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1 Introduction

Spline functions are popular approximation tools in a broad range of applications. Here, we consider
the use of spline functions for solving partial differential equations in a finite element approach. It
is hard to determine the dimension of bivariate spline spaces on arbitrary triangulations in terms of
the numbers of vertices and triangles [24]. For some particular choices of the polynomial degree and
smoothness exact results are found [1, 10], but in general and especially for low degree polynomials
the problem remains open. One can overcome this problem by using macro-elements, i.e., splitting
each triangle in the mesh in a particular way. Well-known in the finite element literature is the
cubic Clough-Tocher spline space [4]. Powell and Sabin [19] constructed C1-continuous quadratic
splines. They considered two families, the so-called PS 6-split and PS 12-split splines. In this
paper we focus on the 6-split version, and we will refer to them as the Powell-Sabin splines.

Powell-Sabin splines can be compactly represented in a stable normalized B-spline basis [5]. This
representation has an intuitive geometric interpretation involving tangent control triangles. Van-
raes et al. [27] considered a global subdivision scheme, which was extended to a local subdivision
scheme in [21]. These properties ensure their effectiveness in many application domains. Powell-
Sabin splines are appropriate for surface modelling and visualization [8, 25], and data fitting
[6, 28, 17]. Recently, they are also explored as finite elements for the numerical solution of partial
differential equations [22]. In [15] an additive multigrid preconditioner using hierarchical Powell-
Sabin splines is proposed for solving the discretized biharmonic equation. Oswald [18] considered
a hierarchical finite element method for the biharmonic equation based on PS 12-split splines.

This paper deals with a geometric (multiplicative) multigrid approach using Powell-Sabin splines.
For the general theory of multigrid methods we recommend the books [7, 2]. Our model problem
is the second order elliptic Poisson equation, i.e.,

−∆u = f in Ω, u = 0 on ∂Ω. (1.1)
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2 POWELL-SABIN SPLINES 2

The Ritz-Galerkin discretization of (1.1) with Powell-Sabin B-splines as finite elements leads to
a sparse linear system [22]. As usual, simple iterative methods, e.g. the Jacobi and Gauss-Seidel
method, converge very slowly for large systems since their convergence rate depends on the mesh
size of the triangulation. By using a hierarchy of meshes, one can accelerate the convergence of the
basic iterative method. Using the Powell-Sabin subdivision scheme, we can easily create a nested
sequence of triangulations with natural intergrid transfer operators. The multigrid scheme that we
propose has a uniform convergence, i.e., the number of iterations required to obtain a prescribed
accuracy is bounded independent of the mesh size.

The paper is organized as follows. Section 2 recalls the definition of the Powell-Sabin spline space,
and the construction of a normalized basis. It describes also the relevant aspects of Powell-Sabin
subdivision. Section 3 discusses a multigrid algorithm for Powell-Sabin splines. We prove uniform
convergence in the l2-norm, and we illustrate the multigrid scheme with some numerical examples.
Finally, in section 4 we end with some concluding remarks.

2 Powell-Sabin splines

2.1 The space of Powell-Sabin splines

Consider a simply connected subset Ω ∈ R
2 with polygonal boundary ∂Ω. Assume a conforming

triangulation ∆ of Ω is given, consisting of t triangles ρj , j = 1, . . . , t, and having n vertices Vk,
k = 1, . . . , n. A triangulation is conforming if no triangle contains a vertex different from its own
three vertices. Denote |∆| as the mesh size of ∆, i.e., the length of the largest edge in ∆.

The Powell-Sabin (PS) refinement ∆∗ of ∆ partitions each triangle ρj into six smaller triangles
with a common vertex Zj . This partition is defined algorithmically as follows:

1. Choose an interior point Zj in each triangle ρj . If two triangles ρi and ρj have a common
edge, then the line joining Zi and Zj should intersect the common edge at some point Rij .

2. Join each point Zj to the vertices of ρj .

3. For each edge of the triangle ρj

(a) which is common to a triangle ρi: join Zj to Rij ;

(b) which belongs to the boundary ∂Ω: join Zj to an arbitrary point R on that edge.

In Figure 1(a) such a PS refinement of a given triangulation is drawn in dashed lines.

The space of piecewise quadratic polynomials on ∆∗ with global C1-continuity is called the Powell-
Sabin spline space:

S1
2(∆∗) =

{

s ∈ C1(Ω) : s|ρ∗

j
∈ Π2, ρ∗j ∈ ∆∗

}

. (2.1)

Powell and Sabin [19] proved that the following interpolation problem

s(Vl) = fl, Dxs(Vl) = fx,l, Dys(Vl) = fy,l, l = 1, . . . , n. (2.2)

has a unique solution s(x, y) ∈ S1
2(∆∗) for any given set of n (fl, fx,l, fy,l)-values. It follows that

the dimension of the Powell-Sabin spline space S1
2(∆∗) is equal to 3n.

In [13, 14] it is shown that this spline space has optimal approximation power. Let ‖ · ‖Lp
be the

Lp-norm on Ω, and | · |W k
p

be the usual semi-norm in the Sobolev space W k
p (Ω), i.e.,

|v|W k
p

=
∑

α+β=k

‖Dα
x Dβ

y v‖Lp
.
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(a) (b)

Figure 1: (a) A PS refinement ∆∗ (dashed lines) of a given triangulation ∆ (solid lines); (b) the
PS points (bullets) and a set of suitable PS triangles (shaded).

Theorem 2.1 (Approximation). For every 0 ≤ k ≤ 2, there exists a quasi-interpolation operator
Qk : W k+1

p → S1
2(∆∗) such that

‖Dα
x Dβ

y (f −Qkf)‖Lp
≤ K1|∆|k+1−α−β |f |W k+1

p
, (2.3)

for every function f ∈ W k+1
p (Ω) with 0 ≤ α + β ≤ k. If Ω is convex then the constant K1 depends

only on p, k and on the smallest angle θ∆ in ∆. If Ω is non-convex, it also depends on the Lipschitz
constant L∂Ω associated with the boundary of Ω.

2.2 A normalized B-spline representation

Dierckx et al. [6] considered a suitable representation for Powell-Sabin splines. With each vertex Vi

three linearly independent triplets (αi,j , βi,j , γi,j), j = 1, 2, 3 are associated. The B-spline Bj
i (x, y)

can be found as the unique solution of interpolation problem (2.2) with all (fl, fx,l, fy,l) = (0, 0, 0)
except for l = i, where (fi, fx,i, fy,i) = (αi,j , βi,j , γi,j) 6= (0, 0, 0). Every Powell-Sabin spline can
then be represented as

s(x, y) =

n
∑

i=1

3
∑

j=1

ci,jB
j
i (x, y). (2.4)

The Powell-Sabin B-splines have a local support: Bj
i (x, y) vanishes outside the molecule Mi of

vertex Vi. The molecule of a vertex (also called vertex star or 1-ring) is the union of all triangles
that contain the vertex. The molecule number mi is the number of triangles in Mi. Dierckx
presented in [5] a geometric way to derive and construct triplets (αi,j , βi,j , γi,j) such that the
resulting basis forms a convex partition of unity on Ω, i.e.,

Bj
i (x, y) ≥ 0, and

n
∑

i=1

3
∑

j=1

Bj
i (x, y) = 1, (2.5)

for all (x, y) ∈ Ω. The triplets are found as follows:
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1. For each vertex Vi ∈ ∆, identify the corresponding PS points. These points are defined as
the midpoints of all edges in the PS refinement ∆∗ containing Vi. The vertex Vi itself is also
a PS point. In Figure 1(b) the PS points are indicated as bullets.

2. For each vertex Vi, find a triangle ti(Qi,1, Qi,2, Qi,3) containing all the PS points of Vi. The
triangles ti, i = 1, . . . , n are called PS triangles. Note that the PS triangles are not uniquely
defined. Figure 1(b) shows some PS triangles. One possibility for their construction [5] is to
calculate a triangle of minimal area. The fact that the PS triangle ti contains the PS points
of the vertex Vi guarantees the positivity property of (2.5).

3. The three linearly independent triplets (αi,j , βi,j , γi,j), j = 1, 2, 3 are derived from the PS
triangle ti of a vertex Vi as follows:

• αi = (αi,1, αi,2, αi,3) are the barycentric coordinates of Vi with respect to ti,

• βi = (βi,1, βi,2, βi,3) and γi = (γi,1, γi,2, γi,3) are the coordinates of the unit barycentric
directions, in x- and y-direction respectively, with respect to ti.

We define the PS control points as ci,j = (Qi,j , ci,j). These points define PS control triangles
Ti(ci,1, ci,2, ci,3), which are tangent to the spline surface z = s(x, y) at the vertices Vi. The
projection of the control triangles Ti in the (x, y)-plane are the PS triangles ti.

2.3 Stability of the basis

From [16, 23] we know that the PS B-spline functions form a L∞-stable basis, i.e., for any coefficient
vector C in the spline representation (2.4) it holds

K2 ‖C‖∞ ≤ ‖s(x, y)‖L∞
≤ ‖C‖∞, (2.6)

where K2 only depends on the smallest angle θ∆ in the triangulation ∆ and on the size of the
PS triangles. Moreover, the smaller the PS triangles the better (the larger) the approximation
constant. In [26] it is proved that the B-splines are also stable with respect to a particular weighted
Lp-norm for p ≥ 1. We give a new proof here which leads to sharper approximation constants.
Instead of using generic constants we will denote the considered constants with a successive number,
in order to elucidate their propagation in the further theorems.

Theorem 2.2 (Lp-stability). The B-spline basis for PS splines in (2.4) is stable with respect to
a weighted Lp-norm where 1 ≤ p ≤ ∞, i.e.,

K3 ‖C‖p,w ≤ ‖s(x, y)‖Lp
≤ K4 ‖C‖p,w, (2.7)

with

‖C‖p,w =





n
∑

i=1

3
∑

j=1

|ci,j |pAMi





1/p

, (2.8)

and AMi
the area of the molecule Mi of vertex Vi. The constants K3 and K4 only depend on the

smallest angle θ∆ and on the size of the PS triangles.

Proof. From [26] we know that there exists a constant K5 such that

‖s(x, y)‖L∞,ρ ≤ K5

Aρ
1/p

‖s(x, y)‖Lp,ρ, (2.9)
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with ‖ · ‖Lp,ρ the Lp-norm on triangle ρ ∈ ∆, and Aρ the area of ρ. Using (2.6) and (2.9), we get

‖s(x, y)‖p
Lp

=
∑

ρ∈∆

‖s(x, y)‖p
Lp,ρ ≥

∑

ρ∈∆

Aρ

K5
p ‖s(x, y)‖p

L∞,ρ ≥
∑

ρ∈∆

AρK2
p

K5
p ‖C‖p

∞,ρ.

Since there are nine B-splines non-zero on each triangle ρ ∈ ∆, and since, by definition, AMi
=

∑

ρ|Vi∈ρ
Aρ, it follows that

‖s(x, y)‖p
Lp

≥
∑

i

∑

j

1

9

∑

ρ|Vi∈ρ

AρK2
p

K5
p |ci,j |p =

∑

i

∑

j

AMi
K2

p

9K5
p |ci,j |p,

which proves the lower bound in (2.7) with K3 = 9−1/pK2/K5.

We now derive the upper bound. Since 0 ≤ Bj
i (x, y) ≤ 1, it holds

‖s(x, y)‖p
Lp

=
∑

ρ∈∆

∫

ρ

∣

∣

∣

∣

∣

∣

∑

i|Vi∈ρ

∑

j

ci,jB
j
i (x, y)

∣

∣

∣

∣

∣

∣

p

dρ ≤
∑

ρ∈∆

∫

ρ





∑

i|Vi∈ρ

∑

j

|ci,j |





p

dρ.

Let 1/p + 1/q = 1, then by Hölder’s inequality for sums,

‖s(x, y)‖p
Lp

≤
∑

ρ∈∆





∑

i|Vi∈ρ

∑

j

|ci,j |p








∑

i|Vi∈ρ

∑

j

1





p/q
∫

ρ

dρ

=
∑

ρ∈∆

∑

i|Vi∈ρ

∑

j

|ci,j |p 9p/qAρ = 9p/q
∑

i

∑

j

∑

ρ|Vi∈ρ

Aρ |ci,j |p

= 9p/q
∑

i

∑

j

AMi
|ci,j |p,

which proves the upper bound in (2.7) with K4 = 91−1/p.

Let |ρ| be the length of the longest side of triangle ρ, and introducing the ratio

K6 =
maxρ∈∆ |ρ|
minρ∈∆ |ρ| , (2.10)

we can also show Lp-stability for the PS B-spline basis without the weighting used in Theorem 2.2.
This result is presented in the following corollary.

Corollary 2.1. The B-spline basis for PS splines is a Lp-stable basis with 1 ≤ p ≤ ∞, i.e., for
any coefficient vector C in the PS spline representation (2.4) we have

K7 |∆|2/p‖C‖p ≤ ‖s(x, y)‖Lp
≤ K8 |∆|2/p‖C‖p, (2.11)

with K7 = K3

(

sin(θ∆)/(4K6
2)
)1/p

and K8 = K4

(√
3π/(2θ∆)

)1/p
.

Proof. From elementary geometry we know that the following inequalities hold for any triangle ρ
with area Aρ and minimal angle θρ:

sin(θρ)
|ρ|2
4

≤ Aρ ≤ sin(θρ)
|ρ|2
2

. (2.12)
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Vi Rij Vj

Vk

Zijk

(a)

Vi Vj

Vk

Vijk

Ziij Zijj

(b)

Vi Vj

Vk

Viij Vijj

Vijk

Zk

Vkkj

(c)

Figure 2: Two successive
√

3-refinement steps result in a triadic split. The corresponding PS
refinement is indicated with dashed lines.

Using (2.12) and the upper bound for the molecule number mi ≤ 2π/θ∆, we obtain that for any
vertex Vi in ∆:

AMi
≤ mi max

ρ∈Mi

Aρ ≤ π

θ∆

√
3

2
|∆|2, (2.13a)

AMi
≥ max

ρ∈Mi

Aρ ≥ sin(θ∆)
|∆|2
4K6

2 . (2.13b)

Filling (2.13) into (2.8) results in (2.11).

Remark 2.1. Several other stable bases exist on Powell-Sabin triangulations. Their construction
is based on so-called minimal determining sets, see e.g. [14, 20].

2.4 Powell-Sabin spline subdivision

Subdivision is a procedure to represent a surface on a finer mesh than the mesh on which it
is originally defined. The subdivision scheme for Powell-Sabin splines developed in [27, 21] is
based on the so-called

√
3-refinement scheme of Kobbelt [12], illustrated in Figure 2. The refined

triangulation, which we shall denote as ∆
√

3, is constructed by inserting a new vertex Vijk at
the position of the interior point Zijk inside each triangle ρ(Vi, Vj , Vk). The edges of the original
PS refinement ∆∗ that are not edges in the original triangulation ∆ form the edges of the new

triangulation ∆
√

3. The interior points of the new PS refinement are chosen on the edges of ∆.
Then, the edges of ∆ will be a subset of the edges of the new PS refinement. Applying the

√
3-

refinement scheme twice, we obtain a triadic split, as shown in Figure 2. Every original edge is
trisected and each original triangle is split into nine subtriangles.

The corresponding Powell-Sabin
√

3-subdivision rules are described in [27]. These rules learn how
to derive the PS control triangles on the refined mesh, from the given PS control triangles on the
original mesh. For the original vertices Vi one can reuse the old PS triangles defined by their
corner points Qi,m, m = 1, 2, 3. However, it is also possible to determine a smaller PS triangle by
rescaling the original one through an appropriate scalar ωi. The new corners are given by

Q
√

3
i,m = ωiVi + (1 − ωi)Qi,m, m = 1, 2, 3,
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(a) (b)

Figure 3: (a) A PS spline with 7 control triangles; (b) the triadically subdivided spline. The grid
lines are drawn on the spline with solid lines.

and the corresponding coefficients c
√

3
i,m are calculated via the old coefficients ci,m as

c
√

3
i,1 = (ωiαi,1 + 1 − ωi)ci,1 + ωiαi,2ci,2 + ωiαi,3ci,3, (2.14a)

c
√

3
i,2 = ωiαi,1ci,1 + (ωiαi,2 + 1 − ωi)ci,2 + ωiαi,3ci,3, (2.14b)

c
√

3
i,3 = ωiαi,1ci,1 + ωiαi,2ci,2 + (ωiαi,3 + 1 − ωi)ci,3. (2.14c)

The PS triangles tijk(Q
√

3
ijk,1, Q

√
3

ijk,2, Q
√

3
ijk,3) associated with the new vertices Vijk in the refined

mesh are defined by

Q
√

3
ijk,1 = (Vijk + Vi)/2, Q

√
3

ijk,2 = (Vijk + Vj)/2, and, Q
√

3
ijk,3 = (Vijk + Vk)/2.

The corresponding coefficients are computed as convex combinations

c
√

3
ijk,1 = L̃i,1ci,1 + L̃i,2ci,2 + L̃i,3ci,3, (2.15a)

c
√

3
ijk,2 = L̃j,1cj,1 + L̃j,2cj,2 + L̃j,3cj,3, (2.15b)

c
√

3
ijk,3 = L̃k,1ck,1 + L̃k,2ck,2 + L̃k,3ck,3. (2.15c)

The triplets (L̃i,1, L̃i,2, L̃i,3), (L̃j,1, L̃j,2, L̃j,3) and (L̃k,1, L̃k,2, L̃k,3) are the barycentric coordinates

of Q
√

3
ijk,1, Q

√
3

ijk,2, and Q
√

3
ijk,3 respectively, with respect to the PS triangles of the surrounding vertices

Vi, Vj and Vk. Since these points lie inside the corresponding PS triangles, all weights are positive.
Applying those rules twice, one obtains the control triangles of the new vertices in a triadically
refined mesh, e.g., of vertices Viij and Vijj in Figure 2(c). Figure 3 illustrates the triadic subdivision
for a given PS spline.

Using the triadic subdivision scheme, we can generate a sequence of triangulations ∆l and corre-
sponding PS refinements ∆∗,l with l ≥ 0, such that the Powell-Sabin spline spaces S l = S1

2(∆∗,l)
are nested. The superscript l refers to the resolution level, i.e., the number of applied triadic
refinements. We denote P l as the subdivision matrix which relates the coefficients of the PS spline
on the mesh ∆l−1 to the coefficients of the triadic subdivided PS spline on the finer mesh ∆l.
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Lemma 2.1. Let C̃ be the coefficient vector of the original spline on ∆l−1 and C be the one of the
subdivided spline on ∆l, i.e., C = P l C̃. The lp-norms, with 1 ≤ p ≤ ∞, of both coefficient vectors
are related as

K9 ‖C̃‖p ≤ ‖C‖p ≤ K10 ‖C̃‖p, (2.16)

where K9 = 4/15 sin(θ∆∗,l)2 and K10 = 9 (1/3 + 2π/θ∆l−1)
1/p

.

Proof. Throughout the proof we will use the subscripts i and j to refer to coefficients ci,j on the
finer mesh ∆l, and the subscripts g and h to refer to coefficients c̃g,h on the coarser mesh ∆l−1.

We first prove the upper bound. Denote I l−1
l (i) as the set of indices of the control triangles T̃g

on mesh ∆l−1 that influence the control triangle Ti on mesh ∆l in the triadic PS subdivision
scheme. By (2.14)-(2.15) the elements in the subdivision matrix P l are positive and smaller than 1.
Therefore,

‖C‖p
p =

n
∑

i=1

3
∑

j=1

|ci,j |p =

n
∑

i=1

3
∑

j=1

∣

∣

∣

∣

∣

∣

∑

g∈Il−1

l
(i)

3
∑

h=1

pl
i,j,g,hc̃g,h

∣

∣

∣

∣

∣

∣

p

≤
n
∑

i=1

3
∑

j=1

∣

∣

∣

∣

∣

∣

∑

g∈Il−1

l
(i)

3
∑

h=1

c̃g,h

∣

∣

∣

∣

∣

∣

p

≤
n
∑

i=1

3
∑

j=1





∑

g∈Il−1

l
(i)

3
∑

h=1

|c̃g,h|





p

.

By Hölder’s inequality for sums, we obtain that

‖C‖p
p ≤

n
∑

i=1

3
∑

j=1





∑

g∈Il−1

l
(i)

3
∑

h=1

|c̃g,h|p








∑

g∈Il−1

l
(i)

3
∑

h=1

1





p/q

,

with 1/p + 1/q = 1. Because there are at most three indices in each set I l−1
l (i), we have

‖C‖p
p ≤ 9p−1

n
∑

i=1

3
∑

j=1

∑

g∈Il−1

l
(i)

3
∑

h=1

|c̃g,h|p.

The value c̃g,h influences the values of the coefficients ci,j corresponding to all vertices Vi in the
interior of the molecule Mg in ∆l−1, with molecule number mg. The number of these coefficients
ci,j is denoted by nl

l−1(g), and it is equal to

nl
l−1(g) =

{

3 (1 + mg + 2 (mg + 1)), if Vg ∈ ∂∆l−1,
3 (1 + mg + 2mg), otherwise.

(2.17)

This number can be bounded as follows: nl
l−1(g) ≤ 3 (1 + 6π/θ∆l−1). With this, we can prove the

upper bound

‖C‖p
p ≤ 9p−1 3 (1 + 6π/θ∆l−1)

ñ
∑

g=1

3
∑

h=1

|c̃g,h|p.

We now show the lower bound of (2.16). Consider relation (2.14) with, in the notation of this
proof, the elements c̃g,h in the right hand side and cg,j in the left hand side. By inverting the
relation, it follows after some algebra that

|c̃g,h| ≤
1

1 − ωg

3
∑

j=1

|cg,j |.



3 MULTIGRID WITH POWELL-SABIN SPLINES 9

Note that ωg stands for the scaling factor after applying twice the
√

3-rule described before, since
we consider here the triadic subdivision scheme. With the correct scaling factor the relations (2.14)
are also valid for the triadic scheme. For p ≥ 1 we obtain by Hölder’s inequality that

|c̃g,h|p ≤ 1

3

(

3

1 − ωg

)p 3
∑

j=1

|cg,j |p. (2.18)

Let l1 and l2 be two side lengths of the same triangle ρ. It holds by the law of sines that

sin(θρ) l1 ≤ l2, (2.19)

with θρ the smallest angle in ρ. Referring to Figure 2(c), we know from the construction of the
scaling factor ωg (see [27]) that

1 − ωg ≥ ‖Vk − Zk‖2

‖Vk − Vijk‖2
=

(

1 +
‖Zk − Vijk‖2

‖Vk − Zk‖2

)−1

. (2.20)

Using (2.19) consecutively for the triangles ρ(Vk, Zk, Vkkj) and ρ(Zk, Vijk, Vkkj), we obtain

1 − ωg ≥
(

1 + sin(θ∆∗,l)−2
)−1 ≥ 4

5
sin(θ∆∗,l)2. (2.21)

The second inequality holds because θ∆∗,l ≤ π/6. Combining (2.18) and (2.21) we find

‖C‖p
p ≥

ñ
∑

g=1

3
∑

j=1

|cg,j |p ≥
ñ
∑

g=1

3
∑

h=1

(

1 − ωg

3

)p

|c̃g,h|p ≥
(

4

15
sin(θ∆∗,l)2

)p

‖C̃‖p
p.

The stability results of Section 2.3 and the bounds in Lemma 2.1 are derived in terms of the
smallest angle in the underlying triangulation ∆∗,l. Further on, we will assume that the nested
sequence of triangulations is quasi-uniform, i.e., the minimal angle of the generated meshes remains
bounded away from zero and the ratio in (2.10) is bounded as well.

3 Multigrid with Powell-Sabin splines

3.1 Multigrid algorithm

In [22] it is described how Powell-Sabin splines can be used as finite elements to solve the diffusion
equation numerically. The variational weak form of (1.1) is given by

a(u, v) = 〈f, v〉L2
, ∀v ∈ V = {v ∈ W 1

2 (Ω) : v = 0 on ∂Ω}, (3.1)

with 〈·, ·〉L2
the L2 scalar product and a(·, ·) the energy scalar product on Ω. Denote ul

∗ ∈ Sl,
with coefficient vector U l

∗, as the Ritz-Galerkin approximation on mesh ∆l to the solution u of
(3.1). Combining Céa’s inequality and the Aubin-Nitsche Duality principle (see, e.g. [3]) with the
Approximation Theorem 2.1, we can conclude that

‖u − ul
∗‖L2

≤ K11 |∆l|k+1 |u|W k+1

2

, for 0 ≤ k ≤ 2, (3.2)

and using elliptic regularity we get

‖u − ul
∗‖L2

≤ K12 |∆l|2 ‖f‖L2
, (3.3)
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with K11 and K12 independent of the mesh size of ∆l. Further on, to simplify our notation, we
will omit the superscript l for the variables corresponding to the finest level. We will denote the
splines and coefficient vectors corresponding to the coarser mesh ∆l−1 with a tilde.

The discretization of (3.1) with Powell-Sabin spline finite elements leads to the sparse linear sys-
tem [22]

GU∗ = F, (3.4)

where G is called the stiffness matrix. Simple iterative schemes, like the Gauss-Seidel method,
converge very slowly for large such systems. The finer the mesh size, the slower the convergence of
these methods. The idea of a multigrid method is to use calculations on coarser grids to accelerate
the convergence on the fine grid. Basically, a multigrid method consists of two steps. With a
classical simple iteration scheme the high frequency components of the error are quickly removed
(smoothing step). The remaining error can be well approximated by solving recursively similar
problems on coarser grids (coarse grid correction step). Algorithm 3.1 gives a schematic overview
of a multigrid iteration. Note that the stiffness matrix G̃ defined on the coarser mesh ∆l−1 is
related to the one on the finer mesh ∆l as G̃ = PT GP , with P the PS subdivision matrix.

Algorithm 3.1 (Multigrid). An iteration of the γ-cycle multigrid scheme for improving the
initial approximation U0 to the solution U∗ = G−1F on level l > 0, is defined as

function UMG = MG(U0, F, l)

USν = Sνpre(U0, F ) (Pre-smoothing)

R = GUSν − F , R̃ = PT R

if l > 1 then (Coarse grid correction)
ŨMG = MGγ(0, R̃, l − 1)

else
solve G̃ ŨMG = R̃

end

UMG = Sνpost(USν − P ŨMG, F ) (Post-smoothing)

end

with (νpre, νpost) the number of smoothing iterations, and γ the number of coarse grid iterations.
The cases γ = 1 and γ = 2 are known as the multigrid V-cycle and W-cycle respectively.

To simplify the convergence analysis of the multigrid method we will use a damped Richardson
iteration scheme as smoother, as will be discussed in section 3.2. A good initial approximation U0

can be found by subdividing (a multigrid approximation of) the solution of the system G̃ Ũ∗ = F̃
on a coarser grid. Repeating that for all levels, one obtains the full multigrid algorithm.

3.2 Smoothing step

As smoothing scheme we choose the Richardson method, which updates an approximation U0 to
the solution U∗ = G−1F of the Galerkin system (3.4) by adding a multiple of the residual,

US = S(U0, F ) = U0 − λ−1(GU0 − F ). (3.5)

For instance, we may choose the damping factor λ as

λ = ‖G‖∞ = max
i

∑

j

|gi,j |, (3.6)

i.e., an upper bound for the largest eigenvalue of G. The next lemma shows that this choice of λ
can be bounded above by a constant independent of the mesh size |∆l|.
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Lemma 3.1. The max-norm of the stiffness matrix G in (3.4) is bounded by a constant independent
of the mesh size |∆l|, i.e., ‖G‖∞ ≤ K14.

Proof. The inradius rρ of a triangle ρ can be written as

rρ = tan

(

θ3

2

)

l1 + l2 − l3
2

,

with li the lengths of the sides of ρ, and l3 corresponds to the side opposite to angle θ3. Let |ρ| be
the longest side length and θρ the smallest angle in ρ, then the inradius can be bounded below by

rρ ≥ tan

(

θρ

2

) |ρ|
2

. (3.7)

Combining (2.12) with (3.7), we obtain that

Aρ ≤ 2 sin(θρ)

tan(θρ/2)2
rρ

2 =
4 cos(θρ/2)

2

tan(θρ/2)
rρ

2 ≤ 4 rρ
2

tan(θρ/2)
. (3.8)

Consider a triangle ρ∗ ∈ ∆∗,l. From [16] we know that for s ∈ Sl

‖Dxs‖L∞, ρ∗ ≤ 12

rρ∗

‖s‖L∞, ρ∗ , and ‖Dys‖L∞, ρ∗ ≤ 12

rρ∗

‖s‖L∞, ρ∗ . (3.9)

Suppose that the PS B-splines Bj
i (x, y) and Bh

g (x, y) are both non-zero on ρ∗. Using (3.8), (3.9)
and the partition of unity of the PS basis, it follows that

|a(Bj
i (x, y), Bh

g (x, y))ρ∗| ≤ 2Aρ∗

(

12

rρ∗

)2

≤ 8
122

tan(θ∆∗,l/2)
= K13, (3.10)

with a(·, ·)ρ∗ the energy scalar product restricted to ρ∗. We now count how many triangles ρ∗ ∈ ∆∗,l

are shared by the support of Bj
i (x, y) corresponding to vertex Vi and the support of the other PS B-

splines. The three PS B-splines associated with Vi have 6mi triangles in common. For the other B-
splines we need to distinguish two cases dependent on the position of the vertex Vi. If Vi is situated
at the boundary of the triangulation, then there are 3 (mi − 1) PS B-splines with 12 triangles in
common, and 6 PS B-splines with 6 triangles in common. If instead Vi is an interior vertex, then
there are 3mi PS B-splines that have 12 triangles in common. The remaining B-splines have no
triangles in common. Since the molecule number mi can be bounded by mi ≤ 2π/θ∆l , we obtain
that K14 = 108π/θ∆lK13, which is only dependent on the smallest angle in the triangulation.

The error USν − U∗ after ν Richardson steps with USν = Sν(U0, F ) is equal to

USν − U∗ = (I − λ−1G)ν(U0 − U∗). (3.11)

We now give a relation between the l2-norms of the residual R = GUSν − F = G(USν − U∗) and
the initial error U0 − U∗.

Theorem 3.1 (Richardson’s smoothing). The residual R = G(USν − U∗) after ν Richardson
steps is related to the initial error U0 − U∗ as

‖R‖2 ≤ K14

e
√

ν(ν + 1)
‖U0 − U∗‖2. (3.12)

with K14 independent of the mesh size |∆l| and the number of smoothing steps ν.
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Proof. The inequality is proved by estimating the eigenvalues λ̂i of the symmetric matrix

G(I − λ−1G)ν , (3.13)

i.e. the transition matrix from U0 − U∗ to R. By (3.6) we know that τi = λi/λ ∈ (0, 1] for any
eigenvalue λi of G. Hence,

|λ̂i| ≤ max
τ∈[0,1]

λ τ (1 − τ)ν =
λ

1 + ν

(

ν

1 + ν

)ν

. (3.14)

Using the following bound for the exponential function [11],

ex ≤
(

1 +
x

t

)t+x/2

, (3.15)

with t = ν and x = 1, we have

|λ̂i| ≤
λ

e
√

ν(1 + ν)
. (3.16)

By Lemma 3.1 we obtain the desired bound.

3.3 Convergence of the multigrid scheme

In this section we will show that the proposed multigrid scheme converges with respect to the
l2-norm, with a convergence factor that is bounded independent of the mesh size |∆l|. The con-
vergence rate is established based on the theory in [9]. The derivation can be slightly simplified in
case of nested Powell-Sabin spline spaces. We first consider the analysis of a two-grid scheme.

Theorem 3.2 (Coarse grid correction). Let R = G(USν −U∗) be the residual on the mesh ∆l

of approximation USν , and R̃ = PT R be its restriction on the coarser mesh ∆l−1. Let U2G = USν −
P Ũ∗ be the approximation of the coarse grid correction, with Ũ∗ the exact solution of G̃Ũ∗ = R̃,
then

‖U2G − U∗‖2 ≤ K15 ‖R‖2, (3.17)

where K15 is independent of the mesh size |∆l|.

Proof. Denote uSν and u∗ as the PS splines on ∆l corresponding to the coefficient vectors USν

and U∗ respectively. Let ũ∗ be the PS spline on ∆l−1 corresponding to the coefficient vector Ũ∗.
By the definitions of the coefficient vectors R = G(USν − U∗) and R̃ = G̃Ũ∗, we know that their
elements ri,j and r̃g,h are given by

ri,j = a(uSν − u∗, B
j
i ), and r̃g,h = a(ũ∗, B̃

h
g ). (3.18)

Let I l
l−1(g) be the set of indices of the control triangles Ti on mesh ∆l that are influenced by the

control triangle T̃g on mesh ∆l−1 in the triadic PS subdivision scheme. Since R̃ = PT R, it follows

r̃g,h =
∑

i∈Il
l−1

(g)

3
∑

j=1

pl
i,j,g,hri,j =

∑

i∈Il
l−1

(g)

3
∑

j=1

pl
i,j,g,ha(uSν − u∗, B

j
i )

= a(uSν − u∗,
∑

i∈Il
l−1

(g)

3
∑

j=1

pl
i,j,g,hBj

i ) = a(uSν − u∗, B̃
h
g ). (3.19)

Combining (3.18) and (3.19), we get

a(ũ∗, B̃
h
g ) = a(uSν − u∗, B̃

h
g ). (3.20)
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We now define the function υ as the solution of an auxiliary Poisson problem

−∆υ = q in Ω, (3.21)

with υ = 0 on ∂Ω, and q ∈ Sl the unique PS spline determined by

〈q, s〉L2
= a(uSν − u∗, s), ∀s ∈ Sl. (3.22)

By (3.20) and (3.22) it holds for all basis functions Bj
i ∈ Sl and B̃h

g ∈ Sl−1 ⊂ Sl that

〈q,Bj
i 〉L2

= a(uSν − u∗, B
j
i ), and 〈q, B̃h

g 〉L2
= a(ũ∗, B̃

h
g ). (3.23)

Therefore, uSν − u∗ and ũ∗ are both Ritz-Galerkin approximations to υ. Using the standard error
estimate (3.3) and the following inequality on the mesh sizes,

|∆l−1| ≤ 3 |∆l|, (3.24)

it follows that

‖uSν − u∗ − ũ∗‖L2
≤ ‖uSν − u∗ − υ‖L2

+ ‖υ − ũ∗‖L2
≤ 10K12 |∆l|2 ‖q‖L2

. (3.25)

By the definition of q in (3.22), with coefficient vector Q, we get

‖q‖2
L2

= a(uSν − u∗, q) = QT G(USν − U∗) ≤ ‖Q‖2‖R‖2, (3.26)

and by (2.11), we obtain

‖Q‖2 ≤ (K7 |∆l|)−1‖q‖L2
, (3.27a)

‖U2G − U∗‖2 ≤ (K7 |∆l|)−1‖uSν − u∗ − ũ∗‖L2
. (3.27b)

Combining (3.25), (3.26) and (3.27), the proof is completed with K15 = 10K12/K7
2.

Theorem 3.3 (Multigrid convergence). Let UMG be the solution after a γ-cycle multigrid
iteration (see Algorithm 3.1) with γ > 1 and no post-smoothing steps. There exists a constant
0 < % < 1 independent of the mesh size ∆l, such that

‖UMG − U∗‖2 ≤ % ‖U0 − U∗‖2, (3.28)

for a sufficiently large (but mesh size independent) number of Richardson’s pre-smoothing steps ν.

Proof. Combining Theorems 3.1 and 3.2, we obtain convergence for the two-grid scheme,

‖U2G − U∗‖2 ≤ K14 K15

e
√

ν(ν + 1)
‖U0 − U∗‖2 = K16 ‖U0 − U∗‖2, (3.29)

where K16 < 1 when ν(ν + 1) > (K14 K15/e)
2.

We prove the general case with more than two grids via induction. We split the error of the
approximation UMG = USν − P ŨMG after one multigrid step in the form

‖UMG − U∗‖ ≤ ‖USν − P Ũ∗ − U∗‖2 + ‖P (Ũ∗ − ŨMG)‖2.

The first term is bounded by (3.29), and the second term is bounded by Lemma 2.1 and the
induction hypothesis, i.e.,

‖UMG − U∗‖ ≤ K16 ‖U0 − U∗‖2 + K10 %γ ‖Ũ∗‖2. (3.30)
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It holds that
K9 ‖Ũ∗‖2 ≤ ‖P Ũ∗‖2 ≤ ‖P Ũ∗ − USν + U∗‖2 + ‖USν − U∗‖2,

and since Richardson’s method reduces the norm of the error

‖Ũ∗‖2 ≤ K16 + 1

K9
‖U0 − U∗‖2. (3.31)

Combining (3.30) and (3.31), we obtain

‖UMG − U∗‖ ≤
(

K16 + %γ K10

K9
(K16 + 1)

)

‖U0 − U∗‖2. (3.32)

For any % < (K9/K10)
1/(γ−1)

, one can choose the number of smoothing steps ν such that

K16 ≤ % (1 − %γ−1K10/K9)

1 + %γ K10/K9
≤ %,

or

ν(ν + 1) ≥
(

K14 K15

e %

)2

, (3.33)

then inequality (3.28) holds.

We now show that the multigrid spline approximation, obtained by applying the full multigrid
scheme, will converge to the exact solution of (3.1) with the same rate as the Ritz-Galerkin spline
approximation, i.e. (3.2). The proof is adopted from [3].

Theorem 3.4 (Full multigrid). Let uFMG be the PS spline obtained after a full multigrid step
with δ multigrid iterations on each level. If δ is large enough then

‖uFMG − u∗‖L2
≤ K17 |∆l|k+1 |u|W k+1

2

, for 0 ≤ k ≤ 2, (3.34)

with K17 independent of level l and mesh size |∆l|.

Proof. By (2.11) and (3.28) there exists a constant 0 < %̂ < 1, such that

‖uMG − u∗‖L2
≤ %̂ ‖u0 − u∗‖L2

, (3.35)

with u0 the initial spline approximation to the spline u∗. Using (3.2), (3.24) and (3.35) we obtain

‖uFMG − u∗‖L2
≤ %̂δ ‖ũFMG − u∗‖L2

≤ %̂δ
(

‖ũFMG − ũ∗‖L2
+ ‖ũ∗ − u‖L2

+ ‖u − u∗‖L2

)

≤ %̂δ
(

‖ũFMG − ũ∗‖L2
+ (1 + 3k+1)K11 |∆l|k+1 |u|W k+1

2

)

.

By iterating the above inequality on all levels, it follows that

‖uFMG − u∗‖L2
≤ (1 + 3k+1)K11 |∆l|k+1 |u|W k+1

2

(

%̂δ + %̂2δ 3k+1 + . . . + %̂lδ 3(k+1)(l−1)
)

≤ %̂δ (1 + 3k+1)K11

1 − %̂δ 3k+1
|∆l|k+1 |u|W k+1

2

,

for %̂δ < 3−k−1.

Remark 3.1. The number of non-zero elements in the stiffness, smoothing and subdivision ma-
trices of level l are proportional to the number of unknowns N l. Since N l−1 < N l/9, both the
memory and computational cost to obtain uFMG are O(N l) for each γ < 9.
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(b) Convergence of error versus number of levels

Figure 4: (a) Initial triangulation with PS refinement. (b) Convergence of the error in the L2-
norm for the exactly solved Ritz-Galerkin solution compared with full W-cycle multigrid solutions,
using Richarson (MGR) or Gauss-Seidel (MGGS) smoothing. The pair (νpre, νpost) stands for the
number of pre- and post-smoothing steps, and δ is the number of W-cycle multigrid iterations on
each level.

Richardson Gauss-Seidel
level dim (1, 0) (2, 0) (4, 0) (0, 1) (0, 2) (0, 4)

2 975 0.88 0.79 0.69 0.54 0.33 0.20
3 9399 0.79 0.70 0.60 0.50 0.40 0.29
4 86511 0.72 0.63 0.55 0.47 0.40 0.30
5 784407 0.69 0.60 0.54 0.44 0.38 0.31

Table 1: The convergence factor %(1, 4), as defined in (3.36), for W-cycle multigrid schemes with
Richardson and Gauss-Seidel smoothing. The pair (νpre, νpost) stands for the number of pre- and
post-smoothing steps. The first column denotes the number of levels, and the second column shows
the dimension of the stiffness matrix.

3.4 Numerical experiments

We numerically solve the Poisson equation (1.1) with right-hand side f = sin(πx) sin(πy) on a
pear-shaped domain. The initial triangulation is shown in Figure 4(a), and the finer triangulations
are obtained using a triadic refinement. The discretized system (3.4) is iteratively solved using
Algorithm 3.1 with Richardson and Gauss-Seidel smoothing. Note that Jacobi smoothing does not
converge for the stiffness matrix constructed with Powell-Sabin spline finite elements.

In Table 1 we show the convergence factors of some W-cycle multigrid schemes. Each convergence
factor is approximated as

%(i, j) =

(

‖U j
MG − U∗‖2

‖U i
MG − U∗‖2

)1/(j−i)

, with j > i, (3.36)

where U j
MG is the multigrid solution after j multigrid iterations. The initial solution U0 is taken

to be the zero vector. There is no essential difference in the convergence factor, if we replace some
Richardson pre-smoothing steps by post-smoothing steps. However, with the Gauss-Seidel scheme
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the best convergence factors are obtained when more post-smoothing than pre-smoothing steps are
taken. Table 1 confirms that the proposed multigrid schemes converge independently of the mesh
size of the triangulations.

In Figure 4(b) we compare the L2-norm of the error ‖u−u∗‖L2
when we solve system (3.4) exactly

on successively refined meshes, to the one obtained by applying a full multigrid iteration scheme,
i.e. ‖u − uFMG‖L2

, with 1 and 2 W-cycle multigrid iterations used on each level. We see that the
full multigrid spline approximations uFMG converge almost as quickly as the exact Ritz-Galerkin
spline approximation u∗ to the solution u.

4 Concluding remarks

The Powell-Sabin B-splines have some favorable properties when used as finite element basis func-
tions on triangulations. Thanks to the high continuity of the quadratic splines, and the low
dimension of the spline space, the Ritz-Galerkin approximation converges rapidly to the solution
of an elliptic partial differential equation for a reasonably low number of degrees of freedom. A
multigrid scheme can be used to efficiently solve such a discretized system. Based on the triadic
subdivision scheme for PS splines, very natural grid transfer operators can be constructed.

We proved that the multigrid method with Powell-Sabin splines converges uniformly in the l2-norm,
i.e., the number of required iterations is independent of the mesh size. This was confirmed with
a numerical experiment. The analysis in Section 3.3 should serve as a simple multigrid example.
Basically, we may expect that most of the results typical for common finite elements will remain
valid for Powell-Sabin splines. We described the method for the Poisson equation, but it is clear
that the approach applies to more general second order elliptic problems as well.
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