-diagonal Parity Sets
D0 D1 D2 D3 D4 D5 R Diag A-Diag
6 0 1 2 3 4 5 6
5 6 0 1 2 3 4 5
4 5 6 0 1 2 3 4
3 4 5 6 0 1 2 3
2 3 4 5 6 0 1 2
1 2 3 4 5 6 0 1

anti-diagonals are formed in such a way that they share the
diagonal property of missing a different disk (data or row
parity) in the array.

Figure 1 and 2 show an example of the arrangement of
data and parity within a set of stripes in a 9-disk RTP array
constructed using prime p = 7. The array contains 6 data
disks (D0, D1, D2, D3, D4 and D5), a row parity disk (R),
a diagonal parity disk (Diag) and an anti-diagonal parity
disk (A-Diag). Figure 1 and 2, both representing the same
array, depict the assignment of blocks to diagonal and anti-
diagonal parity sets respectively.

In Figure 1 , the number in each block indicates the diag-
onal parity set to which the block belongs. Similarly, Figure
2 shows the anti-diagonal parity set to which a block be-
longs.

Numbering disks/columns as i = 0 · · · p (where index of
D0 = 0, D1 = 1, etc.), and rows as j = 0 · · · (p−2) (vertically
down), lets define A[i, j] as the block on disk i and row j.
The diagonal parity set to which block A[i, j] belongs can
be computed as

D(i, j) = (i+ j) mod p (1)

The anti-diagonal parity set corresponding to block A[i, j]
will be given by

AD(i, j) = (i− j − 1) mod p (2)

Note that i has a maximum value of p since the computa-
tion of diagonal parity sets excludes the anti-diagonal parity
disk (and vice versa). Hence, the anti-diagonal and diago-
nal parity disks don’t have to be numbered when a parity
set of the other type is computed. Blocks on the row par-
ity disk are computed as the horizontal even parity sum
of data blocks within the same stripe. Diagonal parity is
computed in a manner identical to that used for RDP [4].
The anti-diagonal parity is computed in a manner similar to
that for diagonal parity, however, using anti-diagonal blocks.
Each anti-diagonal parity block contains the even parity of
the data and row parity blocks on the same anti-diagonal.
Equation 3 defines the value for a diagonal parity block at
row/index x (x = 0 · · · (p− 2)), computed as the XOR sum
of blocks on disks i = 0 · · · (p − 1) (i.e D0 · · ·R). Similarly,



for figure 2 above, equation 4 defines the value of an anti-
diagonal parity block at row/index x (x = 0 · · · (p−2)). Note
that the anti-diagonal parity block at row 0 corresponds to
anti-diagonal 6. In addition, for any i, A[i, p−1] is assumed
to be 0.

Diag[x] =

i=p−1
∑

i=0

A[i, (x− i) mod p] (3)

Anti−Diag[x] =

i=p−1
∑

i=0

A[i, (x+ i) mod p] (4)

In figures 1and 2 diagonal 6 and anti-diagonal 0 are dropped
from the respective parity disks since there is only enough
space for storing 6(= p− 1) diagonals/anti-diagonals.
An astute observer might note that an RTP array can

be viewed as composed of two sets of double fault tolerant
RDP arrays that share the same data and row parity disks.
This is because the set of data disks, row parity, and anti-
diagonal parity disks itself constitutes an RDP array which
uses diagonals with orthogonal slopes.
Although the above formulation requires p− 1 data disks,

the same scheme can also be used with fewer data disks by
assuming fake zeroed disks to complete a prime parity set.

3. RECONSTRUCTION
This section discusses reconstruction from single, double

and triple disk failures.

3.1 Single and Double Disk Reconstruction
Recovery from single disk failures can be accomplished ei-

ther by using row parity or by computing the diagonal or
anti-diagonal parity disk. Since RTP extends RDP, double
disk reconstruction can be performed by using the RDP re-
construction algorithm. This is because the two failed disks
belong to at least one of the diagonal or anti-diagonal RDP
parity sets. If both diagonal and anti-diagonal parity disks
fail, they can be independently reconstructed from the data
and horizontal parity drives, using the RTP parity construc-
tion algorithm.

3.2 Triple Disk Reconstruction
Triple disk failure cases in an RTP array can be classified

into three categories, depending upon the number of data
and parity disks failed. For simplicity and ease of under-
standing, the row parity disk and data disks are collectively
referred to as RAID 4 disks, since they are symmetric with
respect to the diagonal and anti-diagonal parity sets.

• One of RAID 4, diagonal and anti-diagonal disk failed:
This case is trivial since the missing RAID 4 disk can
be recovered using row parity. The RTP parity com-
putation algorithm can then be applied to recover the
missing diagonal and anti-diagonal parity disks.

• Two RAID 4 and one diagonal (or anti-diagonal) disks
failed: For this case, reconstruction proceeds by first
applying the RDP double reconstruction algorithm [3]
using the good anti-diagonal (or diagonal) parity disk.
After the failed RAID 4 disks are recovered, the miss-
ing diagonal (or anti-diagonal) can be recovered using
the RTP parity computation algorithm.

Figure 3: Notations
A[..] Data blocks
R[..] Stored row parity blocks

Diag[..] Stored diagonal parity blocks
Anti–Diag[..] Stored anti-diagonal parity blocks
Adropped diag Data blocks on the dropped diagonal
Rdropped diag Row parity blocks on the dropped diagonal

AR[..] RAID 4 i.e both data and row parity blocks
ARdropped diag RAID 4 blocks on the dropped diagonal

ARdropped anti–diag RAID 4 blocks on the dropped anti-diagonal

• Three RAID 4 disks failed: The primary step in the
process of reconstructing three RAID 4 disks involves
computing p 4-tuple XOR sums on one of the missing
disks. Each 4-tuple sum (equation 7, section 3.2.2 ) is
computed as the XOR sum of 4 blocks on one of the
failed disks. The set of linear equations corresponding
to these sums can then be solved in various ways to
recover that missing disk. Subsequently, the remaining
two disks can then be recovered using the RDP double
reconstruction algorithm.

For this process to work, parity for all diagonal and anti-
diagonals must be available. Hence, the triple disk recon-
struction steps can be broadly classified as:

1. Compute the dropped parity block for both the diag-
onal and anti-diagonal parity sets.

2. Compute a set of 4-tuple XOR sums on one of the
failed disks

3. Recover one of the failed disks.

4. Use RDP double reconstruction to recover the remain-
ing two disks

The remainder of this section details each of the steps
when reconstructing three RAID 4 disks. Figure 3 describes
the notations used in this section.

3.2.1 Compute Diagonal And Anti-Diagonal Parity

In a set of p − 1 stripes forming a complete row, diag-
onal and anti-diagonal parity set, the parity for the miss-
ing/dropped diagonal in an RTP (or even RDP) array can
be computed as the XOR sum of the p− 1 blocks on the di-
agonal parity disk. Similarly, the missing anti-diagonal can
be computed as the XOR sum of blocks on the anti-diagonal
disk.

Proof. Since each diagonal spans both data and row par-
ity disks, and one diagonal is dropped owing to insufficient
space, the XOR sum of the blocks stored on the diagonal
parity disk can be computed as:

∑

Diag[..] =
(

∑

A[..] +
∑

Adropped diagonal

+
∑

R[..] +
∑

Rdropped diagonal

)

Substituting
∑

R[..] by
∑

A[..] since blocks on the row
parity disk are themselves the XOR sums of data blocks, we
get



X=0 Y=1 d2 d3 Z=4 d5 R
0 1Φ 2 3 4 5 6
1 2Φ 3 4 5 6 0
2 3 4 5 6 0 1
3 4Φ 5 6 0 1 2
4 5Φ 6 0 1 2 3
5 6 0 1 2 3 4
6 0 1 2 3 4 5

Figure 4: 4-tuple sum (row 0): Steps 1 and 2

∑

Diag[..] =
∑

Adropped diagonal +
∑

Rdropped diagonal

=
∑

ARdropped diag (5)

Another way to think of this is that the sum of all the
RAID 4 blocks equals the sum of all the diagonal parity
blocks including the dropped diagonal parity block. There-
fore, subtracting the sum of the stored diagonal parity blocks
from the sum of all RAID 4 blocks gives the sum of the RAID
4 blocks on the dropped diagonal. Similarly,

∑

Anti–diag[..] =
∑

ARdropped anti–diag (6)

After computing the dropped diagonal and anti-diagonal
parity, parity for all diagonals and anti-diagonals is avail-
able. For each row, diagonal and anti-diagonal, the XOR
sum of missing blocks on the three failed disks can now be
computed by summing the surviving blocks on the corre-
sponding row, diagonal and anti-diagonal respectively. Let
XORr(k), XORd(d), and XORa(a) represent these values
corresponding to row k, diagonal d, and anti-diagonal a re-
spectively. Since with even parity the sum of all blocks in
one parity stripe or diagonal is zero, then the sum of any
subset of items in the set must equal the sum of the remain-
ing items not in the subset. The sum of the surviving items
in a parity set is often called a “parity syndrome” in the
literature.

3.2.2 Compute 4-tuple sums on one of the failed disks

The remaining sets of steps are described in the context
of the 9-disk RTP array shown in figure 1 and 2. Figures
4 and 5 represent an equivalent diagonal and anti-diagonal
layout within the 7-disk RAID 4 array (the diagonal and
anti-diagonal parity disks are not shown). Although each
group of p− 1 stripes consists of only six rows, the seventh
row (the shaded row at the bottom of the table) is shown to
simplify understanding of the reconstruction process. Blocks
on the seventh row, which are assumed to be zero, are as-
signed to the appropriate diagonals and anti-diagonals using
Equations 1 and 2 respectively. Disks X=0, Y=1 and Z=4,
represent the 3 failed drives within the array.
Assuming an ordering of failed disks as X, Y and Z, let’s

define the distance between them as

g = (Y −X)

and

h = (Z − Y )

X=0 Y=1 d2 d3 Z=4 d5 R
6 0Φ 1 2 3 4 5
5 6Φ 0 1 2 3 4
4 5 6 0 1 2 3
3 4Φ 5 6 0 1 2
2 3Φ 4 5 6 0 1
1 2 3 4 5 6 0
0 1 2 3 4 5 6

Figure 5: 4-tuple sum (row 0): Steps 3 and 4

For the above ordering, lets refer to disk Y as the middle
disk.

We define a 4-tuple sum as the XOR sum of 4 blocks on
the middle disk, Y. Within a group of p−1 stripes, forming a
self-contained parity set, a 4-tuple XOR sum corresponding
to row k on the middle disk Y is computed in the following
manner:

1. Retrieve the row parity sum of blocks on missing disks
corresponding to row k. Let XORr(k) denote this
sum. The row parity sum represents the XOR sum
of blocks A[X, k], A[Y, k], A[Z, k]

2. Compute the diagonal d for the block on disk Z and
row k,A[Z, k], using Equation 1 as d(Z, k) = (Z + k)
mod p . Retrieve the diagonal parity sum of blocks
on missing disks corresponding to this diagonal. Let
XORd(d(Z, k)) denote this sum. The row at which
diagonal d intersects disk X can be computed as q =
(k + Z −X) mod p.

XORd(d(Z, k)) represents the XOR sum of 3 blocks,
one on each of the missing disks. These blocks are
A[Z, k], A[Y, (k + Z − Y ) mod p], A[X, (k + Z − X)
mod p].

3. Compute the anti-diagonal, a, for the block on disk X
and row k,A[X, k]. Using Equation 2 a(X, k) = (X −

k − 1) mod p. Retrieve the anti-diagonal parity sum
of blocks on missing disks corresponding to this anti-
diagonal. Let XORa(a(X, k)) denote this sum. The
anti-diagonal a will also intersect disk Z at row q due to
the fact that diagonal and anti-diagonal constructions
use orthogonal slopes.

XORa(a(X, k)) represents the XOR sum of 3 blocks,
one on each of the missing disks. These blocks are
A[X, k], A[Y, (k + Y − X) mod p], A[Z, (k + Z − X)
mod p].

4. Retrieve the row parity sum of blocks on missing disks
corresponding to row q, where q is the same as that
computed in step 2.

Let XORr(q) denote this sum. XORr(q) represents
the XOR sum of blocks A[X, (k + Z − X) mod p],
A[Y, (k + Z −X) mod p], A[Z, (k + Z −X) mod p]

5. Compute the 4-tuple XOR sum for row k as

XORr(k)+XORd(d(Z, k))+XORa(a(X, k))+XORr(q)
(7)

A total of p such 4-tuple sums are computed, one for each
row. Since the array only contains p−1 rows, the pth 4-tuple
sum is formed by assuming an imaginary pth row of zeroed



blocks and by using the dropped diagonal and anti-diagonals
on disks Z and X respectively.
Since the XOR of a term with itself is 0, summing the

blocks in steps 1 to 4 results in the cancellation of four pairs
of duplicate terms in rows k and q of disks X and Z. For ex-
ample, XORr(k) andXORd(d(Z, k)) both include the block
A[Z, k]. Similarly, XORr(k) and XORa(a(X, k)) include
the common block A[X, k].
The 4-tuple sum represents the XOR sum of at most 4

blocks on the middle disk, Y. This set of blocks can be rep-
resented as:
{

A[Y, k], A[Y, (k+Z−Y ) mod p], A[Y, (k+Y−X) mod p],

A[Y, (k + Z −X) mod p]
}

Substituting g = Y −X and h = Z − Y , the above set of
blocks can be re-written as
{

A[Y, k], A[Y, (k + h) mod p], A[Y, (k + g) mod p],

A[Y, (k + g + h) mod p]
}

Dropping the common disk index, and assuming modulo
p addition, the 4-tuple corresponding to stripe k can be rep-
resented as

T (k) =
{

k, k + h, k + g, k + g + h
}

(8)

Figure 4 and 5 illustrate an example of computing the 4-
tuple sum corresponding to row 0. Figure 4 depicts steps 1
and 2 involving the XOR sums of missing blocks in row 0
(thick-bordered cells) and diagonal 4 (lightly shaded cells).
Figure 5 illustrates steps 3 and 4 involving the sums of blocks
on anti-diagonal 6 (lightly shaded cells) and row 4 (thick-
bordered cells). Blocks A[0, 0], A[4, 0], A[0, 4] and A[4, 4] are
cancelled since they are included twice. This results in the
4-tuple sum of blocks A[1, 0], A[1, 1], A[1, 3] and A[1, 4] on
disk Y. These blocks are shown in Figures 3 and 4 via the
symbol Φ. For computing the pth 4-tuple sum, the above
process is repeated for the seventh row (shaded).
For the disk array shown above, the set of all 4-tuples for

which sums are computed is [0, 1, 3, 4], [1, 2, 4, 5], [2, 3, 5, 6],
[3, 4, 6, 0], [4, 5, 0, 1], [5, 6, 1, 2], and [6, 0, 2, 3] (the column in-
dex representing disk Y is dropped).

Alternate ordering of failed disks.
The step for computing 4-tuple sums can be performed by

assuming an arbitrary ordering of failed disks. In the above
example, the order chosen is X = 0, Y = 1 and Z = 4. In-
stead, a different ordering X = 0, Y = 4, and Z = 1 could
have been chosen. In this case, the first disk to be recon-
structed, the middle disk, would be Y = 4, and the values
for g and h are Y − X = 4 and Z − Y = −3 respectively.
For three-disk failures, there are a total of six possible order-
ings. Since each ordering results in a different set of values
for g and h, the set of 4-tuple sums generated is also dif-
ferent. As a result, the number of these sums which must
be combined to recover blocks on the middle disk differs
for different orderings. Hence, the best computational effi-
ciency is achieved by choosing an ordering which minimizes
the number of XORs required.
The mechanism used for picking the most efficient order-

ing depends on the methodology used for solving the equa-
tions represented by the collection of 4-tuple sums. As de-
scribed in section 3.2.3, if the approach involves reducing to
pairwise sums, then the number (m) of 4-tuple sums which
must beXOR-ed to calculate each pairwise sum can be com-
puted as a function of g, h, and p (details in section 3.2.3).
Hence, the most efficient ordering is the one which yields the

minimum value for m.

Equidistant failures.
The distance between failed disks also plays a crucial role

when computing 4-tuple sums. For example, if g == h,
two additional blocks on the middle disk, represented by
(k + h) mod p can be cancelled. This converts the 4-tuple
sum to a 2-tuple sum. Since pairwise sums are obtained,
the process for recovering the middle disk can be greatly
simplified. Representing the 4-tuple sum corresponding to
row 0 as [0, g, h, h + g], one can generalize scenarios where
pairwise sums are obtained to satisfy the condition g = h
mod p or (g − h) mod p = 0. Triple disk failures where
an ordering of failed disks satisfies this condition can be
categorized as equidistant failures. The condition (g − h)
mod p = 0 implies that the second and the third blocks
within the 4-tuple are identical and hence can be cancelled.
No other pairing of blocks within the 4-tuple sum can be
identical.

3.2.3 Recover one of the failed disks

The collection of 4-tuple sums represents a set of p linear
equations over p variables. Each variable represents a block
on the middle disk and contributes to exactly four equations.
One of these variables, the block on the imaginary pth row,
is known to have the value zero. This set of linear equations
can be solved in various ways to recover the middle disk.

To illustrate the process of recovering the middle disk, this
section describes one approach where a subset of 4-tuples
is selected and reduced to a pairwise sum. Repeating this
process p − 1 times by starting with a different tuple helps
generate p− 1 pairwise sums which are separated by a con-
stant distance. At least one such pair, however, has only
one unknown block and hence can be recovered. The set
of other pairwise sums can then be used to recover the re-
maining blocks on the middle disk. This approach is similar
to that used by [5] where a ring of crosses is reduced to a
pairwise sum. However, the tuple approach used by RTP
requires fewer XOR operations.

Other, more-efficient approaches are also possible for re-
covering the middle disk.

Reduce to pairwise sums.
One approach for selecting a subset of tuples is to start

with a 4-tuple corresponding to row k and to choose subse-
quent tuples at an offset g (or h). At each step, common
blocks are cancelled and the process continues until only two
unknown blocks are left. This results in a pairwise sum.

For example, starting with the 4-tuple sum corresponding
to row 0, T (0) = [0, g, h, g + h], choosing another tuple at
an offset g helps cancel two blocks while adding two new
blocks, thus keeping the total number of unknown blocks
the same. This is because the tuple corresponding to row g
is T (g) = [g, 2g, h+ g, 2g + h]. XOR-ing this tuple to T (0)
cancels common blocks g and h+g since they are present in
both tuples. (All additions and multiplications are assumed
to be modulo p). Hence, starting with T (0) (lets treat this as
the first step), and selecting consecutive tuples at an offset g,
stepm results in theXOR sum of blocks [0,m∗g, h,m∗g+h].

Now we use the property that if p is a prime and g, h < p,
one can always find an m(0 < m < p) such that ((m ∗ g+h)
mod p) = 0 is true. Similarly, one can always find an m such
that ((m ∗ g − h) mod p) = 0 is true. Hence, by choosing



an m such that ((m ∗ g + h) mod p == 0), the first and
the fourth blocks in the result [0,m ∗ g, h,m ∗ g + h] can be
cancelled after the mth step. Alternately, by choosing an m
such that ((m ∗ g − h) mod p) == 0, the second and the
third blocks can be cancelled after the mth step. Since only
two unknown blocks are left, the process of selecting tuples
can be terminated at this step. Therefore, starting with a
tuple T (k) results in the pairwise sum of [k,m ∗ g + h+ k].
Repeating the above step by starting with 4-tuple sums

at each of the p−1 rows results in p−1 pairwise sums where
each is separated by the same distance, (m ∗ g+ h) mod p.
For the disk failure scenario described in section 3.2.2, g

and h can be computed as g = 1, and h = 3. Hence, choosing
tuples at offset 1 (= g), a pairwise sum of two unknown
blocks can be computed by using either m = 3 tuples (since
((3 ∗ 1− 3) mod 7 == 0)) or m=4 tuples (since ((4 ∗ 1 + 3)
mod 7 == 0)). Since the array construction uses only p− 1
rows, block p − 1 (i.e., pth block) on disk Y is assumed as
zero. Thus, the value of the block which is pairwise summed
with the pth block can automatically be computed. Using
other pairwise sums, the remaining blocks on disk Y can
then be recovered.

3.2.4 Use RDP double reconstruction to recover re-
maining two disks

Having recovered the middle disk, RDP double recon-
struction can be used to recover the remaining two disks,
thus completing the process of reconstructing three RAID 4
disks.

3.3 Reconstruction Using Matrix Methods
The reconstruction of an array can also be performed us-

ing matrix methods, as described by Hafner et al. [4]. The
algorithm described in that paper will not be repeated here,
but essentially, it provides a technique for recovering from
arbitrary combinations of data loss with a deterministic ma-
trix method. We improved significantly on the algorithm in
testing the ability of RTP to correct against arbitrary com-
binations of three disk failures. The essence of the improve-
ment was to reduce the memory consumption tremendously,
by a factor of 10,000, by reducing the set of surviving sym-
bols to their equivalent syndromes (a syndrome is defined as
the XOR sum of surviving symbols along a given direction,
row, diagonal, or anti-diagonal).
It may be simpler to use the matrix method of code re-

construction, especially after failures of three RAID 4 disks,
than to use the recursive reconstruction method described
in the previous section. Using the matrix method will com-
pletely recover all the disks using the minimum number of
symbols to recover each missing symbol directly. Thus there
is no need to recover the middle failed disk independently,
because it and the other two failed disks can be recovered
directly from the surviving syndromes in parallel.

4. SYMMETRIC RTP
This section describes a symmetric variant of RTP. Sym-

metric RTP uses the algorithm for computing parity identi-
cal to that used for triple reconstruction.
The mechanism used for converting asymmetric RTP to

its symmetric variant is generic enough and can be used
for converting other asymmetric horizontal codes to their
symmetric equivalents as well.
Symmetric RTP shares the same advantages as any other

D0 D1 D2 D3 X(P1) Y(P2) R(P3)
0 1 2 3 4 5 6
1 2 3 4 5 6 0
2 3 4 5 6 0 1
3 4 5 6 0 1 2
4 5 6 0 1 2 3
5 6 0 1 2 3 4

Diag A-diag
0 0
0 0
0 0
0 0
0 0
0 0

Figure 6: A symmetric RTP array

symmetric code (e.g., RAID 5). It enables a dynamic dis-
tributed parity organization which supports parity reloca-
tion during disk additions. Asymmetric RTP, on the other
hand, cannot be used in a similar RAID array. This is be-
cause diagonal and anti-diagonal parity blocks cannot be
relocated to newly added disks since they do not participate
in row parity computation.

A distributed parity organization not only allows all spin-
dles to be used for user I/Os, but also facilitates efficient
small writes. Since parity relocation can be seamlessly achieved,
these benefits can be incorporated within a disk-topology-
aware file system,without losing the ability to add disks to
a RAID group.

4.1 Array Construction and Parity Computa-
tion

A symmetric RTP array can be viewed as identical to its
asymmetric variant where the diagonal and anti-diagonal
parity disks are always zero. Parity computation within a
symmetric RTP array can be best understood as a triple re-
construction process within an equivalent asymmetric RTP
array.

Lets assume that we have an asymmetric RTP array with
the additional constraint that data can only be written to p−
3 disks. This implies that there are two fewer disks available
for data. Figure 6 shows the construction of an RTP array
(formed using prime p = 7) with this restriction. Although
the figure only shows the diagonal parity arrangement and
skips anti-diagonal formations, equivalent assertions apply
for both diagonal types. The data disks which cannot be
written to are marked X(P1) and Y(P2). Let R(P3) be the
row parity for the array.

When writing a stripe (covering only p − 3 disks), in-
stead of computing the diagonal and anti-diagonal parity
lets rather assume them to be zero. The diagonal and anti-
diagonal parity disks are shown as two separate columns
below the data disks. In practice, they are not physically
present as their contents are always zero. Using the asym-
metric RTP triple reconstruction algorithm, compute blocks
on disks X, Y , and R. Triple reconstruction in this case fol-
lows the algorithm used for recovering three RAID 4 disks.
Since we know that asymmetric RTP can correctly recover
from triple erasures, it implies that for a given combination
of values on disks D0, D1, D2, D3, Diag and A-Diag par-
ity, there exists a unique set of values for disks X,Y , and R
such that the array satisfies the parity invariant along the
three dimensions, row, diagonal, and anti-diagonal. For each
of the p diagonals and anti-diagonals, an array constructed
using this method satisfies the following properties:

• Diagonal parity sum is zero including the missing di-
agonal, since all the blocks on the diagonal parity disk
are zeroes.

• Anti-diagonal parity sum is zero including the missing



anti-diagonal, since all the blocks on the anti-diagonal
are zeroes.

By updating X,Y , and R in this manner, we can guar-
antee that the diagonal and anti-diagonal disks are always
zero. Hence, the diagonal and anti-diagonal parity disks can
be dropped from the array, and instead disks X and Y can
be treated as two parity disks. Together with the row parity
disk, R, the disks X, Y and R now form the three parity
disks (renamed P1, P2, and P3) for the RAID group.
Full stripe writes (spanning p − 3 data disks) and parity

computation by recalculation can be performed using the
method just described. Parity computation by subtraction,
on the other hand, first requires computing the delta for the
modified blocks. Starting with the data delta and ignoring
data disks not being written to, the parity computation al-
gorithm (same as triple reconstruction) can now be applied
to compute the parity delta. Contents of the parity disks
can then be updated using this delta to compute the new
values.

5. ANALYSIS
In this section we analyze the performance of RTP, from

the perspective of both I/O as well as computation com-
plexity measured in terms of the number of XORs required.
We also compare RTP with another triple erasure correct-
ing code called STAR [5]. Since RTP stores data unencoded,
there is no penalty on read operations. The amount of I/O
required for both parity computation as well as triple re-
construction is optimal. However, since a complete row,
diagonal and anti-diagonal parity set is formed over p − 1
stripes, the number of I/Os required for full stripe writes
by the file system might be sub-optimal. As stated in the
implementation considerations section this can, however, be
handled by dividing a single block into p−1 sub-chunks and
forming a selfcontained parity set within a single stripe of
such blocks.

5.1 Parity computation complexity
For an RTP array consisting of p − 1 rows and p − 1

data disks (i.e., p + 2 disks including parity), the number
of XORs required for writing a set of stripes constituting a
self-contained parity set can be computed as:

number of XORs required for row parity

+diagonal parity + anti-diagonal parity

=
(

p− 1
)(

p− 2
)

+
(

p− 1
)(

p− 2
)

+
(

p− 1
)(

p− 2
)

= 3p2 − 9p+ 6 (9)

One can prove that for an array of n data disks, the mini-
mum number of per-block XORs required to protect against
three failures is 3−3/n. The proof follows from observations
similar to those used for proving RDP optimality [3]. The
singleton bound requires a minimum of three parity blocks
per row of, say, n data blocks. Each data block must con-
tribute to at least three different parity blocks, one on each
parity disk to ensure that recovery is possible if the data
block and two parity disks are lost. In the minimal for-
mulation, parity blocks are computed using equations that
contain no common pairs of data blocks. This is because in
the absence of one of the parity disks it must still be possi-
ble to recover from two additional failures. Hence, equations
corresponding to the surviving parity disks cannot contain

a common pair of data blocks. Assuming r rows, the mini-
mum number of separately XOR-ed input terms required to
construct 3r parity blocks is thus 3nr. A set of 3r equations
that reduces 3nr terms to 3r using XORs requires 3nr− 3r
XORs. Therefore, the minimum number of per-blockXORs
required for triple protection is

(

3nr − 3r
)

/nr = 3− 3/n (10)

Substituting p−1 = n in Equation 9 (since there are p−1
data blocks in each stripe), the number of XORs required to
protect n2 blocks can be computed as 3n2−3n, which is the
minimum based on Equation 10. Thus, parity computation
complexity for RTP is optimal.

5.2 Reconstruction complexity
Since reconstruction complexity for double-parity RDP is

optimal, the same is true for single and double disk recon-
structions in RTP. In addition, the computation complexity
for triple disk reconstruction is also optimal for all com-
binations of failures except those involving three RAID 4
disks. For failure scenarios involving three RAID 4 disks, the
computation complexity depends upon the distance between
failed disks. This section analyzes the number of XORs re-
quired for this case. Computing dropped diagonal and anti-
diagonal parity (section 3.2.1) requires XOR-ing p−1 blocks
on both diagonal as well as anti-diagonal parity disks, for a
total of 2(p − 2) XORs. For an RTP array using k data
disks, row sums of missing blocks require (k − 3)(p − 1)
XORs. Diagonal and anti-diagonal sums of missing blocks,
on the other hand, require an extra (p−1) XORs each since
the diagonal and anti-diagonal parity blocks must also be
included. Hence, the total computation complexity of this
step is equivalent to the computation complexity for com-
puting dropped diagonal D′ and anti-diagonal parity A′ as

2(p− 2) + 3(k − 3)(p− 1) + 2(p− 1) (11)

Each 4-tuple sum (section 3.2.2) requires 3XORs. Since p
such tuples are created, the complexity of this step is equiva-
lent to the computation complexity for creating the 4-tuple,
which is 3p.

Computation complexity for

creating the 4− tuple sums = 3p (12)

If recovery of the middle disk is achieved by using the
approach for reducing tuples to pairwise sums, then (m−1)
XORs are required for computing each pairwise sum (as
defined in section 3.2.3, m is the number of 4-tuple sums
which must be combined to reduce to a pairwise sum). Since
(p−1) such pairs are computed, the complexity of this step is
equivalent to the complexity of reducing tuples to pair-wise
sums, computed as (m− 1)(p− 1).

The complexity of reducing tuples

to pairwise sums = (m− 1)(p− 1) (13)

Starting with pairwise sums, the number of XORs re-
quired to recover all blocks on the middle disk is (p− 2).

The number of XORs required to fully

recover middle disk = (p− 2) (14)



To recover the remaining two disks (section 3.2.4) using
RDP double reconstruction [3], blocks on the middle disk
must be added to the row and diagonal sums of missing
blocks. Alternately, double reconstruction could be per-
formed using anti-diagonals instead of diagonals. Although
there are p diagonals/anti-diagonals, double reconstruction
doesn’t require those which are dropped. Subsequently, re-
covering blocks on the remaining two disks requires 2(p −

1)− 1 XORs. Hence, the complexity of this step is

2(p− 1) + 2(p− 1)− 1 (15)

Summing equations 11 through 15, we can calculate the
total triple reconstruction complexity for an RTP array with
k disks as

2(p− 2) + 3(k − 3)(p− 1) + 2(p− 1) + 3p+

(m− 1)(p− 1) + (p− 2) + 2(p− 1) + 2(p− 1)− 1

= (3k +m+ 2)(p− 1)− 1 (16)

The reconstruction complexity in an RTP array depends
on m. The minimum complexity case arises for equidistant
failures where m = 1. Since 1 ≤ m ≤ (p − 1), the re-
construction complexity could be high for higher values of
m. Hence, an ordering of failed disks is chosen in a manner
which results in the smallest m.

5.3 Comparison with STAR
STAR [5] is a horizontal triple erasure correcting code

which is derived from EVENODD. STAR extends EVEN-
ODD by adding a new parity disk which is used for storing
orthogonal diagonals. This is similar to RTP. However, since
an RTP array is constructed by extending RDP, it is com-
putationally more efficient compared to STAR. For n data
disks and n(n−1) data blocks, parity computation in STAR
requires a total of (n − 1)(n − 1) + 2n(n − 2) + 2(n − 1) =
3n2 − 4n− 1 XORs. Hence, the number of XORs required
per block = (3n2−4n−1)/(n2−n) = 3−1/(n−1) which is
greater than that required for RTP. The difference is more
pronounced on smaller disk array sizes, which are typical of
most storage systems.
For triple reconstructions, the pairwise sum approach used

by RTP is similar to that used by STAR. However, the set of
linear equations described by the collection of 4-tuple sums
can be solved by other, perhaps more efficient, methods as
well.
The triple reconstruction complexity of STAR is:

(3k + 2m+ n)(p− 1) (17)

In Equation 17, n refers to the number of rows in a ring
which are cancelled through substitution. Since each new
cross substitutes symbols in at most two rows, the inequality
m ≤ n ≤ 2m must hold true. The value of m (number of
crosses in a ring) depends upon the distance between failed
disks and the prime p used for constructing the array. For
the purpose of this comparison, m used in Equation 17 can
be treated as identical to that used for RTP in Equation 16.
In general, m satisfies the inequality 1 ≤ m ≤ (p−1). Hence,
for a given p, the worst-case reconstruction complexity for
STAR can be much higher than that for RTP. For example,
in a 12 data disk array constructed using p = 31,m = 5
implies that STAR would require approximately 23% more
XORs than RTP.

While the average value of m is much lower than p, the
same is not necessarily true for its relation with k, the num-
ber of data disks. As a result, for large primes, the term
(2m + n)(p − 1) can be a significant contributor to the re-
construction complexity for STAR [5]. The RTP triple re-
construction algorithm would perform significantly better
than STAR in such cases.

6. IMPLEMENTATIONCONSIDERATIONS
To ensure efficient full stripe writes, where parity compu-

tation can be done without reading any blocks, a complete
parity set must be contained within a single system block
size. Since block sizes are typically chosen as a power of
2, selecting a prime of the form 2n + 1 allows formation of
row, diagonal, and anti-diagonal parity sets within a single
system stripe by dividing a block into n sub-blocks.

Since parity computation in Symmetric RTP is based on
RTP’s triple reconstruction algorithm, it is computationally
less efficient than the asymmetric version. Besides, parity
computation complexity is variable depending on the dis-
tance between the parity disks. The minimum complexity
case occurs when the distance between the parity disks is the
same. When creating a new Symmetric RTP array, parity
placement can be chosen keeping the above consideration in
mind. As parity gets relocated to newly added disks, it is
possible for the computational complexity to increase. Since
the worst-case complexity is high, it might not be possible
to always achieve a good parity balance across newly added
disks. However, single disk additions are rare. By imposing
restrictions on the minimum number of disks that can be
added to a RAID group, it should be possible to relocate
parity blocks while still ensuring efficient parity computa-
tions. This should help keep bounds on the computational
complexity to a predetermined maximum.

7. RELATEDWORK
Other algorithms that provide protection against three or

more drive failures include STAR [5] , Reed Solomon (P+Q)
erasure codes [5], MDS array codes [2], and Datum. Like
RTP, STAR and Reed Solomon codes are horizontal codes
where redundant information is stored separately from data
blocks. This ensures flexible data layout since these algo-
rithms do not place any constraint on mixing parity infor-
mation with data

Both Reed Solomon and STAR codes compute row parity
in a manner similar to that for RAID 4 or RAID 5. However,
the algorithm used for computing the second and third par-
ity information is different. Although Reed Solomon codes
can tolerate higher orders of failures, the computation com-
plexity is significantly higher since these codes use finite field
operations intensively.

RTP most closely resembles STAR. This is primarily be-
cause RTP extends from RDP [3], which is similar to EVEN-
ODD [1]. STAR, in turn, is derived from EVENODD. Un-
like STAR, the encoding complexity for RTP is optimal. Of
the existing algorithms, STAR and MDS codes have the low-
est decoding complexity. However, the complexity of MDS
codes is high for RAID arrays using a small number of disks.
RTP improves upon STAR and MDS codes by further re-
ducing the decoding complexity.

8. CONCLUSION



RTP is a triple disk failure protection algorithm that is
provably optimal with respect to parity computation. This
is important since in a normal, failure-free operation mode,
the parity computation overhead is incurred for every write.
The decoding complexity for RTP is also much lower than
for other triple fault-tolerant erasure codes.
For parity-based RAID arrays, the ability to tolerate three

failures ensures extremely high availability of the array as
a whole. It permits the use of cheap, unreliable disks (e.g.,
ATA, SATA) while still ensuring high levels of reliability.
It also provides a viable alternative to mirroring schemes
like RAID 1 since the worst- case fault tolerance levels are
the same. RTP can be efficiently incorporated within a log-
structured file system, which does not suffer from the small-
write parity update overhead problem.
Future work on RTP involves further reducing the decod-

ing complexity and adapting it to handle higherorder fail-
ures.

c© 2012 NetApp, Inc. All rights reserved. No portions
of this document may be reproduced without prior written
consent of NetApp, Inc. Specifications are subject to change
without notice. NetApp, the NetApp logo, and Go further
are trademarks or registered trademarks of NetApp, Inc. in
the United States and/or other countries. All other brands
or products are trademarks or registered trademarks of their
respective holders and should be treated as such.

9. REFERENCES
[1] M. Blaum, J. Brady, J. Bruck, and J. Menon. Evenodd:

An efficient scheme for tolerating double disk failures in
raid architectures. In Proc. of the Annual International

Symposium on Computer Architecture., pages 245–254,
1994.

[2] M. Blaum, J. Bruck, and A. Vardy. Mds array codes
with independent parity symbols. IEEE Trans.

Information Theory., 42(2):529–542, March 1996.

[3] P. Corbett, B. English, A. Goel, T. Grcanac,
S. Kleiman, J. Leong, and S. Sankar. Row-diagonal
parity for double disk failure correction. Proc. of
USENIX FAST, March-April 2004.

[4] J. L. Hafner, V. Deenadhayalan, and K. K. Rao. Matrix
methods for lost data reconstruction in erasure codes.
Proc. of USENIX FAST, San Francisco, CA, December
2005.

[5] C. Huang and L. Xu. Star : An efficient coding scheme
for correcting triple storage node failures. Proc. of
USENIX FAST, December 2005.

[6] F. J. MacWilliams and J. J. A. Sloane. The theory of
error-correcting codes. 1977.

[7] D. Patterson, G. Gibson, and R. Katz. A case for
redundant arrays of inexpensive disks (raid). In
Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 109–116,
1988.


