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Abstract. This paper describes a complete and efficient solution to the stochastic
allocation and scheduling for Multi-Processor System-on-Chip (MPSoC). Given
a conditional task graph characterizing a target application and a target architec-
ture with alternative memory and computation resources, we compute an alloca-
tion and schedule minimizing the expected value of communication cost, being
the communication resources one of the major bottlenecks in modern MPSoCs.
Our approach is based on the Logic Based Benders decomposition where the
stochastic allocation is solved through an Integer Programming solver, while the
scheduling problem with conditional activities is faced with Constraint Program-
ming. The two solvers interact through no-goods. The original contributions of
the approach appear both in the allocation and in the scheduling part. For the
first, we propose an exact analytic formulation of the stochastic objectivefunc-
tion based on the task graph analysis, while for the scheduling part we extend
the timetable constraint for conditional activities. Experimental results show the
effectiveness of the approach.

1 Introduction

The increasing levels of system integration in Multi-Processor Systems on Chips (MP-
SoCs) emphasize the need for new design flows for efficient mapping of multi-task
applications onto hardware platforms. The problem of allocating and scheduling con-
ditional, precedence-constrained tasks on processors in adistributed realtime system
is NP-hard. As such, it has been traditionally tackled by means of heuristics, which
provide only approximate or near-optimal solutions, see for example [1], [2], [3].

In a typical embedded system design scenario, the platform always runs the same
application. Thus, extensive analysis and optimization can be performed at design time.
This paper proposes a complete decomposition approach to the allocation and schedul-
ing of a conditional multi-task application on a multi-processor system-on-chip (MP-
SoCs) [4]. The target application is pre-characterized andabstracted as a Conditional
Task Graph (CTG). The task graph is annotated with computation (e.g., execution time),
communication (e.g., number of bits to be communicated between tasks), storage (e.g.,
size of data and instruction memory required to execute the task) requirements. How-
ever, not all tasks will run on the target platform: in fact, the application contains condi-
tional branches (like if-then-else control structures). Therefore, after an accurate appli-
cation profiling step, we have a probability distribution oneach conditional branch that
intuitively gives the probability of choosing that branch during execution.
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This paper proposes a non trivial extension to [5] that used Logic Based Benders
decomposition [6] for resource assignment and scheduling in MPSoCs. In that paper,
however, task graphs did not contain conditional activities. Allocation and scheduling
were therefore deterministic. The introduction of stochastic elements complicates the
problem.

We propose two main contributions: the first concerns the allocation component.
The objective function we consider depends on the allocation variables. Clearly, hav-
ing conditional tasks, the exact value of the communicationcost cannot be computed.
Therefore our objective function is the expected value of the communication cost. We
propose here to identify an analytic approximation of this value. The approximation is
based on the Conditional Task Graph analysis for identifying two data structures: the
activation set of a node and the coexistence set of two nodes.The approximation turns
out to be exact and polynomial.

The second contribution concerns scheduling. We propose anextension of the time-
table constraint for cumulative resources, taking into account conditional activities. Its
deterministic version [7] is available in ILOG Scheduler. The use of the so calledop-
tional activities(what we call conditional tasks) has been taken into accountin [8] for
filtering purposes into the precedence graph, originally introduced by Laborie in [9]. To
the best of our knowledge, only disjunctive constraints have been defined in presence
of conditional activities in [10].

In the system design community, this problem is extremely important and many
researchers have worked extensively on it, mainly with incomplete approaches: for in-
stance in [1] a genetic algorithm is devised on the basis of a conditional scheduling table
whose (exponential number of) columns represent the combination of conditions in the
CTG and whose rows are the starting times of activities that appear in the scenario. The
number of columns is indeed reasonable in real applications. The same structure is used
in [10], which is the only approach that uses Constraint Programming for modelling the
allocation and scheduling problem. Indeed the solving algorithm used is complete only
for small task graphs (up to 10 activities).

Besides related literature for similar problems, the Operations Research community
has extensively studied stochastic optimization in general. The main approaches are:
sampling [11] consisting in approximating the expected value with its average value
over a given sample; thel-shapedmethod [12] which faces two phase problems and is
based on Benders Decomposition [13]. The master problem is adeterministic problem
for computing the first phase decision variables. The subproblem is a stochastic problem
that assigns the second phase decision variables minimizing the average value of the
objective function. A different method is based on the branch and bound extended for
dealing with stochastic variables, [14].

The CP community has recently faced stochastic problems: in[15] stochastic con-
straint programming is formally introduced and the conceptof solution is replaced with
the one ofpolicy. In the same paper, two algorithms have been proposed based on
backtrack search. This work has been extended in [16] where an algorithm based on
the concept of scenarios is proposed. In particular, the paper shows how to reduce the
number of scenarios, maintaining a good expressiveness.
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This paper is organized as follows: in section 2 we present the architecture and
the target application considered. In section 3 we present the allocation and scheduling
models used. Experimental results are shown in section 4.

2 Problem description

2.1 The architecture

Multi Processor Systems on Chips (MPSoCs) are multi core architectures developed on
a single chip. They are finding widespread application in embedded systems (such as
cellular phones, automotive control engines, etc.). Once deployed in field, these devices
always run the same application, in a well-characterized context. It is therefore possible
to spend a large amount of time for finding an optimal allocation and scheduling off-
line and then deploy it on the field, instead of using on-line,dynamic (sub-optimal)
schedulers [17, 18].

BUS INTERFACE

PROCESSOR

TIGHTLY COUPLED
MEMORY

SHARED SYSTEM BUS

PE
1

PE
n

REMOTE ON CHIP MEMORY

. . . .

Fig. 1. Single chip multi-processor architecture.

The multi-processor system we consider consists of a pre-defined number of dis-
tributed Processing Elements (PE) as depicted in Figure 1. All nodes are assumed to
be homogeneous and composed by a processing core and by a low-access-cost local
scratchpad memory. Data storage onto the scratchpad memoryis directly managed by
the application, and not automatically in hardware as it is the case for processor caches.

The scratchpad memory is of limited size, therefore data in excess must be stored
externally in a remote on-chip memory, accessible via the bus. The bus for state-of-
the-art MPSoCs is a shared communication resource, and serialization of bus access
requests of the processors (the bus masters) is carried out by a centralized arbitration
mechanism. The bus is re-arbitrated on a transaction basis (e.g., after single read/write
transfers, or bursts of accesses of pre-defined length), based on several policies (fixed
priority, round-robin, latency-driven, etc.). Modeling bus allocation at such a fine gran-
ularity would make the problem overly complex, therefore a more abstract additive bus
model was devised, explained and validated in [5] where eachtask can simultaneously
access the bus requiring a portion of the overall bandwidth.The communication re-
source in most cases ends up to be the most congested resource. Communication cost
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is therefore critical for determining overall system performance, and will be minimized
in our task allocation framework.

2.2 The target application

The target application to be executed on top of the hardware platform is the input to
our algorithm. It is represented as a Conditional Task Graph(CTG). A CTG is a triple
〈T,E,C〉, whereT is the set of nodes modeling generic tasks (e.g. elementary opera-
tions, subprograms, ...),E the set of edges modeling precedence constraints (e.g. due
to data communication), andC is a set of conditions, each one associated to an arc,
modeling what should be true in order to choose that branch during execution (e.g. the
condition of a if-then-else construct). A node with more than one outgoing arc is said
to be abranch if all arcs are conditional, afork if all arcs are not conditional; mixed
nodes are not allowed. A node with more than one ingoing arc isanor-nodeif all arcs
are mutually exclusive, it is instead anand-nodeif all arcs are not mutually exclusive;
again, mixed nodes are not allowed.

Since the truth or the falsity of conditions is not known in advance, the model is
stochastic. In particular, we can associate to each branch astochastic variableB with
probability space〈C,A, p〉, whereC is the set of possible branch exit conditionsc, A
the set of events (one for each condition) andp the branch probability distribution (in
particularp(c) is the probability that conditionc is true).

We can associate to each node and arc an activation function,expressed as a com-
position of conditions by means of the logical operators∧ and∨. We call itfi(X(ω)),
whereX is the stochastic variable associated to the composite experimentB0 × B1 ×
... × Bb (b = number of branches) andω ∈ D(B0) × D(B1) × ... × D(Bb) (i.e. ω is a
scenario).

Computation, storage and communication requirements are annotated onto the graph.
In detail, the worst case execution time (WCET) is specified for each node/task and
plays a critical role whenever application real time constraints (expressed here in terms
of deadlines) are to be met.

Each node/task also has three kinds of associated memory requirements:

– Program Data: storage locations are required for computation data and for proces-
sor instructions.

– Internal State
– Communication queues: the task needs queues to transmit and receive messages

to/from other tasks, eventually mapped on different processors.

Each of these memory requirement can be allocated either locally in the scratchpad
memory or remotely in the on-chip memory.

Finally, the communication to be minimized counts two contributions: one related
to single tasks, once computation data and internal state are physically allocated to the
scratchpad or remote memory, and obviously depending on thesize of such data; the
second related to pairs of communicating tasks in the task graph, depending on the
amount of data the two tasks should exchange.
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3 Model definition

As already presented and motivated in [5], the problem we arefacing can be split into
the resource allocation master problem and the scheduling sub-problem.

3.1 Allocation problem model

With regards to the platform described in section 2.1, the allocation problem can be
stated as the one of assigning processing elements to tasks and storage devices to their
memory requirements.

Supposen is the number of tasks,p the number of processors, andm the number of
arcs. We introduce for each task and each PE a variableTij such thatTij = 1 iff task
i is assigned to processorj. We also define variablesMij such thatMij = 1 iff task i

allocates its computation memory locally,Mij = 0 otherwise. Similarly we introduce
variablesSij for taski state requirements andErj for arcr communication queue.X
is the stochastic variable associated to the scenarioω.

The allocation model, where the objective function is the minimization of bus traffic
expected value, is defined as follows:

min z = E(busTraffic(M,S,E,X(ω)))

s.t.

p−1
∑

j=0

Tij = 1 ∀i = 0, .., n (1)

Sij ≤ Tij ∀i = 0, .., n − 1, j = 0, .., p − 1 (2)

Mij ≤ Tij ∀i = 0, .., n − 1, j = 0, .., p − 1 (3)

Erj ≤ Tij ∀er = (ti, tk), r = 0, ..,m (4)

Erj ≤ Tkj ∀er = (ti, tk), r = 0, ..,m (5)
∑

i

[siSij + miMij ] +
∑

r

crErj ≤ Cj ∀j = 0, .., p − 1 (6)

Constraints (1) force each task to be assigned to a single processor. Constraints (2)
and (3) state that computation and state memory can be locally allocated on the PEj
only if task i runs on it. Constraints (4) and (5) enforce that the communication queue
of arc r can be locally allocated only if both the source and the destination tasks run
on processorj. Finally, constraints (6) ensure that the sum of locally allocated state
(si), computation (mi) and communication (cr) memory cannot exceed the scratchpad
device capacity (Cj). All tasks have to be considered here, regardless they willexecute
or not at runtime, since a scratchpad memory is, by definition, statically allocated. In
addition, some symmetries breaking constraints have been added to the model.

The bus traffic expression is composed by two contributions:one depending on
single tasks and one due to the communication between pairs of tasks.

busTraffic=
∑n−1

i=0 taskBusTraffici +
∑

er=(ti,tk) commBusTrafficr
where

taskBusTraffici =
∑n−1

i=0 fi(X(ω))
[

mi(1 −
∑p−1

j=0 Mij) + si(1 −
∑p−1

j=0 Sij)
]

commBusTrafficr = fi(X(ω))fk(X(ω))cr(1 −
∑p−1

j=0 Erj)



6

wheremi andsi, are the bus traffic contributions due to taski program data and
internal state, andcr is the traffic due to communication through arcr.

Note that, in the “task bus traffic” expression, if taski executes (thusfi(X(ω)) =

1), then1 −
∑p−1

j=0 Mij is 1 iff task i computation memory is allocated on the remote
memory and the same holds for the state. Traffic contributions due to communications
have to be considered if both the source and the destination task execute (fi(X(ω)) =

fk(X(ω)) = 1) and the queue is remotely allocated (1 −
∑p−1

j=0 Erj = 1).

In most cases, the minimization of a stochastic functional,such as the expected
value, is a very complex operation (even more than exponential), since it often requires
to repeatedly solve a deterministic subproblem [12]. The cost of such a procedure is
not affordable for hardware design purposes if the deterministic subproblem is by itself
NP-hard, which is our case.

One of the main contributions of this paper is the way to reduce the bus traffic
expected value to a deterministic expression.

Since all task have to be assigned before running the application, the allocation is a
stochasticone phaseproblem: thus, for a given task-PE assignment, the expectedvalue
depends only on the stochastic variables.

Intuitively, if we properly weight the bus traffic contributions according to task prob-
abilities we should be able to get an analytic expression forthe expected value.

Now, since both the expected value operator and the bus traffic expression are linear,
the objective function can be decomposed into task related and arc related blocks:

E(busTraffic) =
n−1
∑

i=0

E(taskBusTraffici) +
∑

er=(ti,tk)

E(commBusTrafficr)

Since for a given allocation the objective function dependsonly on the stochastic
variables, the contributions of decision variables are constants: we call themKTi =
mi(1−

∑p−1
j=0 Mij) + si(1−

∑p−1
j=0 Sij), KEr = cr(1−

∑p−1
j=0 Erj). Let us callp(ω)

the probability of scenarioω.
So

E(taskBusTraffici) =
∑

ω∈Ω

p(ω)fi(X(ω))KTi

and
E(commBusTrafficr) =

∑

ω∈Ω

p(ω)fi(X(ω))fk(X(ω))KEr

Substituting
∑

ω∈Ω

p(ω)fi(X(ω))KTi ↔ KTi

∑

ω∈Ω1
i

p(ω)

and
∑

ω∈Ω

p(ω)fi(X(ω))fk(X(ω))KEr ↔ KEr

∑

ω∈Ω1
i
∩Ω1

k

p(ω)

with Ω1
i = {ω | taski executes}, every stochastic dependence is removed and the

expected value is reduced to a deterministic expression.
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Note that
∑

ω∈Ω1
i
p(ω) is simply the existence probability of node/taski while

∑

ω∈Ω1
i
∩Ω1

k
p(ω) is the coexistence probability of nodesi andk.

To apply the transformation we need both those probabilities; moreover, to achieve
an effective overall complexity reduction, they have to be computed in a reasonable
time. We developed a set of polynomial cost algorithms to compute those probabilities.
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b bc c

d d
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EM =
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Fig. 2.An example of the three data structures

All developed algorithms are based on three types of data structure referred in Fig-
ure 2 to the CTG on the left: the first is saidactivation setof a noden (AS(n)), or of an
arce (AS(e)) and it is the set of all upstream conditions on the paths fromthe starting
node to the specific noden or arce; we introduced also ac× c (c is the number of con-
ditions) binaryexclusion matrix (EM)such thatEMij = 1 iff ci andcj are mutually
exclusive (i.e. they originate at the same branch), and ac×c sequence matrix (SM)such
thatSMij = 1 iff ci andcj are both needed to activate some node or arc in the CTG.

algorithm: Activation set probability (A1) – probability of a node or an arc

1. let S be the input set for this iteration; initially S = AS(n)
2. find a condition ch ∈ S such that (EMh \ ch) ∩ S 6= ∅

3. if such a condition doesn’t exist return p =
∏

c∈S
p(c)

4. otherwise, set B = EMh ∩ S (branch conditions)
5. compute set C = S ∩

⋂

ci∈B
SMi (common conditions)

6. compute set R =
⋂

ci∈B
(S \ SMi) (rest)

7. set p = 0
8. for each condition ci ∈ B:

8.1. set p = p + A1((S ∩ SMi) \ (C ∪ R))
9. set p = p ∗ A1(C) ∗ A1(R)

10. return p

end

All these data structures can be extracted from the graph in polynomial time. Once
they are available, we can determine the probability of a node or an arc using algorithm
A1, which hasO(c3) complexity representing sets as bit vectors; in the algorithm the
notationSMi stands for the set of conditions “sequenced” with a given one(SMi =
{cj |SMij = 1}); the same holds forEMi.
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Algorithm A1 works recursively partitioning the activation set of the target node or
arc: first it looks for a group of mutually exclusive conditions (theB set), seeb andnot
b in figure 3. If there is no such condition the probability of set S is the product of the
ones of its elements (step 3). The algorithm then builds a “common” (C) and a “rest”
(R) set: the first contains conditionscj such thatSMij = 1 ∀ci ∈ B, the second
conditionsch such thatSMih = 0 ∀ci ∈ B. Finally A1 builds for each found branch
condition a set containing the sequenced conditions (S∩SMi at step 8.1), chainsb and
not c andnot b andd in figure 3.

A1 is then recursively called on all these sets. The probabilities of sets correspond-
ing to mutually exclusive conditions are summed (step 8.1),the ones ofC andR are
multiplied (step 9).

aa

b b

e

e

c
dc

d

AS = {a, b, b, c, d}

b

b
a

d

c

p(b)

p(b)
p(a)

p(d)

p(c)*

*

+*

A

AS = {a, b, b, c, d}

C = {a} R = Æ

B

C

D

E

Fig. 3. Activation Set Probability (A1)

algorithm: Coexistence set determination (A2)

1. if ASi = ∅ then CS = ASi; the same if ASj = ∅
2. otherwise, if there are still not processed conditions in ASi, let ch be the first of them:

2.1. compute set S = ASi ∩ SMh (sequenced conditions)
2.2. compute the exclusion set EX(S)

2.3. compute set C = ASj ∩
⋃

ck∈ASj∩EX(S)
SMk (conditions candidates for clear operation)

2.4. compute set R = ASj ∩
⋃

ck∈ASj\C
SMk (conditions to spare)

2.5. set D = C \ R (conditions to clear)
2.6. if ASj is not a subset of D:

2.6.1. set CS(ASi, ASj) = CS(ASi, ASj) ∪ S ∪ (ASj \ D)

end

Given a set of nodes or arcs, we can determine a kind of common activation set
(coexistence set (CS)) using algorithm A2, whose inputs are twoAS (ASi, ASj) and
whose complexity is againO(c3):

The notationEX(S) stands for the exclusion set, i.e. the set of conditions surely
excluded by those inS; it can be computed inO(c2).

Suppose we have the activation sets of two nodesni andnj : then A2 works trying to
find all paths fromni to a source (backward paths) and from the source tonj (forward
paths). The algorithm starts building a group of backward paths; it does it by choosing
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Fig. 4.Coexistence set computation

a condition (for instance conditiona in 1 figure 4) and finding all other conditions

sequenced with it (setS in 2 figure 4).
Then the algorithm finds the exclusion set (EX(S)) of setS and intersects it with

AS(nj). In 3 figure 4 the only condition in the intersection isnot a (crossed arc):
conditions in the intersection and those sequenced with them are called “candidates
conditions” (setC in 3 figure 4). These conditions will be removed fromAS(nj),
unless they are sequenced with one or more non-candidate conditions, i.e., they belong
to the setR (for instance conditionf is in sequence withnot b and is not removed
from AS(nj) in 4 , figure 4). The conditions not removed fromAS(nj) identify a
set of forward paths we are interested in. The algorithm goeson until all conditions
in AS(ni) are processed. If there is no path fromni to nj (i.e. the coexistence set is
empty) the two nodes are mutually exclusive.

The probability of a coexistence set can be computed once again by means of A1:
thus, with A1 and A2 we are able to compute the existence probability of a single node
or arc and the coexistence probability of a group of nodes or arcs. Since the algorithms
complexities are polynomial, the reduction of the bus traffic to a deterministic expres-
sion can be done in polynomial time.

3.2 Scheduling Model

The scheduling subproblem was solved by means of ConstraintProgramming. Since the
objective function depends only on the allocation of tasks and memory requirements,
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scheduling is just a feasibility problem. Therefore we decided to provide a unique
schedule, dynamically considering for each task the longest ingoing path.

Tasks using the same resources can overlap if they are on alternative paths (under
two mutually exclusive conditions): if we model the resources in order to take into
account this behavior, we get an exact schedule for the worsttask track, provided there
are no ambiguous nodes.We say two nodes are ambiguous if theyare mutually exclusive
w.r.t some paths and not mutually exclusive w.r.t. other paths.

Tasks have a five phases behavior: they read all communication queues (INPUT),
eventually read their state (RS), execute (EXEC), write their states (WS) and finally
write all the communications queues (OUTPUT). Each task is modeled as a group of
not breakable activities; the adopted schema and precedence relations vary with the type
of the corresponding node (or/and, branch/fork): figure 5 summarizes all used rules.
In the picture the black arrows represent immediate precedence relations (end(A) =
start(B)), while the gray hyphened arrows are simple precedence relations (end(A) ≤
start(B)).

RS-EXEC-WSREAD
RS-EXEC-WSREAD

READ

READ

COVER

READING PHASE

EXEC EXECRS WR

COVER

RS-EXEC-WS WRITE

COVER

RS-EXEC-WS WRITE

WRITE

WRITE

RS-EXEC-WS
WRITE

WRITE

WRITE

WR RD

READ STATE/EXECUTE/WRITE STATE PHASES

WRITE PHASE COMMUNICATION

SIMPLE TASK TASK WITH MORE THAN ONE INGOING ARC SIMPLE TASK TASK WITH STATE

SIMPLE TASK BRANCH FORK

Fig. 5. Task decomposition schema

Each activity duration is an input parameter and can vary depending on the alloca-
tion of internal state and program data.

The processing elements are unary resources: we modeled them defining a simple
disjunctive constraint proposed in [10].

The bus, as in [5], was modeled as a cumulative resource, according with the so
called “additive model”, which allows an error less than 10%until bandwidth usage is
under 60% of the real capacity.

Computing the bus usage in presence of alternative activities is not trivial, since the
bus usage varies in a not linear way and every activity can have its own bus view (see
fig 6).

We modeled the bus implementing a timetable like constraintfor cumulative re-
sources in the not preemptive case. The constraint keeps a list of all known entry and
exit points of activities: given an activityA, if lst(A) ≤ eet(A) then the entry point of
A is lst(A) andeet(A) is its exit point (wherelst stands for latest start time and so on).
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algorithm: Cumulative resource constraint with alternative activ ities (A3)

1. time = est(a), finish = eet(a)
2. latestGoodTime = time
3. good = true
4. While ¬ [(good = false ∧ time > lst(a)) ∨ (good = true ∧ time >= finish)]:

4.1. if busreq(a) + usedBandwith > busBandwidth:
4.1.1. time = next exit point
4.1.2. good = false

4.2. else:
4.2.1. time = next entry point
4.2.2. if good = false:

4.2.2.1. lastGoodTime = time
4.2.2.2. finish = max(finish, time + mindur(a))
4.2.2.3. good = true

5. if good = true: est(a) = lastGoodTime
6. else: fail

end

Let A be the target activity: A3 scans the interval[est(A), finish) checking the
bus usage at all entry points (as long asgood = true). If it finds an entry point with
not enough bandwidth left it starts to scan all exit points (good = false) in order to
determine a new possible starting time for activityA. If such an instant is found its value
is stored (lastGoodT ime) and the finish line is updated (step 4.2.2.2), then A3 restarts
to scan other entry points, and so on. When the finish line is reached the algorithm
updatesest(A) or fails. A3 hasO(a(c + b)) complexity, wherea is the number of
activities, b the one of branches,c the number of conditions. The algorithm can be
easily extended to update alsolet(A): we tried to do it, but the added filtering is not
enough to justify the increased propagation time.

1(1)

2(1)

3(2)

ALREADY
SCHEDULED

t

ACTIVITY 4
BUS VIEW

3

2

1

4

5

ACTIVITY 5
BUS VIEW

MUTUAL EXCLUSION
RELATIONS

MUTUAL EXCLUSION

Fig. 6. Activity bus view; bus requirements of scheduled activities are between round brackets.
For instance activity 4 is not exclusive with 1, 2 and 3, but 2 and 3 are mutually exclusive.
Therefore, the bandwidth used by scheduled activities is the one of activity 1, then of 1 and 3 and
when 3 finishes, the one of activities 1 and 2.

The main difficulty of having conditional activities, is that each activity has its own
bus view depending on which activities are not exclusive with it. For instance in figure 6
activities 4 and 5 have a different view of the bus. A3 is able to compute the bandwidth
usage seen from each activity in linear time by taking advantage of a particular data
structure we introduced, named Branch Fork Graph (BFG). Forlack of space, we give
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only an intuition here. The BFG is like a skeleton of the relations between branch and
fork nodes in the original graph: once this structure has been extracted, each activity
can be mapped to one or more BFG nodes according to its activation set. For each
activity we keep also the entry and exit point (continuouslyupdated during search).
The bandwidth usage at a given time can be computed by parsingthe graph, which is
a linear time operation: the activation set of the target activity is used to select which
nodes of the BFG must be taken into account for the computation. The BFG makes it
possible to compute bus usage in a very efficient way, by making direct use of the graph
structure: if we only take into account the exclusion relations it would be an NP-hard
problem.

To have a polynomial time algorithm however the graph shouldsatisfy a particular
condition (called “Control Flow Uniqueness”) which statesthat each “and” node must
have a main ingoing arc, whose activation implies the activation of the other ingoing
arcs. This is not a very restrictive condition since it is satisfied by every graph resulting
from the natural parsing of programs written in a language such C++ or Java.

Each activity in the presented schema needs a processing element and requires an
amount of bus bandwidth if its data are remotely allocated. That amount is an input pa-
rameter and for communication and state activities is strongly greater than for execution
ones.

3.3 Benders cuts and subproblem relaxation

Each time the master problem solution is not feasible for thescheduling subproblem a
cut is generated which forbids that solution. Moreover, allsolutions obtained by per-
mutation of PEs are forbidden, too.

Unfortunately, this kind of cut, although sufficient, is weak; this is why we decided
to introduce another cut type, generated as follows: (1) solve to feasibility a single
machine scheduling model with only one PE and tasks running on it; (2) if there is no
solution the tasks considered cannot be allocated to any other PE.

The cut is very effective, but we need to solve an NP-hard problem to generate it;
however, in practice, the problem can be quickly solved.

With the objective to limit iteration number (which strongly influences the solution
method efficiency) we also inserted in the master problem a relaxation of the subprob-
lem. This forbids the allocator to store in a single processor a set of non mutually ex-
clusive tasks whose duration exceeds the time limit, and to assign memory devices in
such a way that the total length of a track is greater than the deadline.

4 Experimental results

We implemented all exposed algorithms in C++, using the state of the art solvers ILOG
Cplex 9.0 (for ILP) and ILOG Solver 6.0 (for CP).

We tested the method on two set of instances: the first ones arecharacterized by
means of a synthetic benchmark; peculiar input data of this problem (such as the branch
probabilities) were estimated via a profiling step. Instances of this first group are only
slightly structured, i.e. they have very short tracks and quite often contain singleton
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nodes: therefore we decided to generate a second group of instances, completely struc-
tured (one head, one tail, long tracks).

We tested all instances on a Pentium IV pc with 512MB RAM. The time limit for
the solution process was 30 minutes.

The results of the tests on the first group are summarized in the table 1, which reports
results for instances subgroups; in particular it shows foreach subgroup: the number
of activities (acts), the number of processing elements (PEs), the number of instances
in the group (inst.), the instances which were proven to be infeasible (inf.), the mean
overall time (in seconds), the mean time to analyze the graph(init), to solve the master
and the subproblem, to generate the no-good cuts and the meannumber of iterations
(it). The solution times are of the same order of the deterministic case (scheduling of
Task Graphs), which is a very good result, since we are working on conditional task
graphs and thus dealing with a stochastic problem.

For a limited number of instances the overall solving time was exceptionally high:
the last column in the table shows the number of instances forwhich this happened,
mainly due to the master problem (A), the scheduling problem(S) or the number of
iterations (I). The solution time of this instances was not counted in the mean; in general
it was greater than than thirty minutes.

acts PEs inst. inf. time init master sub nogood it A/S/I
10-12 2 6 0 0.0337 0.0208 0.0075 0.0027 0.0027 1.1667 0/0/0
13-15 2 8 1 0.5251 0.1600 0.0076 0.0040 0.0020 1.1250 0/0/0
16-18 2-3 12 0 0.1091 0.0922 0.0089 0.0067 0.0013 1.0833 0/0/0
19-21 2-3 14 1 0.1216 0.0791 0.0279 0.0079 0.0046 1.2143 0/0/0
22-24 2-3 23 4 0.2336 0.1520 0.0259 0.0061 0.0081 1.1739 0/0/0
25-27 2-3 16 3 1.7849 0.0319 1.7285 0.0108 0.0088 1.3125 0/0/0
28-30 2-3 13 2 0.3331 0.0284 0.0770 0.1900 0.0338 1.6667 0/1/0
31-33 3-4 4 2 0.3008 0.2303 0.0510 0.0040 0.0000 1.0000 0/0/0
34-36 3-4 13 4 0.6840 0.0204 0.4245 0.0132 0.0108 1.2308 0/0/0
37-39 3-4 7 0 1.5670 0.0399 1.2010 0.1384 0.1877 4.4286 0/0/0
40-42 3-4 6 3 2.9162 0.0182 0.5857 2.2267 0.0390 1.6667 0/0/0
43-45 3-4 6 1 5.3670 0.2757 4.8200 0.0630 0.2005 4.1667 0/0/0
46-48 4-5 11 0 3.2719 0.0508 0.6913 2.4616 0.0683 2.0000 1/2/0
49-51 4-5 11 1 1.9950 0.1840 1.7900 0.0071 0.0087 1.1111 1/1/0
52-54 5-6 6 0 8.0000 1.3398 1.5743 4.8788 0.2073 2.7500 1/1/0
55-67 6 8 0 2.2810 0.8333 1.4377 0.0100 0.0000 1.0000 1/4/0

Table 1.Results of the tests on the first group of instances (slightly structured)

Although this extremely high solution time occurs with increasing frequency as the
number of activities grows, it seems it is not completely determinated by that factor:
sometimes even a very small change of the deadline or of some branch probability
makes the computation time explode.

We guess that at least in several cases this happens since thescheduler efficiency
greatly relies on a very effective heuristic: for some inputgraph topologies and param-
eter configurations the heuristic does not make the right choices and thus the solution
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acts PEs inst. inf. time init master sub nogood it A/S/I
20-29 2 7 2 0.5227 0.0200 0.0134 0.0090 0.0021 8.8571 0/0/0
30-39 2-3 6 0 1.7625 0.0283 1.2655 0.2057 0.2630 5.8333 0/0/0
40-49 3 3 0 0.4380 0.0313 0.3493 0.0573 0.0000 1.0000 0/0/0
50-59 3-4 7 0 1.1403 0.0310 0.6070 0.2708 0.2315 3.6667 0/0/1
60-69 4-5 4 0 10.1598 0.0385 6.8718 1.2798 1.9698 18.0000 0/0/0
70-79 4-5 4 0 88.9650 0.0428 88.6645 0.2578 0.0000 1.0000 0/0/0
80-90 4-6 7 0 202.4655 0.0755 184.0177 6.5008 11.8715 28.6667 0/0/1

Table 2.Result of the tests on the second group of instances (completely structured)

time dramatically grows. In most cases the very high solution time is mainly due to the
scheduling problem. Perhaps this could be avoided by randomizing the solution method
and by using restart strategies [19].

mean time to gen. a cut
basic case: 0.0074
with relaxation based cuts (RBC): 0.0499

number of iterations
deadline basic case with RBC result
8557573 2 3 opt. found
625918 1 1 opt. found
590846 1 1 opt. found
473108 19 6 opt. found
464512 190 14 opt. found
454268 195 24 opt. found
444444 78 15 opt. found
433330 9 4 opt. found
430835 5 3 opt. found
430490 5 3 opt. found
427251 3 2 inf.

Table 3.Number of iterations without and with scheduling relaxation based cuts

The results of the second group of instances (completely structured) are reported
in table 2. In this case the higher number of arcs (and thus of precedence constraints)
reduces the time windows and makes the scheduling problem much more stable: no in-
stance solution time exploded due to the scheduling problem. On the other hand the in-
creased number of arcs makes the allocation more complex andthe scheduling problem
approximation less strict, thus increasing the number of iterations and their duration. In
two cases this leaded to a break of the time limit.

We also ran a set of tests to verify the efficiency of the scheduling approximation
based cuts: in each test we repeatedly solved an instance with decreasing deadline val-
ues, until the problem became infeasible; table 3 reports results for a sample 34 activ-
ities instance. The iteration number greatly reduces, while the mean time to generate
a cut grows by a factor of ten, but remains quite short. Therefore the relaxation cuts
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are very effective and enough efficient, although they need the solution of an NP-hard
problem; we thus decided to use them in all other tests.

5 Conclusion and future works

We have proposed a stochastic method for planning and scheduling in the stochastic
case. The method proposed has two main contributions: the first is a polynomial trans-
formation of a stochastic problem into a deterministic one based on the conditional task
graph analysis. Second, the implementation of two constraints for unary and cumulative
resources in presence of conditional activities. We believe the results obtained are ex-
tremely encouraging. In fact, computation times are comparable with the deterministic
version of the same instances. We still have much work to do: first we have to solve
the extremely hard instances possibly through randomization; second we have to take
into account other aspects where stochasticity could come into play, like task duration
which could not be known in advance. Third, we have to validate these results on a real
simulation platform to have some feedback on the model.
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