IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, MONTH 2012 1

HEigen: Spectral Analysis for
Billion-Scale Graphs

U Kang, Brendan Meeder, Evangelos E. Papalexakis, and Christos Faloutsos

Abstract—Given a graph with billions of nodes and edges, how can we find patterns and anomalies? Are there nodes that
participate in too many or too few triangles? Are there close-knit near-cliques? These questions are expensive to answer unless
we have the first several eigenvalues and eigenvectors of the graph adjacency matrix. However, eigensolvers suffer from subtle
problems (e.g., convergence) for large sparse matrices, let alone for billion-scale ones.

We address this problem with the proposed HEIGEN algorithm, which we carefully design to be accurate, efficient and able to run
on the highly scalable MAPREDUCE (HADOOP) environment. This enables HEIGEN to handle matrices more than 7000x larger
than those which can be analyzed by existing algorithms. We implement HEIGEN and run it on the M45 cluster, one of the top
50 supercomputers in the world. We report important discoveries about near-cliques and triangles on several real-world graphs,
including a snapshot of the Twitter social network (56Gb, 2 billion edges) and the “YahooWeb” dataset, one of the largest publicly

available graphs (720Gb, 1.4 billion nodes, 6.6 billion edges).

Index Terms—Spectral Analysis; MapReduce; Hadoop; HEigen; Graph Mining

1 INTRODUCTION

Graphs with billions of nodes and edges, or billion-
scale graphs, are becoming common; Facebook boasts
about 0.8 billion active users, who-calls-whom net-
works can reach similar sizes in large countries,
and web crawls can easily reach billions of nodes.
Given a billion-scale graph, how can we find near-
cliques (a set of tightly connected nodes), the count
of triangles, and related graph properties? As we
discuss later, triangle counting and related expensive
operations can be computed quickly, provided we
have the first several eigenvalues and eigenvectors.
In general, spectral analysis is a fundamental tool not
only for graph mining, but also for other areas of data
mining. Eigenvalues and eigenvectors are at the heart
of numerous algorithms such as triangle counting [1],
singular value decomposition (SVD) [2], [3], spectral
clustering [4], [5], [6], Principal Component Analy-
sis (PCA) [7], Multi Dimensional Scaling (MDS) [8],
[9], Latent Semantic Indexing (LSI) [10], and tensor
analysis [11], [12], [13], [14]. Despite their importance,
existing eigensolvers do not scale well. As described
in Section 7, the maximum order and size of input
matrices feasible for these solvers are million-scales.
In this paper, we discover patterns on near-cliques
and triangles, on several real-world graphs including
a Twitter dataset (56Gb, over 2 billion edges) and
the “YahooWeb” dataset, one of the largest publicly
available graphs (120Gb, 1.4 billion nodes, 6.6 billion
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edges). To enable discoveries, we propose HEIGEN,
an eigensolver for billion-scale, sparse symmetric ma-
trices built on the top of HADOOP, an open-source
MAPREDUCE framework. Our contributions are the
following:

1) Effectiveness: With HEIGEN we analyze billion-
scale real-world graphs and report discoveries,
including a high triangle vs. degree ratio for
adult sites and web pages that participate in
billions of triangles.

2) Careful Design: We choose among several serial
algorithms and selectively parallelize operations
for better efficiency.

3) Scalability: We use the HADOOP platform for
its excellent scalability and implement several
optimizations for HEIGEN, such as cache-based
multiplications and skewness exploitation. This
results in linear scalability in the number of
edges, the same accuracy as standard eigen-
solvers for small matrices, and more than a 76 x
performance improvement over a naive imple-
mentation.

Due to our focus on scalability, HEIGEN can han-
dle sparse symmetric matrices which correspond to
graphs with billions of nodes and edges, surpassing
the capability of previous eigensolvers (e.g. [15] [16])
by more than 1,000x. Note that HEIGEN is different
from Google’s PageRank algorithm [17] since HEIGEN
computes the top k eigenvectors while PageRank
computes only the first eigenvector. Designing top &
eigensolver is much more difficult and subtle than
designing the first eigensolver, as we will see in
Section 4. With this powerful tool we are able to study
several billion-scale graphs, and we report fascinating
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TABLE 1
Order and size of networks.
Name Nodes Edges Description
YahooWeb 1413 M 6,636 M  WWW pages in 2002
Twitter 625M 2,780 M who follows whom in 2009/11
LinkedIn 75M 58 M person-person in 2006
Wikipedia 3.5 M 42 M doc-doc in 2007/02
Kronecker 177 K 1977 M synthetic graph
120K 1,145M
59 K 282 M
WWW- Barabasi 325K 1,497 K  Web pages inside nd.edu
Epinions 75 K 508 K who trusts whom

patterns on the near-cliques and triangle distributions
in Section 2.

The HEIGEN algorithm (implemented in HADOOP)
is available at
http://www.cs.cmu.edu/~ukang/HEIGEN. The
rest of the paper is organized as follows. In Section 2
we presents the discoveries in real-world, large scale
graphs. Section 3 explains the design decisions that we
considered for selecting the best sequential method.
Section 4 describes HEIGEN, our proposed eigen-
solver. Section 5 explains additional uses of HEIGEN
for interesting eigenvalue based algorithms. Section 6
shows the performance results of HEIGEN. After de-
scribing previous works in Section 7, we conclude in
Section 8.

2 DISCOVERIES

In this section, we show discoveries on billion-scale
graphs using HEIGEN. The discoveries include spot-
ting near-cliques, finding triangles, and eigen power-
laws. The graphs we used in this and Section 6 are
described in Table 1. ! In all the experiments for this
section, we used top 10 eigenvalues and eigenvectors
computed from 50 iterations of HEIGEN.

2.1

In a large, sparse network, how can we find tightly
connected nodes, such as those in near-cliques or
bipartite cores? Surprisingly, eigenvectors can be used
for this purpose [18]. Given an adjacency matrix A
and its SVD A = UXVT, an EE-plot is defined to be
the scatter plot of the vectors U; and U; for any i and
j- EE-plots of some real-world graphs contain clear
separate lines (or ‘spokes’), and the nodes with the
largest values in each spoke distinguish themselves
from the other nodes by forming near-cliques or bi-
partite cores. Figures 1 shows several EE-plots and
spyplots (i.e., adjacency matrix of induced subgraph)
of the top 100 nodes in top eigenvectors of YahooWeb
graph.

Spotting Near-Cliques

1. Twitter: http://www.twitter.com/
Wikipedia: http://www.cise.ufl.edu/research/sparse/matrices/
Kronecker: http://www.cs.cmu.edu/~ukang/dataset
Other graphs are either under NDA or not public.

In Figure 1 (a) - (d), we observe clear ‘spokes,” or
outstanding nodes, in the top eigenvectors. Moreover,
in Figure 1 (e), (f), and (h), the top 100 nodes with
largest values in Uy, Us, and Uy, respectively, form a
‘core-periphery’ (complete bipartite graph with nodes
in one side forming a clique) as depicted in Figure 1
(). Another observation is that the top seven nodes
shown in Figure 1 (g) belong to indymedia.org
which is the site with the maximum number of trian-
gles as shown in Figure 3. We also note that the nodes
in (e) - (h) highly overlap: the number of distinct
nodes is 109.

In the WWW-Barabasi graph of Figure 2, we also
observe spokes in the top eigenvectors. The spokes
from the top four eigenvectors form near-cliques, and
the union of them (329 nodes) clearly identify three
tightly connected communities in Figure 2 (i).

Observation 1 (Eigenspokes): EE-plots of real graphs
show clear spokes. Additionally, the extreme nodes in
the spokes belong to cliques or core-peripheries. [J

2.2 Triangle Counting

Given a particular node in a graph, how are its
neighbors connected? Do they form stars? Cliques?
The above questions about the community structure
of networks can be answered by studying triangles
(three nodes which are connected to each other).
However, directly counting triangles in graphs with
billions of nodes and edges is prohibitively expen-
sive [19]. Fortunately, we can approximate triangle
counts with high accuracy using HEIGEN by exploit-
ing the connection of triangle counting to eigenval-
ues [20]. In a nutshell, the total number of triangles in
a graph is related to the sum of cubes of eigenvalues,
and the first few eigenvalues provide extremely good
approximations. A slightly more elaborate analysis
approximates the number of triangles in which a node
participates, using the cubes of the first few eigenval-
ues and the corresponding eigenvectors. Specifically,
the total number of triangles A(G) of a graph G is
A(G) = 37, A3, and the number of triangles A,
that a node i is participating inis A; = 3 37, Au;[i]?
where ); is the jth eigenvalue and wu;[i] is the ith
element of the jth eigenvector of the adjacency matrix
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Fig. 1. EE-plots and spyplots from YahooWeb. (a)-(d): EE-plots showing the scores of nodes in the ith
eigenvector U; vs. in the jth eigenvector U;. Notice the clear ‘spokes’ in top eigenvectors signify the existence of
a strongly related group of nodes in near-cliques or core-periphery (complete bipartite graph with nodes in one
side forming a clique) as depicted in (i). (e)-(h): spyplots (adjacency matrices of induced subgraphs) of the top
100 largest scoring nodes from each eigenvector. Notice that we see a near clique in Us, and core-peripheries

in Uy, Us, and Uy. (i): the structure of ‘core-periphery’ in (e), (f), and (h).
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Fig. 2. EE-plots and spyplots of WWW-Barabasi. (a)-(d): EE-plots showing the scores in the ith eigenvector
U; vs. in the jth eigenvector U;. Notice the ‘spokes’ in top eigenvectors which signify the cliques shown in the
second row. (e)-(h): Spyplots (adjacency matrices of induced subgraphs) from the top 100 largest scoring nodes
from each eigenvector. Notice the cliques in all the plots. (i): Spyplots of the union of nodes in the top 4 spokes.

Notice the 3 cliques of sizes 90, 100, and 130.

of G. The top k eigenvalues can give highly accurate
approximations to the number of triangles since the
top eigenvalues dominate the cubic sum given the
power-law relation of eigenvalues [21], which we also
observe in Section 2.3.

Using the top k eigenvalues computed with
HEIGEN, we analyze the distribution of triangle
counts of real graphs including LinkedIn, Twitter, and
YahooWeb graphs in Figure 3. We first observe that
there exist several nodes with extremely large triangle
counts. In Figure 3 (b), Barack Obama is the person

with the fifth largest number of participating trian-
gles, and has many more than other U.S. politicians. In
Figure 3 (c), the web page lists.indymedia.org
contains the largest number of triangles; this page is
a list of mailing lists which apparently point to each
other.

We also observe regularities in triangle distributions
and note that the beginning part of the distributions
follows a power-law.

Observation 2 (Triangle power law): The beginning
part of the triangle count distribution of real graphs
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Fig. 3. The distribution of the number of participating triangles of real graphs. In general, they obey the “triangle
power-law.” In the Twitter plot, some well-known U.S. politicians are circled; among them Barack Obama has the
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Fig. 4. The number of participating triangles vs. degree of some ‘celebrities’ (rest: omitted, for clarity) in Twitter
accounts. Also shown are accounts of adult sites which have smaller degree, but belong to an abnormally large

number of triangles (= many, well connected followers - probably, ‘robots’).

follows a power-law. O

In the YahooWeb graph in Figure 3 (c), we ob-
serve many spikes. One possible explanation for these
spikes is that they come from cliques: a k-clique
generates k nodes with (*2%) triangles.

Observation 3 (Spikes in triangle distribution): In the
Web graph, there exist several spikes which possibly
come from cliques. O

The rightmost spike in Figure 3 (c) contains 125 web
pages each of which has about 1 million triangles in
their neighborhoods. They all belong to the news site
ucimc.org, and are connected to a tightly coupled
group of pages.

Triangle counts exhibit even more interesting pat-
terns when combined with the degree information
as shown in the triangle-degree plot of Figure 4.
In general, the triangle and the degree are linearly
correlated in the log-log plot [20]; for example the
celebrities in Figure 4 have similar mild ratios for the
triangles and the degrees. However, accounts for some
adult sites have extremely well connected followers
which make the ratio very high. Degree-triangle plots
can be used to spot and eliminate harmful accounts
such as those of adult advertisers and spammers. We

note that not all of the high triangle vs. degree ratio
nodes are suspicious; however, they should be given
high priority for possible investigation.

Observation 4 (Anomalous Triangles vs. Degree Ratio):
In Twitter, accounts from some adult advertisers have
very high triangles vs. degree ratio compared to
other regular accounts. O

2.3 Eigen Exponent

The power-law relationship A\, o« i° of eigenvalues
A; vs. rank ¢ has been observed in Internet topology
graphs with up to 4,389 nodes [21]. Will the same
power-law be observed in up to 300,000x larger
graphs? The scree plots in Figure 5 show the answer.
Note that all plots have correlation coefficients equal
to -0.94 or better, except for the WWW-Barabasi with
the correlation coefficient -0.84.

Observation 5 (Power-law scree plots): For all real
graphs of Figure 5, the scree plots indicate power
laws. Most of the graphs have the correlation
coefficients -0.94 or better. O

The difference of the slopes between YahooWeb and
WWW-Barabasi graphs means that the larger Web
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Fig. 5. The scree plot: absolute eigenvalue vs. rank
observed in various real graphs.

graph (YahooWeb) has a more skewed eigenvalue
distribution, with the small set of eigenvalues dom-
inating most of the spectra compared to the smaller
Web graph (WWW-Barabasi).

All of the above observations need a fast, scalable
eigensolver. This is exactly what HEIGEN does, and
we describe our proposed design next.

3 BACKGROUND SEQUENTIAL ALGO-

RITHMS

Our goal is an eigensolver that finds the top k eigen-
values of a billion-scale matrix. Our natural choice
of parallel platform is HADOOP, since it has been
successfully used for processing Web-scale data and
many graph mining tasks also (see [22], [23], [24],
[25], [26], [27]). We limit our attention to symmetric
matrices due to the computational difficulty since
even the best method for non-symmetric eigensolver
requires significantly heavier computations than the
symmetric case [28].

The problem of finding the eigenvalues of a matrix,
however, is inherently difficult since it essentially
boils down to finding the roots of a high-degree
polynomial which may not have the general solution.
Designing the parallel eigensolver algorithm is even
more complicated since it requires a careful choice of
operations that could be performed well in parallel.
In this section, we review some of the major sequen-
tial eigensolver algorithms and show the important

(e) Epinions
Corr. Coefficient: -0.974

(f) LinkedIn
Corr. Coefficient: -0.972

in log-log scale. Notice that the similar power-laws are

design decisions that guided our choice of the best
sequential method for parallel eigensolvers for very
large graphs. Table 2 lists the symbols used in this
paper. For indexing elements of a matrix, we use
Ali, j] for (i,j)th element of A, A[i,:] for ith row of
A, and A[:, j] for jth column of A.

3.1

The simplest and most popular way of finding the
first eigenvector of a matrix is the Power method. The
first eigenvector is the one corresponding to the largest
eigenvalue of the matrix. In the Power method, the
input matrix A is multiplied with the initial random
vector b multiple times to compute the sequence of
vectors Ab, A(Ab), A(A%b), ... which converges to the
first eigenvector of A.

The Power method is attractive since it requires
only matrix-vector multiplications, which are carried
out efficiently in many parallel platforms including
HADOOP [27]. Furthermore, it is one of the ways of
computing the PageRank of a graph [17]. However,
the main drawback of the Power method in the
present context is that it is very restrictive, since it
computes only the first eigenvector. Other variants
of the power method, such as shifted inverse iteration
and Rayleigh quotient iteration also have the same
limitation. Therefore, we need to find a better method
which can find top k eigenvalues and eigenvectors.

Power Method
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TABLE 2
Table of symbols.

Symbol  Definition

3

order of input matrix
m number of iterations in Lanczos

A, M n-by-n input matrix
As, M n-by-m input matrix, n > m
Y, T n-vector
Ts m-vector, n > m
«, a real number
[yl L2 norm of the vector y
[|T] induced matrix L2 norm of the matrix T" which is the largest singular value of T
em a vector whose mth element is 1, while other elements are 0
EIG(A) outputs QDQT by symmetric eigen decomposition
€ machine epsilon: upper bound on the relative computation error

Shortcomings:
first eigenvector.

Power method computes only the

3.2 Simultaneous lteration (or QR algorithm)

The simultaneous iteration (or QR algorithm, which is
essentially the same) is an extension of Power method
in the sense that it applies the Power method to
several vectors at once. It can be shown that the or-
thogonal bases of the vectors converge to top k eigen-
vectors of the matrix [28]. The main problem of the
simultaneous iteration is that it requires several large
matrix-matrix multiplications which are prohibitively
expensive for billion-scale graphs. Therefore, we re-
strict our attention to algorithms that require only
matrix-vector multiplications.

Shortcomings: Simultaneous iteration is too expen-
sive for billion-scale graphs due to large matrix-matrix
multiplications.

3.3 Lanczos-NO: No Orthogonalization

The next method we consider is the basic Lanczos
algorithm [29] which we henceforth call Lanczos-
NO (No Orthogonalization). Lanczos-NO method is
attractive since it can find the top k eigenvalues of
sparse, symmetric matrix, with its most costly opera-
tion being the matrix-vector multiplication.

Overview - Intuition. The Lanczos-NO algorithm

is a clever improvement over the Power method. Like
the Power method,

o it requires several (m) matrix-vector multiplica-
tions, that can easily be done with HADOOP

o then it generates a dense, but skinny matrix (n x
m, with n > m)

o it computes a small, sparse square m x m matrix,
whose eigenvalues are good approximations to
the required eigenvalues

o and then computes the top k eigenvectors (k <
m), also with HADOOP-friendly operations.

Thus, all the expensive steps can be easily done

with HADOOP. Next we provide more details on
Lanczos-NO, which can be skipped on first glance.

Details. The Lanczos-NO algorithm is a clever ex-
tension of the Power method. In the Power method,
the intermediate vectors A*b are discarded for the
final eigenvector computation. In Lanczos-NO, the
intermediate vectors are used for constructing or-
thonormal bases of the so-called Krylov subspace K,
which is defined as

K,, =<b,Ab, ..., A" b > .

The orthonormal bases are constructed by creating
a new vector which is orthogonal to all previous
bases, as in Gram-Schmidt orthogonalization. There-
fore, Lanczos-NO can be summarized as an itera-
tive algorithm which constructs orthonormal bases
for successive Krylov subspaces. Specifically, Lanczos-
NO with m iterations computes the Lanczos-NO fac-
torization which is defined as follows:

Avm - Vme + fm,ega

where A™*™ is the input matrix, V,2*™ contains the
m orthonormal bases as its columns, 7*™ is a tri-
diagonal matrix that contains the coefficients for the
orthogonalization, f,, is a new n-vector orthogonal
to all columns of V,,, and e, is a vector whose mth
element is 1, while other elements are 0. Here, m
(the number of matrix-vector multiplication) is much
smaller than n (the order of the input matrix): e.g.,
for billion-scale graphs, n = 10°, and m = 20. The
Lanczos-NO iteration is shown in Algorithm 1.

After m iterations, the V,,, matrix and T,,, matrices
are constructed (T,,, is built by T,,[i,i] + «;, and
Tnliyi + 1] = Tpli + 1,i] < f;). The eigenvalues
of T,, are called the Ritz values, and the columns
of V;,,Y, where Y contains the eigenvector of 7,, in
its columns, are called the Ritz vectors which are
constructed by Algorithm 2. The Ritz values and the
Ritz vectors are good approximations of the eigen-
values and the eigenvectors of A, respectively [30].
The computation of the eigenvalues of 7}, can be
done quickly with direct algorithms such as QR since
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Algorithm 1: Lanczos-NO (No Orthogonalization)

Input: Matrix A™*",
random n-vector b,
number of steps m
Output: Orthogonal matrix V,2*™ = [v1...vy,],
coefficients «[1..m] and B[1..m — 1]
1: ﬂo —0,v9+ 0, v1 « b/HbH,
2: fori=1,..m do
v Av;;
o — viTv,'
V40— B;_1v;_1 — a;v;; // make a new basis
Bi < |lvll;
if 8; = 0 then
break for loop;
end if
10: Vit1 < U/ﬂi;
11: end for

Algorithm 2: Compute Top k Ritz Vectors

Input: Orthogonal matrix V2>,
coefficients «[1..m] and S[1..m — 1]
Output: Ritz-vector R}**

- QDQT + EIG(T,,);

: ALk ¢ (top k eigenvalues from D);

: Qp < (k columns of @) corresponding to A1 );
t Ry = VinQp

T = W N =

the matrix is very small (e.g., 20 by 20). For detalils,
see [30].

The problem of Lanczos-NO is that some eigenval-
ues jump up to the next eigenvalues, thereby creating
spurious eigenvalues. We'll see the solution to this
problem in the next section.

Shortcomings: Lanczos-NO outputs spurious eigen-
values.

4 PROPOSED METHOD

In this section we describe HEIGEN, a parallel al-
gorithm for computing the top k eigenvalues and
eigenvectors of symmetric matrices in MAPREDUCE.

4.1 Summary of the Contributions

Efficient top k eigensolvers for billion-scale graphs
require careful algorithmic considerations. The main
challenge is to carefully design algorithms that work
well on distributed systems and exploit the inher-
ent structure of data, including block structure and
skewness, in order to be efficient. We summarize the
algorithmic contributions here and describe each in
detail in later sections.
1) Careful Algorithm Choice: We carefully choose
a sequential eigensolver algorithm that is effi-
cient for MAPREDUCE and gives accurate re-
sults.

2) Selective Parallelization: We group operations
into expensive and inexpensive ones based on
input sizes. Expensive operations are done in
parallel for scalability, while inexpensive opera-
tions are performed on a single machine to avoid
extra overhead of parallel execution.

Blocking: We reduce the running time by de-
creasing the input data size and the amount of
network traffic among machines.

Exploiting Skewness: We decrease the running
time by exploiting the skewness of data.

3)

4)

4.2 Careful Algorithm Choice

In Section 3, we considered three algorithms that
are not tractable for analyzing billion-scale graphs
with MAPREDUCE. Fortunately, there is an algorithm
suitable for such a purpose. Lanczos-SO (Selective
Orthogonalization) improves on the Lanczos-NO by
selectively reorthogonalizing vectors instead of per-
forming full reorthogonalizations.

The main idea of Lanczos-SO is as follows: we start

. Ty, + (build a tri-diagonal matrix from a and j); with a random initial basis vector b which comprises

a rank-1 subspace. For each iteration, a new basis
vector is computed by multiplying the input matrix
with the previous basis vector. The new basis vector is
then orthogonalized against the last two basis vectors
and is added to the previous rank-(m — 1) subspace,
forming a rank-m subspace. Let m be the number
of the current iteration, ,, be the n x m matrix
whose ith column is the ith basis vector, and A be
the matrix whose eigenvalues we seek to compute.
We also define T}, = QT AQ,, to be a m x m matrix.
Then, the eigenvalues of T}, are good approximations
of the eigenvalues of A . Furthermore, multiplying Q.
by the eigenvectors of T, gives good approximation
of the eigenvectors of A. We refer to [28] for further
details.

If we used the exact arithmetic, the newly computed
basis vector would be orthogonal to all previous basis
vectors. However, rounding errors from floating-point
calculations compound and result in the loss of or-
thogonality. This is the cause of the spurious eigenval-
ues in Lanczos-NO. Orthogonality can be recovered
once the new basis vector is fully re-orthogonalized to
all previous vectors. However, this operation is quite
expensive as it requires O(m?) re-orthogonalizations,
where m is the number of iterations. A faster approach
uses a quick test (line 10 of Algorithm 3) to selectively
choose vectors that need to be re-orthogonalized to
the new basis [31]. This selective-reorthogonalization
idea is shown in Algorithm 3.

The Lanczos-SO has all the properties that we need:
it finds the top k largest eigenvalues and eigenvectors,
it produces no spurious eigenvalues, and its most
expensive operation, a matrix-vector multiplication, is
tractable in MAPREDUCE. Therefore, we pick Lanczos-
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Algorithm 3: Lanczos-SO (Selective Orthogonal-
ization)
Input: Matrix A™*",
random n-vector b,
maximum number of steps m,
error threshold e,
number of eigenvalues k
Output: Top k eigenvalues A;_ i,
eigenvectors U"*k
1: Bo 0, vg < 0, vy < b/||b||;
2: for i = 1..m do
3 v <+ Av;; // Find a new basis vector
& a; vl
5 v v—fi1v;—1 — a;v;; // Orthogonalize
against two previous basis vectors
Bi  |[vlf;

.Q\

parallelized and those to be run in a single machine.
Table 3 summarizes our choice for each sub-operation.
Note that the last two operations in the table can
be done with a single-machine standard eigensolver
since the input matrices are tiny; they have m rows
and columns, where m is the number of iterations.

4.4 Blocking

Minimizing the volume of information exchanged
between nodes is important to designing efficient
distributed algorithms. In HEIGEN, we decrease the
amount of network traffic by using the block-based
operations. Normally, one would put each edge
“(source, destination)” in one line; HADOOP treats
each line as a data element for its mapper functions.
Instead, we divide the adjacency matrix into square

7. T; < (build tri-diagonal matrix from « and f); blocks (and, of course, the corresponding vectors also

8  QDQT « EIG(T;); // Eigen decomposition of

T;
9: forj=1.ido

0. if BIQli. )l < VAT then

11: r <+ ViQ[, jl;

12: v« v — (rTv)r; // Selectively

orthogonalize

13: end if

14:  end for

15:  if (v was selectively orthogonalized) then

16: Bi < ||v||; // Recompute normalization
constant f3;

17 end if

18: if B; = 0 then

19: break for loop;

20:  end if

21: Vi1 < 7}/61';

22: end for

23:
24:
25:

T < (build tri-diagonal matrix from « and f);

A1k < top k diagonal elements of D; //
Compute eigenvalues

U < VinQr; // Compute eigenvectors. @y is the
set of columns of ) corresponding to A;_

26:

SO as our choice of the sequential algorithm for
parallelization.

4.3 Selective Parallelization

Among many sub-operations in Algorithm 3, which
operations should we parallelize? A naive approach
is to parallelize all the operations; however, some
operations run more quickly on a single machine
rather than on multiple machines in parallel. The
reason is that the overhead incurred by using MAPRE-
DUCE exceeds gains made by parallelizing the task;
simple tasks where the input data is very small are
carried out faster on a single machine. Thus, we
divide the sub-operations into two groups: those to be

into blocks), and put the edges of each block on a
single line [27], [32]. This makes the mapper functions
a bit more complicated to process blocks, but it saves
significant transfer time of data over the network. We
use these edge-blocks and the vector-blocks for many
parallel operations in Table 3, including matrix-vector
multiplication, vector update, vector dot product, vec-
tor scale, and vector L2 norm. Performing operations
on blocks is faster than doing so on individual ele-
ments since both the input size and the key space
decrease. This reduces the network traffic and sorting
time in the MAPREDUCE Shuffle stage. As we will see
in Section 6, the blocking decreases the running time
by more than 4x.

4.5 Exploiting Skewness: Matrix-Vector Multipli-
cation

HEIGEN uses an adaptive method for sub-operations

QDQT « EIG(T); // Eigen decomposition of T based on the size of the data. In this section, we

describe how HEIGEN implements different matrix-
vector multiplication algorithms by exploiting the
skewness pattern of the data. There are two matrix-
vector multiplication operations in Algorithm 3: the
one with a large vector (line 3) and the other with a
small vector (line 11).

The first matrix-vector operation multiplies a matrix
with a large and dense vector, and thus it requires a
two-stage standard MAPREDUCE algorithm by Kang
et al. [27]. In the first stage, matrix elements and vector
elements are joined and multiplied to produce partial
results which are added together to get the result
vector in the second stage.

The other matrix-vector operation, however, mul-
tiplies with a small vector. HEIGEN uses the fact
that the small vector can fit in a machine’s main
memory, and distributes the small vector to all the
mappers using the distributed cache functionality of
HADOOP. The advantage of the small vector being
available in mappers is that joining edge elements
and vector elements can be done inside the mapper,
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TABLE 3
Parallelization Choices. The last column (P?) indicates whether the operation is parallelized in HEIGEN. Some
operations are better to be run in parallel since the input size is very large, while others are better in a single
machine since the input size is small and the overhead of parallel execution overshadows its decreased running

time.

Operation Description Input P?

y<+—y+azx vector update Large Yes
v+ 2T vector dot product Large Yes
Y+ ay vector scale Large Yes
[yl vector L2 norm Large Yes
Yy M™*"g large matrix-large, dense vector multiplication Large Yes
Yy MP Mz, large matrix-small vector multiplication (n > m) Large Yes
As = MM NM*E - Jarge matrix-small matrix multiplication (n > m > k) Large Yes
17| matrix L2 norm which is the largest singular value of the matrix  Tiny No
EIG(T) symmetric eigen decomposition to output QDQT Tiny No

Algorithm 4: CBMV (Cache-Based Matrix-Vector
Multiplication) for HEIGEN

Input: Matrix M = {(idsyc, (idgst, mval))},
vector = = {(id, vval)}
Output: Result vector y
1: Map(key k, value v, Vector x): // Multiply
matrix elements and the vector z
2: idge < k;
3: (idgse, mval) + v;
4: Output(ids,e, (mval x z[idas))); // Multiply and
output partial results

6: Reduce(key k, values V[]): // Sum up partial
results

7: sum < 0;

8 forveV do

9: sum <— sum —+ v;

10: end for

11: Output(k, sum); // Output a vector element

and thus the first stage of the standard two-stage
matrix-vector multiplication can be omitted. In this
one-stage algorithm the mapper joins matrix elements
and vector elements to make partial results, and
the reducer adds up the partial results. The pseudo
code of this algorithm, which we call CBMV (Cache-
Based Matrix-Vector multiplication), is shown in Al-
gorithm 4. We want to emphasize that this operation
cannot be performed when the vector is large, as is the
case in the first matrix-vector multiplication (line 3 of
Algorithm 3). The CBMV is faster than the standard
method by 57x as described in Section 6.

4.6 Exploiting Skewness: Matrix-Matrix Multipli-
cation

Skewness can also be exploited to efficiently perform
matrix-matrix multiplication (line 26 of Algorithm 3).
In general, matrix-matrix multiplication is very ex-
pensive. A standard, yet naive, way of multiplying

two matrices A and B in MAPREDUCE is to mul-
tiply Al:,¢] and BJi,:] for each column i of A and
sum the resulting matrices. This algorithm, which
we call direct Matrix-Matrix multiplication (MM), is
very inefficient since it generates huge matrices which
are summed up many times. Fortunately, when one
of the matrices is very small, we may exploit the
skewness to come up with an efficient MAPREDUCE
algorithm. This is exactly the case in HEIGEN; the first
matrix is very large, and the second is very small. The
main idea is to distribute the second matrix using
the distributed cache functionality in HADOOP, and
multiply each element of the first matrix with the
corresponding rows of the second matrix. We call
the resulting algorithm Cache-Based Matrix-Matrix
multiplication, or CBMM. There are other alternatives
to matrix-matrix multiplication: one can decompose
the second matrix into column vectors and iteratively
multiply the first matrix with each of these vectors. We
call the algorithms, introduced in Section 4.5, Iterative
Matrix-Vector multiplications (IMV) and Cache-Based
iterative Matrix-Vector multiplications (CBMV). The
difference between CBMV and IMV is that CBMV
uses cache-based operations while IMV does not. As
we will see in Section 6, the best method, CBMM, is
faster than naive methods by 76x.

4.7 Analysis

We analyze the time and the space complexities of
HEIGEN. In the lemmas below, m is the number of
iterations, |V| is the dimension of the matrix, |E| is
the number of nonzeros in the matrix, and M is the
number of machines.

Lemma 1 (Time Complexity): HEIGEN
O(m‘vlﬁEllogW'XjE‘) time.

Proof: The running time of one iteration
of HEIGEN is dominated by the matrix-large
vector multiplication whose running time is
O(lv‘;}'E‘loglVl]ElEl). The lemma is proved by
multiplying the running time of an iteration by the
number of iterations. O

takes
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Note that in computing few eigenvalues from a
large graph, m can be treated as a constant.
Lemma 2 (Space Complexity): HEIGEN
O(|V| + |E|) space.
Proof: The maximum storage is required at the
intermediate output of the two-stage matrix-vector
multiplication where O(|V'|+ |E|) space is needed. [J

requires

5 ADDITIONAL USES OF HEIGEN

The HEIGEN algorithm can be readily extended to
other eigenvalue-based algorithms. In this section,
we describe large-scale algorithms for Singular Value
Decomposition (SVD), HITS, and spectral clustering
based on HEIGEN.

5.1 HEIGEN Gives SVD

Given any matrix A, the Singular Value Decomposi-
tion (SVD) gives the factorization

A=UxVvT,

where U and V are unitary matrices (i.e. square
matrices that satisfy UTU = UU” = I with I being the
identity matrix), and ¥ is a diagonal (if A is square)
or a rectangular diagonal matrix (if A is rectangular),
whose diagonal entries are real and non-negative, and
are called singular values of A.

The SVD is a very powerful tool in analyzing
graphs as well as matrices [2], [3]; some of its ap-
plications include optimal matrix approximation in
the least squares sense [33], Principal Component
Analysis [7], clustering [34] (more specifically a re-
laxed version of the well known k-means clustering
problem) and Information Retrieval /Latent Semantic
Indexing [10].

HEIGEN can be extended to SVD of both symmetric
and asymmetric matrices.

Symmetric Matrix. For a symmetric matrix A, the
singular values of A are the absolute eigenvalues of
A, and the singular vectors and the eigenvectors of
A are the same up to signs. Thus, given an eigen
decomposition A = UAUT computed by HEIGEN, we
get the SVD

A = UAUT
= UxsuT
= UX(US)T,

where A = XS, ¥ is the diagonal matrix whose
element 3(i,7) contains the absolute value of A(3,1),
and S is the diagonal matrix whose (7,7)-th element
S(i,1) is 1 if A(é,4) > 0, and —1 otherwise.

Asymmetric Matrix. For an asymmetric matrix
A™*P, the standard method to compute the SVD
A =U%VT is to build a symmetric (n + p) x (n + p)
matrix

Algorithm 5: Standard SVD on asymmetric matrix
using HEIGEN

Input: Matrix A™*?,
number of singular values k
Output: Top k singular values o[1..k],
left singular vectors U™*¥,
right singular vectors VP** of A
1A [ 0 A]
' AT o)
2: Apply HEIGEN on A;

A 0 A
[y

ar}d apply HEIGEN on A [3]. The SVD (up to signs)
of A is given by

1 1 1 T 1 T
a-2y S S| B
»Y BV |10 X | -mU BV

Algorithm 5 shows the algorithm for standard SVD
on asymmetric matrix using HEIGEN.

There are two shortcomings in Algorithm 5 which
can be improved. First, we need to construct A which
is 2x larger than the original matrix A. Second, to get
k singular values of A, we need to get 2k eigenvalues
of A since there are 2 copies of the same eigenvalues
in the eigen decomposition of A.

Fast SVD for Asymmetric Matrix. We describe a
faster SVD method for asymmetric matrices using
HEIGEN, with the two main ideas. First, we use the
fact that if A = USVT is a SVD of A, then AAT =
UX?U7 is a symmetric, positive definite matrix whose
eigenvectors are the same as the left singular vectors
of A, and eigenvalues are the square of the singular
values of A. Thus, HEIGEN on AA” gives us U and
Y. Having computed U and X, we can solve for
VT by VT = ©7'UTA. Naively applying HEIGEN
on AAT is not desired, however, since AAT can be
much larger and denser than A. Our second idea
solves the problem by never materializing the matrix
AAT in applying HEIGEN on AAT. Note that the
input matrix in HEIGEN is used only for the matrix-
vector multiplication on line 3 of Algorithm 3. We can
efficiently compute the matrix-vector multiplication
(AAT)v; by A(ATv;), which means to first compute
ATv;, and multiply the resulting vector by A, thereby
replacing a dense matrix-vector multiplication by two
sparse matrix-vector multiplications.

We note that Lanczos-based bidiagonalization
method [35], [36], followed by the diagonalization of
the bidiagonal matrix, is another viable option for
SVD [28].
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5.2 HEIGEN Solves Large Scale Systems of Linear
Equations

Solving large scale systems of linear equation is a very
important task that pertains to almost every scientific
discipline. Consider the following system of linear
equations:

y= Az

where A is of size m x p and z is the vector of
unknowns. In general, this system might have one,
infinite or no solution, depending on the dimensions
of A (if m > p the system is called overdetermined,
else if m < p it is called underdetermined), and on
whether y exists in the column space of A or not. In
all the above cases, HEIGEN helps us calculate the
only solution (when there exists one), find the best
(in terms of the /5 norm) whenever there are infinite
ones, or get the best ¢, approximation of x, when
there is no exact solution. For all the aforementioned
cases, we call & the outcome. It can be shown that the
solution 7 is given by & = Ay, where AT is the Moore-
Penrose pseudoinverse of A [37] which is defined by
At = (AT A)~1 AT for a real matrix A with full column
rank. A computationally efficient way to compute the
pseudoinverse is to use the SVD. Specifically, given
an SVD A = UXVT by HEIGEN, the pseudoinverse
AT is given by

Af=vy-1yT.

Furthermore, & = A'y = VEX~'U"y can be com-
puted efficiently in HADOOP by three matrix-vector
multiplications. Specifically,

z=Vuw,

where w = Y7 'z and z = UTy. We note that the
accuracy of the pseudoinverse computation depends
on the rank of the matrix : the higher the rank of %,
the better the accuracy.

5.3 HEIGEN Gives HITS

HITS [38] is a well-known algorithm to compute the
‘hubs’ and ‘authorities’ scores in web pages. Given
an adjacency matrix A of web pages, the hub and the
authority scores are given by the principal eigenvector
of AAT and A” A, respectively. HEIGEN can give them
since the left and the right singular vectors of A are the
principal eigenvectors of AAT and AT A, respectively,
as described in Section 5.1.

5.4 HEIGEN Gives Spectral Clustering

Spectral clustering is a popular clustering algorithm
on graphs [6]. We consider the two spectral clustering
algorithms by Shi et al. [4] and Ng et al. [5], and
show how they can be easily computed with HEIGEN.
Recall that the main idea of the spectral clustering
is to first compute the k smallest eigenvectors of

Algorithm 6: Spectral Clustering with Ly, using
HEIGEN
Input: Matrix A™*™,
number of clusters [
Output: [ clusters C;_;
1: Construct D;
2 A« D 2AD™3;
3: [U, A1) < HEIGEN(A);
4: C1_; + k-means on U;

Algorithm 7: Spectral Clustering with L,., using
HEIGEN

Input: Matrix A™*™,

number of clusters [

Output: [ clusters C1_;
: Construct D;
: A« D 2AD"3;
: U, A1.k] + HEIGEN(A);
U« D 2U;
: C1.1 < k-means on U’;

T = W N =

Lyw = D7'L (Shi et al. [4]) or Ly, = D"2LD" >
(Ng et al. [5]), respectively, and then run a k-means
algorithm. Here, L = D — A is the graph Laplacian
matrix where A is a symmetric adjacency matrix of a
graph and D is the diagonal matrix computed from
A with D(i,i) = >, A(4, j).

Issues. Applying HEIGEN on the spectral cluster-
ing is not straightforward for the following two rea-
sons. First, the spectral clustering algorithms require
k smallest eigenvectors, while HEIGEN computes k
largest eigenvectors of a matrix. Second, the L., is
asymmetric, while HEIGEN works only on a symmetric
matrix. However, HEIGEN can be used for these algo-
rithms as we show below. We mildly assume that the
input graph for the spectral clustering is connected.

Our solution on L,,,. Notice that L., =
D™3LD"% = I — D 3AD~3, where [ is an identity
matrix, and L,,, = D™'L = I— D! A. It can be shown
that D~2AD~% and D~'A share the same eigenval-
ues, and the eigenvalues range from —1 to 1 [6]. Also
note that if A is an eigenvalue of D*%AD*%, then 1—\
is an eigenvalue of L, with the same eigenvector.
Thus, the k& smallest eigenvalues and eigenvectors of
Lsym are mapped to the k largest eigenvalues and
eigenvectors of D=2 AD~%, which can be computed
by HEIGEN. Algorithm 6 shows the spectral clustering
with Ly, using HEIGEN.

Our solution on L,,. It can be shown that u
is an eigenvector of L,, if and only if D3y is an
eigenvector of Ly, with the same eigenvalue [6].
Thus, multiplying D=2 to the k largest eigenvectors
of D=2 AD" % leads to top k smallest eigenvectors of
Ly, as shown in Algorithm 7.
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Fig. 6. (a) Running time vs. number of edges in 1 iteration of HEIGEN with 50 machines. Notice the near-linear
running time proportional to the edges size. (b) Running time vs. number of machines in 1 iteration of HEIGEN,
on the Kronecker graph with 282M edges. The running time decreases as number of machines increase. (c)
Comparison of running time between different skewed matrix-matrix and matrix-vector multiplications. For matrix-
matrix multiplication, our proposed CBMM outperforms naive methods by at least 76x. The slowest matrix-
matrix multiplication algorithm(MM) even didn’t finish and the job failed due to excessive data. For matrix-vector
multiplication, our proposed CBMV is faster than the naive method by 57 x.

6 PERFORMANCE

We present experimental results. We verified the accu-
racy of HEIGEN on a small graph (Epinions), and the
singular values and eigenvalues from HEIGEN and
the MATLAB differ at most 0.1%. In addition to this
accuracy result, we present answers to the following
questions:

o Scalability: how well does HEIGEN scale up?

o Optimizations: which of our proposed methods

give the best performance?

We perform experiments in the Yahoo! M45
HADOOP cluster with total 480 hosts, 1.5 petabytes
of storage, and 3.5 terabytes of memory. We use
HADOOP 0.20.1. The scalability experiments are per-
formed using synthetic Kronecker graphs [39] since
realistic graphs of any size can be easily generated.

6.1 Scalability

Figure 6 (ab) shows the scalability of HEIGEN-
BLOCK, an implementation of HEIGEN that uses
blocking, and HEIGEN-PLAIN, an implementation
that does not, on Kronecker graphs. For HEIGEN-
BLOCK, we used block width 128. Notice that the
running time is near-linear in the number of edges
and machines. We also note that HEIGEN-BLOCK
performs up to 4x faster when compared to HEIGEN-
PLAIN. The running time for HEIGEN-BLOCK does
not change much after adding more machines; the
reason is that after the blocking the graph size is small
enough to be processed in 10 machines.

6.2 Optimizations

Figure 6 (c) shows the comparison of running time
of the skewed matrix-matrix multiplication and the
matrix-vector multiplication algorithms. We used 100

machines for YahooWeb data. For matrix-matrix mul-
tiplications, the best method is our proposed CBMM
which is 76x faster than repeated naive matrix-
vector multiplications (IMV). The slowest matrix-
matrix multiplication algorithm did not even finish,
and failed due to heavy amounts of intermediate
data. For matrix-vector multiplications, our proposed
CBMYV is faster than the naive method (IMV) by 48x.

7 RELATED WORKS

The related works form two groups, large-scale eigen-
solvers and MAPREDUCE/HADOOP.

Large-scale Eigensolvers: There are many parallel
eigensolvers for large matrices: the work by Zhao
et al. [40], HPEC [41], PLANSO [15], ARPACK [42],
ScalLAPACK [43], PLAPACK [44] are several exam-
ples. All of them are based on MPI with message
passing, which has difficulty in dealing with billion-
scale graphs. The maximum order of matrices ana-
lyzed with these tools is less than 1 million [15], [16],
which is far from web-scale data. On the HADOOP
side, the Mahout project [45] provides SVD. However,
Mahout suffers from two major issues: (a) it assumes
that the vector (b, with n=0O(billion) entries) fits in the
memory of a single machine, and (b) it implements
the full re-orthogonalization which is inefficient.

MapReduce and Hadoop: MAPREDUCE is a par-
allel programming framework for processing web-
scale data. MAPREDUCE has two major advantages:
(a) it handles data distribution, replication, and load
balancing automatically, and furthermore (b) it uses
familiar concepts from functional programming. The
programmer needs to provide only the map and the
reduce functions. The general framework is as fol-
lows [46]: the map stage processes input and out-
puts (key, value) pairs. The shuffling stage sorts the
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map output and distributes them to reducers. Finally,
the reduce stage processes the values with the same
key and outputs the final result. HADOOP [47] is an
open source implementation of MAPREDUCE. It also
provides a distributed file system (HDFS) and data
processing tools such as PIG [48] and Hive . Due to its
extreme scalability and ease of use, HADOOP is widely
used for large scale data mining [23], [24], [26], [27],
[49] . In addition to PIG, there are several high-level
language and environments for advanced MAPRE-
DUCE-like systems including SCOPE [50], Sphere [51],
and Sawzall [52].

8 CONCLUSION

In this paper we discovered spectral patterns in real-
world, billion-scale graphs. This was possible by us-
ing HEIGEN, our proposed eigensolver for the spectral
analysis of very large-scale graphs. The main contri-
butions are the following:

 Effectiveness: We analyze the spectral properties
of real world graphs, including Twitter and one
of the largest public Web graphs. We report pat-
terns that can be used for anomaly detection and
finding tightly-knit communities.

o Careful Design: We carefully design HEIGEN to
selectively parallelize operations based on how
they are most effectively performed.

o Scalability: We implement and evaluate a
billion-scale eigensolver. Experiments show that
HEIGEN scales linearly with the number of edges.

Future research directions include extending the
analysis and the algorithms for multi-dimensional
matrices, or tensors [12], [13], [53].
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