Stochastic Allocation and Scheduling for Conditional
Task Graphs in MPSoCs

Michele Lombardi and Michela Milano

(1) DEIS, University of Bologna
V.le Risorgimento 2, 40136, Bologna, Italy

Abstract. This paper describes a complete and efficient solution to the stochastic
allocation and scheduling for Multi-Processor System-on-Chip (MPSB®EN

a conditional task graph characterizing a target application and a tachétea-

ture with alternative memory and computation resources, we compuioeaa-a

tion and schedule minimizing the expected value of communication cost, being
the communication resources one of the major bottlenecks in modern G&2?So
Our approach is based on the Logic Based Benders decompositioe tieer
stochastic allocation is solved through an Integer Programming solvie, thib
scheduling problem with conditional activities is faced with Constraint Rirogr
ming. The two solvers interact through no-goods. The original cortioibs of

the approach appear both in the allocation and in the scheduling part. For the
first, we propose an exact analytic formulation of the stochastic objefcine

tion based on the task graph analysis, while for the scheduling part wedexte
the timetable constraint for conditional activities. Experimental resulta she
effectiveness of the approach.

1 Introduction

The increasing levels of system integration in Multi-Pssm Systems on Chips (MP-
SoCs) emphasize the need for new design flows for efficientpmgpof multi-task
applications onto hardware platforms. The problem of alflimg and scheduling con-
ditional, precedence-constrained tasks on processordlistributed realtime system
is NP-hard. As such, it has been traditionally tackled by mseaf heuristics, which
provide only approximate or near-optimal solutions, seefample [1], [2], [3].

In a typical embedded system design scenario, the platfomaya runs the same
application. Thus, extensive analysis and optimizationtmperformed at design time.
This paper proposes a complete decomposition approack #dlttation and schedul-
ing of a conditional multi-task application on a multi-pessor system-on-chip (MP-
SoCs) [4]. The target application is pre-characterized avgtracted as a Conditional
Task Graph (CTG). The task graph is annotated with compmuitééi.g., execution time),
communication (e.g., number of bits to be communicated betwasks), storage (e.g.,
size of data and instruction memory required to executeasle) requirements. How-
ever, not all tasks will run on the target platform: in fabig application contains condi-
tional branches (like if-then-else control structuredjefiefore, after an accurate appli-
cation profiling step, we have a probability distributioneach conditional branch that
intuitively gives the probability of choosing that branalrithg execution.



This paper proposes a non trivial extension to [5] that usegid Based Benders
decomposition [6] for resource assignment and schedulingRSoCs. In that paper,
however, task graphs did not contain conditional actisiti&gllocation and scheduling
were therefore deterministic. The introduction of stoticaslements complicates the
problem.

We propose two main contributions: the first concerns thecation component.
The objective function we consider depends on the allosatariables. Clearly, hav-
ing conditional tasks, the exact value of the communicatiost cannot be computed.
Therefore our objective function is the expected value efdbmmunication cost. We
propose here to identify an analytic approximation of tlikre. The approximation is
based on the Conditional Task Graph analysis for identifyimo data structures: the
activation set of a node and the coexistence set of two nddhesapproximation turns
out to be exact and polynomial.

The second contribution concerns scheduling. We proposgtansion of the time-
table constraint for cumulative resources, taking intcmaot conditional activities. Its
deterministic version [7] is available in ILOG ScheduleheTuse of the so calleap-
tional activities(what we call conditional tasks) has been taken into accioui® for
filtering purposes into the precedence graph, originatipotuced by Laborie in [9]. To
the best of our knowledge, only disjunctive constraintsehlagen defined in presence
of conditional activities in [10].

In the system design community, this problem is extremelgadrtant and many
researchers have worked extensively on it, mainly with ingplete approaches: for in-
stance in [1] a genetic algorithm is devised on the basis ohditional scheduling table
whose (exponential number of) columns represent the catibmof conditions in the
CTG and whose rows are the starting times of activities thpéar in the scenario. The
number of columns is indeed reasonable in real applicatifims same structure is used
in [10], which is the only approach that uses Constraint Rnogning for modelling the
allocation and scheduling problem. Indeed the solvingritlym used is complete only
for small task graphs (up to 10 activities).

Besides related literature for similar problems, the Ofj@na Research community
has extensively studied stochastic optimization in gdnétee main approaches are:
sampling [11] consisting in approximating the expectedigalith its average value
over a given sample; tHeshapedmethod [12] which faces two phase problems and is
based on Benders Decomposition [13]. The master problerdéseaministic problem
for computing the first phase decision variables. The suiipno is a stochastic problem
that assigns the second phase decision variables mingnilzan average value of the
objective function. A different method is based on the bhaad bound extended for
dealing with stochastic variables, [14].

The CP community has recently faced stochastic problenid5instochastic con-
straint programming is formally introduced and the con@égblution is replaced with
the one ofpolicy. In the same paper, two algorithms have been proposed based o
backtrack search. This work has been extended in [16] whe@gorithm based on
the concept of scenarios is proposed. In particular, thempsipows how to reduce the
number of scenarios, maintaining a good expressiveness.



This paper is organized as follows: in section 2 we presemtatichitecture and
the target application considered. In section 3 we presenafiocation and scheduling
models used. Experimental results are shown in section 4.

2 Problem description

2.1 The architecture

Multi Processor Systems on Chips (MPSoCs) are multi cofgiteictures developed on
a single chip. They are finding widespread application in esadled systems (such as
cellular phones, automotive control engines, etc.). Orayed in field, these devices
always run the same application, in a well-characterizedecd. It is therefore possible
to spend a large amount of time for finding an optimal alleaténd scheduling off-
line and then deploy it on the field, instead of using on-lidgnamic (sub-optimal)
schedulers [17, 18].

PROCESSOR

TIGHTLY COUPLED
MEMORY

BUS INTERFACE

[ SHARED SYSTEM BUS |

REMOTE ON CHIP MEMORY

Fig. 1. Single chip multi-processor architecture.

The multi-processor system we consider consists of a dieedenumber of dis-
tributed Processing Elements (PE) as depicted in Figurdlinolles are assumed to
be homogeneous and composed by a processing core and byaadesas-cost local
scratchpad memory. Data storage onto the scratchpad mesndingctly managed by
the application, and not automatically in hardware as hésdase for processor caches.

The scratchpad memory is of limited size, therefore data@ess must be stored
externally in a remote on-chip memory, accessible via the Bhe bus for state-of-
the-art MPSoCs is a shared communication resource, aralization of bus access
requests of the processors (the bus masters) is carriedyauténtralized arbitration
mechanism. The bus is re-arbitrated on a transaction bagjis &fter single read/write
transfers, or bursts of accesses of pre-defined length@dbas several policies (fixed
priority, round-robin, latency-driven, etc.). Modelingsallocation at such a fine gran-
ularity would make the problem overly complex, therefore@emabstract additive bus
model was devised, explained and validated in [5] where &sthcan simultaneously
access the bus requiring a portion of the overall bandwidkie communication re-
source in most cases ends up to be the most congested resGansmunication cost



is therefore critical for determining overall system penfiance, and will be minimized
in our task allocation framework.

2.2 The target application

The target application to be executed on top of the hardwiatéopm is the input to
our algorithm. It is represented as a Conditional Task G(gIG). A CTG is a triple
(T, E,C), whereT is the set of nodes modeling generic tasks (e.g. elemengsntae
tions, subprograms, ...J; the set of edges modeling precedence constraints (e.g. due
to data communication), and is a set of conditions, each one associated to an arc,
modeling what should be true in order to choose that brandhglexecution (e.g. the
condition of a if-then-else construct). A node with morertltae outgoing arc is said
to be abranchif all arcs are conditional, érk if all arcs are not conditional; mixed
nodes are not allowed. A node with more than one ingoing aao &s-nodeif all arcs
are mutually exclusive, it is instead and-nodef all arcs are not mutually exclusive;
again, mixed nodes are not allowed.

Since the truth or the falsity of conditions is not known irnvaxce, the model is
stochastic. In particular, we can associate to each bramstbchastic variablés with
probability spacéC, A, p), whereC is the set of possible branch exit conditians4
the set of events (one for each condition) anithe branch probability distribution (in
particularp(c) is the probability that condition s true).

We can associate to each node and arc an activation funetipressed as a com-
position of conditions by means of the logical operatoandyv. We call it f; (X (w)),
where X is the stochastic variable associated to the compositeriexpet 5, x B x
... X By (b = number of branches) and € D(By) x D(B;1) X ... x D(By) (i.e.wis a
scenario).

Computation, storage and communication requirementsw@ated onto the graph.
In detail, the worst case execution time (WCET) is specifiedefich node/task and
plays a critical role whenever application real time caaigtis (expressed here in terms
of deadlines) are to be met.

Each node/task also has three kinds of associated memaryaeegnts:

— Program Data: storage locations are required for compuatdata and for proces-
sor instructions.

— Internal State

— Communication queues: the task needs queues to transthieaeive messages
to/from other tasks, eventually mapped on different preces

Each of these memory requirement can be allocated eithalfyfan the scratchpad
memory or remotely in the on-chip memory.

Finally, the communication to be minimized counts two citnitions: one related
to single tasks, once computation data and internal statphaysically allocated to the
scratchpad or remote memory, and obviously depending ositleeof such data; the
second related to pairs of communicating tasks in the taaghyrdepending on the
amount of data the two tasks should exchange.



3 Model definition

As already presented and motivated in [5], the problem wéaaiag can be split into
the resource allocation master problem and the schedulimgpoblem.

3.1 Allocation problem model

With regards to the platform described in section 2.1, thecation problem can be
stated as the one of assigning processing elements to tadlst@age devices to their
memory requirements.

Supposen is the number of taskg,the number of processors, andthe number of
arcs. We introduce for each task and each PE a variBblsuch thatl’;; = 1 iff task
i is assigned to processgr\We also define variable®/;; such thatV/;; = 1 iff task
allocates its computation memory locally];; = 0 otherwise. Similarly we introduce
variablesS;; for taski state requirements arfd,; for arcr communication queueX
is the stochastic variable associated to the scenario

The allocation model, where the objective function is thaeimization of bus traffic
expected value, is defined as follows:

min z = E(busTraffi¢M, S, E, X (w)))

p—1
st. Y Ty=1 Vi=0,.n (1)
§=0
Si; < Tjj Vi=0,.,n—1,7=0,..,p—1 (2)
My <Ty; Vi=0,..n—1,j=0,..p—1 3)
E,.; <1y Ve, = (ti,tg),r =0,..,m 4)
E,.; <Ty, Ve, = (ti,tg),r =0,..,m (5)

Z [SLSU + miMij} + Z C,»E,»j < C’j Vj =0,..,p—1 (6)
Constraints (1) force each task to be assigned to a singéegsor. Constraints (2)
and (3) state that computation and state memory can beyaalédcated on the PE
only if taski runs on it. Constraints (4) and (5) enforce that the comnaiitio queue
of arcr can be locally allocated only if both the source and the dastin tasks run
on processoy. Finally, constraints (6) ensure that the sum of locallpedted state
(s;), computation ;) and communicatione() memory cannot exceed the scratchpad
device capacity(;). All tasks have to be considered here, regardless theyexgéute
or not at runtime, since a scratchpad memory is, by definistatically allocated. In
addition, some symmetries breaking constraints have badedao the model.
The bus traffic expression is composed by two contributiam& depending on
single tasks and one due to the communication between gaasks.

busTraffic= 3" taskBusTraffig+ Y, _,. , , commBusTraffic

where

taskBusTraffic= 5772 £i(X(w)) [ms(1 = X025 Myj) +5:(1 = 32073 Siy)|
commBusTraffic= f; (X (w)) fi(X (w))er(1 = 3025 E))



wherem; ands;, are the bus traffic contributions due to tasgrogram data and
internal state, and. is the traffic due to communication through arc

Note that, in the “task bus traffic” expression, if taiséxecutes (thug; (X (w)) =
1), thenl — Z?;é M;; is 1 iff taski computation memory is allocated on the remote
memory and the same holds for the state. Traffic contribatthre to communications
have to be considered if both the source and the destinatsbrexecutef; (X (w)) =
/(X (w)) = 1) and the queue is remotely allocatdd{ Z?;é E,; =1).

In most cases, the minimization of a stochastic functiosath as the expected
value, is a very complex operation (even more than expaogi@rdgince it often requires
to repeatedly solve a deterministic subproblem [12]. Th&t of such a procedure is
not affordable for hardware design purposes if the detasticrsubproblem is by itself
NP-hard, which is our case.

One of the main contributions of this paper is the way to redie bus traffic
expected value to a deterministic expression.

Since all task have to be assigned before running the agiplicahe allocation is a
stochastione phas@roblem: thus, for a given task-PE assignment, the expeeiee
depends only on the stochastic variables.

Intuitively, if we properly weight the bus traffic contribahs according to task prob-
abilities we should be able to get an analytic expressioth®expected value.

Now, since both the expected value operator and the bustexffiression are linear,
the objective function can be decomposed into task relaiddec related blocks:

n—1
E(busTraffig = » _ E(taskBusTraffig + »  E(commBusTraffig
i=0 er=(titr)

Since for a given allocation the objective function depeonly on the stochastic
variables, the contributions of decision variables arestamts: we call thenk'T; =
mi(1— Y0 M) +5:(1— Y020 Sij), KB, = &.(1— Y_?~ E,;). Letus callp(w)
the probability of scenario.

So
E(taskBusTraffig = ) p(w) fi(X (@) KT;
wen
and
E(commBusTraffig = > p(w) fi(X () fu(X (w)) K E,
wes

Substituting

> p@) fi(X(@)ET = KT, Y p(w)

wen we(lil
and

D pW) (X (W) fe(X@)KE: = KE. Y p(w)

wesn weningn}

with 2} = {w | taski execute}, every stochastic dependence is removed and the
expected value is reduced to a deterministic expression.



Note thatzwenil p(w) is simply the existence probability of node/taskvhile
Zwemm; p(w) is the coexistence probability of nodeandk.

To épply the transformation we need both those probalsjitieoreover, to achieve
an effective overall complexity reduction, they have to benputed in a reasonable
time. We developed a set of polynomial cost algorithms tomater those probabilities.
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Fig. 2. An example of the three data structures

All developed algorithms are based on three types of datatsie referred in Fig-
ure 2 to the CTG on the left: the first is saidtivation sebf a noden (AS(n)), or of an
arce (AS(e)) and it is the set of all upstream conditions on the paths fitwarstarting
node to the specific nodeor arce; we introduced also ax ¢ (c is the number of con-
ditions) binaryexclusion matrix (EMpuch thatt’AM;; = 1 iff ¢; andc¢; are mutually
exclusive (i.e. they originate at the same branch), and asequence matrix (SMch
thatSM,; = 1iff ¢; andc; are both needed to activate some node or arc in the CTG.

algorithm: Activation set probability (A1) — probability of a node or an arc

. let S be the input set for this iteration; initially S = AS(n)
find a condition ¢;, € S such that (EM, \ c,) NS # 0
if such a condition doesn't exist return p = Hces p(c)

. otherwise, set B = E M) N S (branch conditions)

. computesetC = SN nCi B SM; (common conditions)

. compute set R = ﬂC_EB(S \ SM;) (rest)

setp =0

. for each condition ¢; € B:

8.1 setp=p+ A1((SNSM;)\ (CUR))
. setp =p=x A1(C) x A1(R)

. return p

O N O A wWNPRE

=

end

All these data structures can be extracted from the grapblimpmial time. Once
they are available, we can determine the probability of aeraydcan arc using algorithm
A1, which hasO(c?) complexity representing sets as bit vectors; in the allgorithe
notationSM; stands for the set of conditions “sequenced” with a given (e, =
{¢;|SM;; = 1}); the same holds faE M;.



Algorithm Al works recursively partitioning the activatiget of the target node or
arc: first it looks for a group of mutually exclusive conditio(theB set), sed andnot
b in figure 3. If there is no such condition the probability of §ds the product of the
ones of its elements (step 3). The algorithm then builds anfoon” (C') and a “rest”
(R) set: the first contains conditions such thatSA;; = 1 V¢; € B, the second
conditionse, such thatSM;;, = 0 V¢; € B. Finally Al builds for each found branch
condition a set containing the sequenced conditiéhis § /; at step 8.1), chains and
not c¢ andnot b andd in figure 3.

Al is then recursively called on all these sets. The proliggsilof sets correspond-
ing to mutually exclusive conditions are summed (step &,ones of” and R are
multiplied (step 9).

AS ={a, b, b, T, d}

AS = {a/b, b,/c, d}

[l [=] (]

C={a} R=0
b 5
b

a

p(b)-+-p(c)
p(@) -+
p(b)-+-p(d)

[ [e]

Fig. 3. Activation Set Probability (A1)

algorithm: Coexistence set determination (A2)

1. if AS; = @ then CS = AS;; the same if AS; =0

2. otherwise, if there are still not processed conditions in AS;, let ¢, be the first of them:
2.1. compute set S = AS; N SMj, (sequenced conditions)
2.2. compute the exclusion set EX (S)

2.3. compute set C' = AS; N U CAS,NEX(S) S M}, (conditions candidates for clear operation)
ch 4

2.4. compute set R = AS; N UckeASj\C S M, (conditions to spare)
2.5. set D = C'\ R (conditions to clear)
2.6. if AS; is not a subset of D:

26.1. set CS(AS;, AS;) = CS(AS;, AS;)US U (AS; \ D)

end

Given a set of nodes or arcs, we can determine a kind of commiration set
(coexistence set (CS)sing algorithm A2, whose inputs are twbS (AS;, AS;) and
whose complexity is agai@(c?):

The notationE X (S) stands for the exclusion set, i.e. the set of conditionslure
excluded by those i; it can be computed iV (c?).

Suppose we have the activation sets of two negesidn;: then A2 works trying to
find all paths fromn; to a source (backward paths) and from the source; tforward
paths). The algorithm starts building a group of backwartthgiat does it by choosing
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Fig. 4. Coexistence set computation

a condition (for instance conditioa in figure 4) and finding all other conditions

sequenced with it (set in | 2 | figure 4).

Then the algorithm finds the exclusion sétX (S)) of setS and intersects it with
AS(nj). In| 3| figure 4 the only condition in the intersectionrist a (crossed arc):
conditions in the intersection and those sequenced witim thee called “candidates
conditions” (setC' in figure 4). These conditions will be removed fradb'(n;),
unless they are sequenced with one or more non-candidati&ioos, i.e., they belong
to the setR (for instance conditiori is in sequence witimot b and is not removed
from AS(n;) in @ figure 4). The conditions not removed fromS(n;) identify a
set of forward paths we are interested in. The algorithm gweantil all conditions
in AS(n;) are processed. If there is no path fremto n; (i.e. the coexistence set is
empty) the two nodes are mutually exclusive.

The probability of a coexistence set can be computed onda Aganeans of Al:
thus, with A1 and A2 we are able to compute the existence pilityeof a single node
or arc and the coexistence probability of a group of nodesas. &ince the algorithms
complexities are polynomial, the reduction of the bus teéffi a deterministic expres-
sion can be done in polynomial time.

3.2 Scheduling Model

The scheduling subproblem was solved by means of ConsReigtamming. Since the
objective function depends only on the allocation of tagks memory requirements,
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scheduling is just a feasibility problem. Therefore we dedi to provide a unique
schedule, dynamically considering for each task the lariggsing path.

Tasks using the same resources can overlap if they are onadlte paths (under
two mutually exclusive conditions): if we model the resagdn order to take into
account this behavior, we get an exact schedule for the wasktrack, provided there
are no ambiguous nodes.We say two nodes are ambiguous #drdeyutually exclusive
w.r.t some paths and not mutually exclusive w.r.t. othehpat

Tasks have a five phases behavior: they read all communicatieues (INPUT),
eventually read their state (RS), execute (EXEC), writértbates (WS) and finally
write all the communications queues (OUTPUT). Each taskadgeted as a group of
not breakable activities; the adopted schema and precedelations vary with the type
of the corresponding node (or/and, branch/fork): figure msarizes all used rules.
In the picture the black arrows represent immediate pretsleclations dnd(A) =
start(B)), while the gray hyphened arrows are simple precedenceomaend(A) <
start(B)).

READING PHASE READ STATE/EXECUTE/WRITE STATE PHASES
SIMPLE TASK TASK WITH MORE THAN ONE INGOING ARC SIMPLE TASK TASK WITH STATE

WRITE PHASE COMMUNICATION
SIMPLE TASK BRANCH FORK

RS-EXEC-WS WRITE RS-EXEC-WS WRITE ‘ RS-EXEC-WS
WRITE
WRITE WRITE

Fig. 5. Task decomposition schema

Each activity duration is an input parameter and can vargddjng on the alloca-
tion of internal state and program data.

The processing elements are unary resources: we modeladdefining a simple
disjunctive constraint proposed in [10].

The bus, as in [5], was modeled as a cumulative resourcerdingowith the so
called “additive model”, which allows an error less than 108l bandwidth usage is
under 60% of the real capacity.

Computing the bus usage in presence of alternative aetviginot trivial, since the
bus usage varies in a not linear way and every activity cae ftawown bus view (see
fig 6).

We modeled the bus implementing a timetable like constf@ntumulative re-
sources in the not preemptive case. The constraint keeps @ &ll known entry and
exit points of activities: given an activityl, if Ist(A4) < eet(A) then the entry point of
Aislst(A) andeet(A) is its exit point (wherést stands for latest start time and so on).
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algorithm: Cumulative resource constraint with alternative activ ities (A3)
1. time = est(a), finish = eet(a)
2. latestGoodTime = time
3. good = true
4. While = [(good = false A time > lst(a)) V (good = true A time >= finish)]:

4.1. if busreq(a) + usedBandwith > busBandwidth:
4.1.1. time = next exit point
4.1.2. good = false
4.2. else: .
4.2.1. time = next entry point
4.2.2. if good = false:
4.2.2.1. lastGoodTime = time
4.2.2.2. finish = maz(finish,time + mindur(a))
4.2.2.3. good = true
if good = true: est(a) = lastGoodTime
else: fail

o o

end

Let A be the target activity: A3 scans the interyadt(A), finish) checking the
bus usage at all entry points (as longgasd = true). If it finds an entry point with
not enough bandwidth left it starts to scan all exit pointsof = false) in order to
determine a new possible starting time for activitylf such an instant is found its value
is stored [astGoodTime) and the finish line is updated (step 4.2.2.2), then A3 resstar
to scan other entry points, and so on. When the finish line ishezhthe algorithm
updatesest(A) or fails. A3 hasO(a(c + b)) complexity, whereu is the number of
activities, b the one of branchesg; the number of conditions. The algorithm can be
easily extended to update al&g(A): we tried to do it, but the added filtering is not
enough to justify the increased propagation time.

MUTUAL EXCLUSION
RELATIONS

ACTIVITY 5 |

BUSVEW | ——— :}
—

ACTIVITY 4
BUS VIEW ’:

3(2)
—— MUTUAL EXCLUSION

ALREADY [ 2(1) |
SCHEDULED
\ 101) | t

Fig. 6. Activity bus view; bus requirements of scheduled activities are betweemdr brackets.
For instance activity 4 is not exclusive with 1, 2 and 3, but 2 and 3 are atiutaxclusive.
Therefore, the bandwidth used by scheduled activities is the one otydtivhen of 1 and 3 and
when 3 finishes, the one of activities 1 and 2.

The main difficulty of having conditional activities, is theach activity has its own
bus view depending on which activities are not exclusivéitFor instance in figure 6
activities 4 and 5 have a different view of the bus. A3 is abledmpute the bandwidth
usage seen from each activity in linear time by taking achgatof a particular data
structure we introduced, named Branch Fork Graph (BFG)lder of space, we give
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only an intuition here. The BFG is like a skeleton of the rielas between branch and
fork nodes in the original graph: once this structure hasleedracted, each activity
can be mapped to one or more BFG nodes according to its aeotivee¢t. For each

activity we keep also the entry and exit point (continuougbdated during search).
The bandwidth usage at a given time can be computed by patsengraph, which is

a linear time operation: the activation set of the targeividgtis used to select which

nodes of the BFG must be taken into account for the computafioe BFG makes it

possible to compute bus usage in a very efficient way, by ngakirect use of the graph
structure: if we only take into account the exclusion relasi it would be an NP-hard
problem.

To have a polynomial time algorithm however the graph shealisfy a particular
condition (called “Control Flow Uniqueness”) which statkat each “and” node must
have a main ingoing arc, whose activation implies the atitimeof the other ingoing
arcs. This is not a very restrictive condition since it isdfad by every graph resulting
from the natural parsing of programs written in a languagé <t++ or Java.

Each activity in the presented schema needs a processimgmti@nd requires an
amount of bus bandwidth if its data are remotely allocatdéit Bmount is an input pa-
rameter and for communication and state activities is gigogreater than for execution
ones.

3.3 Benders cuts and subproblem relaxation

Each time the master problem solution is not feasible forstiteeduling subproblem a
cut is generated which forbids that solution. Moreoversalutions obtained by per-
mutation of PEs are forbidden, too.

Unfortunately, this kind of cut, although sufficient, is wethis is why we decided
to introduce another cut type, generated as follows: (1yestd feasibility a single
machine scheduling model with only one PE and tasks runninity ¢2) if there is no
solution the tasks considered cannot be allocated to ary BiB.

The cut is very effective, but we need to solve an NP-hardIprolio generate it;
however, in practice, the problem can be quickly solved.

With the objective to limit iteration number (which strogighfluences the solution
method efficiency) we also inserted in the master problentexa&on of the subprob-
lem. This forbids the allocator to store in a single processset of non mutually ex-
clusive tasks whose duration exceeds the time limit, and$@ma memory devices in
such a way that the total length of a track is greater than ¢laellihe.

4 Experimental results

We implemented all exposed algorithms in C++, using theesifithe art solvers ILOG
Cplex 9.0 (for ILP) and ILOG Solver 6.0 (for CP).

We tested the method on two set of instances: the first onesharacterized by
means of a synthetic benchmark; peculiar input data of tlilslpm (such as the branch
probabilities) were estimated via a profiling step. Insenof this first group are only
slightly structured, i.e. they have very short tracks anidegaften contain singleton
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nodes: therefore we decided to generate a second groupafdes, completely struc-
tured (one head, one tail, long tracks).

We tested all instances on a Pentium IV pc with 512MB RAM. Tiheetlimit for
the solution process was 30 minutes.

The results of the tests on the first group are summarizeeitatiie 1, which reports
results for instances subgroups; in particular it showsetrh subgroup: the number
of activities (acts), the number of processing elements)Pthe number of instances
in the group (inst.), the instances which were proven to feasible (inf.), the mean
overall time (in seconds), the mean time to analyze the gfiafth to solve the master
and the subproblem, to generate the no-good cuts and the mueaoer of iterations
(it). The solution times are of the same order of the detestiincase (scheduling of
Task Graphs), which is a very good result, since we are wgrkim conditional task
graphs and thus dealing with a stochastic problem.

For a limited number of instances the overall solving time wgceptionally high:
the last column in the table shows the number of instancewffiich this happened,
mainly due to the master problem (A), the scheduling prob(8jnor the number of
iterations (I). The solution time of this instances was mtrited in the mean; in general
it was greater than than thirty minutes.

acts PEs inst. inf. time init master sub nogood it A/S/I

10-12 2 6 0 0.0337 0.0208 0.0075 0.0027 0.0027 1.1667 0/0/0
13-15 2 8 1 0.5251 0.1600 0.0076 0.0040 0.0020 1.1250 0/0/0
16-18 2-3 12 0 0.1091 0.0922 0.0089 0.0067 0.0013 1.0833 0/0/0
19-21 2-3 14 1 0.1216 0.0791 0.0279 0.0079 0.0046 1.2143 0/0/0
22-24 2-3 23 4 0.2336 0.1520 0.0259 0.0061 0.0081 1.1739 0/0/0
25-27 2-3 16 3 1.7849 0.0319 1.7285 0.0108 0.0088 1.3125 0/0/0
28-30 2-3 13 2 0.33310.0284 0.0770 0.1900 0.0338 1.6667 0/1/0
31-33 34 4 2 0.3008 0.2303 0.0510 0.0040 0.0000 1.0000 0/0/0
34-36 3-4 13 4 0.6840 0.0204 0.4245 0.0132 0.0108 1.2308 0/0/0
37-39 34 7 0 1.56700.0399 1.2010 0.1384 0.1877 4.4286 0/0/0
40-42 3-4 6 3 2.9162 0.0182 0.5857 2.2267 0.0390 1.6667 0/0/0
43-45 3-4 6 1 5.36700.2757 4.8200 0.0630 0.2005 4.1667 0/0/0
46-48 4-5 11 0 3.2719 0.0508 0.6913 2.4616 0.0683 2.0000 1/2/0
49-51 4-5 11 1 1.9950 0.1840 1.7900 0.0071 0.0087 1.1111 1/1/0
52-54 5-6 6 0 8.0000 1.3398 1.5743 4.8788 0.2073 2.7500 1/1/0
55-67 6 8 0 2.2810 0.8333 1.4377 0.0100 0.0000 1.0000 1/4/0

Table 1. Results of the tests on the first group of instances (slightly structured)

Although this extremely high solution time occurs with ieasing frequency as the
number of activities grows, it seems it is not completelyedetnated by that factor:
sometimes even a very small change of the deadline or of ssareth probability
makes the computation time explode.

We guess that at least in several cases this happens sinsehibguler efficiency
greatly relies on a very effective heuristic: for some ingratph topologies and param-
eter configurations the heuristic does not make the righiceBaand thus the solution
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acts PEs inst. inf. time init  master sub nogood it A/S/I

20-29 2 7 2 0.5227 0.0200 0.0134 0.0090 0.0021 8.8571 0/0/0
30-39 2-3 6 0 1.7625 0.0283 1.2655 0.2057 0.2630 5.8333 0/0/0
40-49 3 3 0 0.4380 0.0313 0.3493 0.0573 0.0000 1.0000 0/0/0
50-59 3-4 7 0 1.1403 0.0310 0.6070 0.2708 0.2315 3.6667 0/0/1
60-69 4-5 4 0 10.1598 0.0385 6.8718 1.2798 1.9698 18.0000 0/0/0
70-79 4-5 4 0 88.9650 0.0428 88.6645 0.2578 0.0000 1.0000 0/0/0
80-90 4-6 7 0 202.4655 0.0755 184.0177 6.5008 11.8715 28.66H1

Table 2.Result of the tests on the second group of instances (completely stdjcture

time dramatically grows. In most cases the very high safutime is mainly due to the
scheduling problem. Perhaps this could be avoided by rarmiogrthe solution method
and by using restart strategies [19].

mean time to gen. a cut
basic case: 0.0074
with relaxation based cuts (RBC): 0.0499
number of iterations
deadline basic case with RBC result

8557573 2 3 opt. found
625918 1 1 opt. found
590846 1 1 opt. found
473108 19 6 opt. found
464512 190 14 opt. found
454268 195 24 opt. found
444444 78 15 opt. found
433330 9 4 opt. found
430835 5 3 opt. found
430490 5 3 opt. found
427251 3 2 inf.

Table 3.Number of iterations without and with scheduling relaxation based cuts

The results of the second group of instances (completelgtsired) are reported
in table 2. In this case the higher number of arcs (and thuseafgulence constraints)
reduces the time windows and makes the scheduling problech more stable: no in-
stance solution time exploded due to the scheduling probmthe other hand the in-
creased number of arcs makes the allocation more completharstheduling problem
approximation less strict, thus increasing the numbereoétions and their duration. In
two cases this leaded to a break of the time limit.

We also ran a set of tests to verify the efficiency of the scliegl@pproximation
based cuts: in each test we repeatedly solved an instancel@dteasing deadline val-
ues, until the problem became infeasible; table 3 repostsitefor a sample 34 activ-
ities instance. The iteration number greatly reduces,entié mean time to generate
a cut grows by a factor of ten, but remains quite short. Tleesthe relaxation cuts
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are very effective and enough efficient, although they nbedsolution of an NP-hard
problem; we thus decided to use them in all other tests.

5 Conclusion and future works

We have proposed a stochastic method for planning and slihgdo the stochastic
case. The method proposed has two main contributions: #tedfia polynomial trans-
formation of a stochastic problem into a deterministic oasdal on the conditional task
graph analysis. Second, the implementation of two comgt&r unary and cumulative
resources in presence of conditional activities. We beliée results obtained are ex-
tremely encouraging. In fact, computation times are comdparwith the deterministic
version of the same instances. We still have much work to dst:\iie have to solve
the extremely hard instances possibly through randonsizatecond we have to take
into account other aspects where stochasticity could comoepiay, like task duration
which could not be known in advance. Third, we have to vadidhese results on a real
simulation platform to have some feedback on the model.
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