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Abstract

We present a homogeneous space geometry for the manifold of symmetric positive semidef-

inite matrices of fixed rank. The total space is the general linear group endowed with its nat-

ural right-invariant metric, and the metric on the homogeneous space is chosen such that the

quotient space is the image of a Riemannian submersion from the total space. As a result, we

obtain complete geodesics that are the image of certain geodesics on the general linear group.

We derive in addition an efficient closed-form expression for these geodesics. Furthermore, we

isometrically embed the abstract quotient space into the space of real matrices. This allows

us to interpret the vector fields, the metric and the geodesics in terms of concrete matrices.

Finally, we compare our geometry with some other geometries in the literature. In particular,

we show how other geodesics and their approximations relate to ours.

1 Introduction

Let p ≤ n be two positive integers. The focus of this paper is the set of all real n × n symmetric
positive semidefinite (s.p.s.d.) matrices of fixed rank p. We denote this set by S+(p, n).

Central will be the description of S+(p, n) as a Riemannian manifold. It is widely accepted
that positive semidefinite matrices are fundamental objects in many areas of applied mathematics.
They have their use in modelling as well as in computation. We mention only their application
as covariance matrices in statistics (Huber, 1981), as optimization variables in semidefinite pro-
gramming (Boyd & Vandenberghe, 2004) and as kernels in machine learning (Lanckriet et al.,
2004). In many of these applications, the link with the Riemannian geometry of S+(n, n) turns
out to be crucial; see, e.g, Smith (2005) for intrinsic Cramér–Rao bound analysis on S+(n, n)
and Pennec et al. (2006) for a Riemannian framework to image processing with positive definite
tensors. Sometimes this link is established in a later phase, like in Nesterov & Todd (2008) where
the optimisation paths in short-steps SDP methods were related to the geodesics on S+(n, n).
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Most of the aforementioned applications deal with the full-rank matrices of S+(n, n). Since
the typical matrix algorithms on S+(n, n), like the eigenvalue decomposition, have an O(n3) com-
plexity, they do not scale well for large n. A much-used remedy in matrix computation is to work
with low-rank matrices. By exploiting this low-rank structure, one can usually reduce the cubic
complexity to O(npc), with c small, say two. This way, large-scale matrix problems involving pos-
itive semidefinite matrices become tractable. Due to the importance of the Riemannian geometry
of S+(n, n), it is sensible to generalise these geometrical implications to the fixed-rank case.

This paper can be seen as a contribution to the first step of this generalisation, namely to
introduce a well-chosen geometry. There already exists quite a body of recent literature that
makes use of S+(p, n) as a Riemannian manifold. In contrast to the full rank case, we will show
that there is no longer a natural geometry for S+(p, n) when p < n. This freedom has resulted
in several different geometries for S+(p, n): a submanifold embedded in R

n×n as in Helmke &
Moore (1994), Helmke & Shayman (1995), Orsi et al. (2004), Orsi et al. (2006), Vandereycken
et al. (2009), Vandereycken & Vandewalle (2010); a quotient manifold of R

n×p as in Absil et al.
(2009), Journée et al. (2010), Meyer et al. (2010), Bonnabel et al. (2010); and a quotient manifold
of the product of the Stiefel manifold and S+(p, p) as in Meyer et al. (2009), Meyer et al. (2010),
Bonnabel et al. (2010), Bonnabel & Sepulchre (2010), Sepulchre et al. (2010). All of these choices
have their merits, but none of them succeeds in equipping S+(p, n) with closed-form geodesics that
can be extended indefinitely.

The existence of geodesics that can be extended indefinitely has a profound global implication:
it guarantees that any two points on the manifold can be connected by a geodesic. The minimal
length among all such connecting geodesics coincides with the usual distance function on the
manifold. Furthermore, by virtue of the Hopf–Rinow theorem (Boothby, 1986, Th. VII.7.7),
the manifold will be a complete metric space w.r.t. this distance function. Complete spaces are
attractive in many ways and this is also the case when applied to manifolds. Here, we mention
only one application area that benefits greatly from these complete geodesics, namely, that of
optimisation and Newton algorithms on Riemannian manifolds; see Absil et al. (2008) for a recent
overview. The prototype example of an optimisation algorithm performs a line-search along some
search direction. In case of a manifold, this search can be done along a geodesic. The fact
that the geodesics are complete and available in an efficient closed-form makes this line-search
straightforward and well-defined. Alternatively, trust-region methods on manifolds also benefit
since every modification to the trust-region will be algorithmically possible.

We do not wish to claim that geodesics are necessary for optimising on a manifold. Retraction-
based Riemannian optimisation, like in Adler et al. (2002), dispenses with geodesics in favour of
their first-order approximations, called retractions. Retractions that can be extended indefinitely
surely share the same practical advantages as complete geodesics. However, most global conver-
gence theory for optimisation on Riemannian manifolds assumes completeness; see, e.g., Ferreira
& Svaiter (2002); Dedie et al. (2003); Li & Wang (2006); Absil et al. (2007); Alvarez et al. (2008)—
although Yang (2006) does not.

In this paper, we therefore introduce another geometry which leads to complete geodesics,
namely, that of a homogeneous space of the general linear group GLn. In comparison to the existing
approaches, homogeneous spaces have more structure and a richer theory; see, e.g., Kobayashi &
Nomizu (1963). Together with the machinery of Riemannian submersions as in Cheeger & Ebin
(1975), O’Neill (1983) and Gallot et al. (2004), we can derive the complete geodesics based on the
geodesics of GLn. Due to the importance of scalability in the applications of low-rank matrices, we
give much attention to deriving efficient expressions for the typical objects of differential geometry,
like these geodesics.

The plan of the paper is as follows. After some preliminaries to fix notation, we start in §3 with
the description of S+(p, n) as a homogeneous space. We outline why we choose the right-invariant
metric on this space and derive efficient expressions for some typical objects from differential
geometry. Then, in §4 we derive the complete geodesics for this metric. Most of the attention is
paid to a closed-form expression. The next section, §5, is devoted to the isometrical embedding
of the previous geometry into the space of real matrices. This was done to compare our geometry
with other descriptions and to make interpreting the quotient geometry more evident. Since the
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complete geodesics are the crux of the paper, in §6, we explain some special solutions to these
geodesics and derive so-called quasi-geodesics. They allow for a lean expression of a connecting
curve between any two matrices of S+(p, n). Finally, in §7 we compare our description with some
other existing Riemannian geometries in the literature. Conclusions are drawn in §8.

2 Notational preliminaries

We will use the following notations: R
n×p is the space of real n×p matrices, R

n×p
∗ is the restriction

to full rank matrices. The identity matrix on R
n×n is denoted by In. Lie groups: GLn := R

n×n
∗

is the general linear group and On := {Q ∈ GLn : QT Q = In} is the orthogonal group. The
symmetric and skew-symmetric n × n matrices are denoted by Ssym

n and Sskew
n , respectively. If

S ∈ Ssym
n , then S ≻(�) 0 means that S is positive (semi-)definite.

Suppose Y ∈ R
n×p
∗ and n > p, then Y⊥ ∈ R

n×(n−p)
∗ is any orthonormal basis for the orthogonal

complement of Y in GLn, i.e., Y T Y⊥ = 0 and Y T
⊥

Y⊥ = In−p. Moreover, PY := Y (Y T Y )−1Y T is
the orthogonal projector onto the column span of Y and P⊥

Y := In−PY . In addition, two matrices
Y and Z are perpendicular, denoted Y ⊥ Z, when Y T Z = 0.

The directional derivative of a function f at x along η is denoted by Df(x)[η]. The tangent
space of a manifold M at x ∈ M is TxM. The Lie bracket is denoted by [η, ν], which for a matrix
Lie group equals [η, ν] = ην−νη. The couple (M, g) denotes the Riemannian manifold M equipped
with metric g. The existence of a diffeomorphism between two manifolds is denoted by ≃. The
matrix exponential of a matrix X ∈ R

n×n is given by expm(X) = In+X+X2/(2!)+X3/(3!)+· · · .

3 Manifold S+(p, n) as a homogeneous space

We have the following characterization of S+(p, n).

Proposition 3.1 The set

S+(p, n) = {S : S ∈ Ssym
n , S � 0, rank(S) = p} = {Y Y T : Y ∈ R

n×p
∗ }

is a C∞ smooth embedded submanifold in R
n×n of dimension pn − (p(p − 1))/2. It has one

connected component.

Proof. The fact that S+(p, n) is a smooth embedded submanifold with one connected component
follows from Helmke & Shayman (1995, Prop. 2.1). We proof he equivalence between the two
definitions of S+(p, n). The inclusion {Y Y T : Y ∈ R

n×p
∗ } ⊆ S+(p, n) is obvious. The inclusion

S+(p, n) ⊆ {Y Y T : Y ∈ R
n×p
∗ } can be shown using the eigenvalue decomposition: if S ∈ S+(p, n),

then S can be written as UDUT , where U is an n×p orthonormal matrix and D = diag(di) is a p×p
diagonal matrix with strictly positive elements di on the diagonal. Hence S = UD1/2(UD1/2)T

with D1/2 = diag(
√

di).

3.1 Matrix congruence as a transitive group action

Two matrixes A, B ∈ R
n×n are called congruent if there exists a matrix X ∈ GLn such that

A = XBXT . For symmetric matrices, Sylvester’s law of inertia (Stewart, 2001, Th. 3.1) states
that congruent matrices have the same number of positive, negative and zero eigenvalues. Hence,
congruence defines a GLn-action on S+(p, n) that is also transitive. This allows us to describe
S+(p, n) as a so-called homogeneous space. We will assume a basic knowledge of homogeneous
spaces which are a fundamental topic in Riemannian geometry, see, e.g., Boothby (1986) for an
introduction.

Proposition 3.2 Manifold S+(p, n) is a homogeneous space with transitive GLn-action

θ : GLn × S+(p, n) → S+(p, n), (A, X) 7→ AXAT . (1)
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Proof. Transitivity of θ means that there exists an A ∈ GLn for every X1, X2 ∈ S+(p, n) such that
θ(A, X1) = X2. Let X1 = Y1Y

T
1 and X2 = Y2Y

T
2 with Y1, Y2 ∈ R

n×p
∗ , then such an A is given by

A =
[
Y2 Z2

] [
Y1 Z1

]−1
.

for any Z1, Z2 ∈ R
n×(n−p)
∗ with Z1 ⊥ Y1 and Z2 ⊥ Y2.

Take the following matrix

E :=

[
Ip 0
0 0(n−p)×(n−p)

]
∈ S+(p, n).

If we fix E as argument of S+(p, n) in θ, then map

θE : GLn → S+(p, n), A 7→ θ(A, E)

is surjective. Its image is called an orbit and this orbit is exactly the set S+(p, n).

3.2 Quotient manifold GLn/StabE

Map θE is surjective but not injective. In this section, we will construct a bijection based on θE

that gives us an alternative description of manifold S+(p, n), namely as a quotient manifold.
An elegant way to express the many-to-one relation of θE is with the so-called stability group,

denoted by StabE . This is the maximal subgroup of GLn that leaves the action of θE fixed, that
is θE(L) = E for all L ∈ StabE . It is not difficult to see that this group is given by

StabE =

[
Op R

p×(n−p)

0 GLn−p

]
.

The many-to-one relation can now be factored out by means of the following equivalence relation
for A, B ∈ GLn:

A ∼ B if and only if B = AL for some L ∈ StabE .

The equivalence class containing A is denoted by [A] := {B ∈ GLn : A ∼ B}. Now, let

GLn/StabE := {[A] : A ∈ GLn} (2)

denote the quotient of GLn by this equivalence relation. It will be the set of all the equivalence
classes of ∼. Map

π : GLn → GLn/StabE , A 7→ [A] (3)

is the canonical projection or quotient map. In order to avoid ambiguity regarding to which space
[A] belongs, we will use π(A) to denote [A] viewed as an abstract element of GLn/StabE , and
π−1(π(A)) for [A] as a subset of GLn.

It is a standard result for homogeneous spaces that GLn/StabE is a quotient manifold diffeo-
morphic to S+(p, n).

Proposition 3.3 Map

ΘE : GLn/StabE → S+(p, n), π(A) 7→ θE(A)

is a diffeomorphism with θE = ΘE ◦ π. In other words, GLn/StabE ≃ S+(p, n).

Proof. Since S+(p, n) is a smooth manifold, we can use e.g. Boothby (1986, Th. IV.9.3). Alterna-
tively, the fact that StabE is a closed Lie subgroup of GLn makes the set S+(p, n) a smooth mani-
fold, see Boothby (1986, Th. IV.9.6). The dimension of GLn/StabE equals dim(GLn)−dim(StabE)
and is the same as dim(S+(p, n)).
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3.3 Representatives for equivalence classes

Manifold GLn/StabE is a quotient space that contains abstract equivalence classes as elements.
Since we prefer to work with concrete matrices as elements, we will use a matrix A ∈ GLn to
represent the equivalence class [A]. These representatives are obviously not unique and so they
are not a replacement for the equivalence classes. However, with the right mathematical tools
(like horizontal lifts) this will pose no problems. In fact, this non-uniqueness will be advantageous
later on. Let us see how these representatives look like.

First note that throughout the paper we will use the following partitioning for an A ∈ GLn:

A =
[
Y Z

]
, Y ∈ R

n×p
∗ , Z ∈ R

n×(n−p)
∗ . (4)

By using the notation Y and Z we will implicitly always mean matrices that satisfy the form of
(4). For such an A, the equivalence class π−1(π(A)) can be written as

π−1(π(A)) = A StabE ,

=
[
Y Op Y R

(n−p)×p + Z GLn−p

]
,

=
[
Y Op Y R

(n−p)×p + Y⊥ GLn−p

]
.

As long as A ∈ GLn, the last n − p columns of A are all equivalent. So only the first p columns
have an influence on π and these columns belong to the equivalence class Y Op.

3.4 Reductive space GLn/On

When p = n, the homogeneous space geometry in Prop. 3.2 has an important additional property,
namely that of a reductive space; see Smith (2005). There is now a natural choice for a metric
on S+(n, n) ≃ GLn/On and this metric will be invariant to the GLn-action. This invariance is
a powerful property to exploit (e.g., when deriving geodesics) and has been used in most of the
literature on the Riemannian geometry of S+(n, n).

When p < n, it is sensible to try to find a metric on GLn/StabE which is also invariant to
the GLn-action. This is however not possible, as was shown in Bonnabel & Sepulchre (2009) for
S+(2, 1) by a continuity argument on this metric. In fact, we will show that GLn/StabE is never
a reductive space for all rank deficient cases, i.e., p < n. As such, we can no longer derive a
GLn-invariant metric based on this reductive property.

Let g = R
n×n denote the Lie algebra of GLn and let

h =

[
Sskew

p R
p×(n−p)

0 R
(n−p)×(n−p)

]

be the Lie algebra of StabE . The homogeneous space GLn/StabE is reductive if and only if there
exists a subspace p of gl, complementary to h, such that HpH−1 ⊆ p for all H ∈ StabE (Kobayashi
& Nomizu, 1963, Chap. X). Differentiating, this implies that

[h, p] ⊆ p. (5)

All subspaces of gl complementary to h are of the form

p =

{[
S + W(B, S) D(B, S)

B E(B, S)

]
: B ∈ R

(n−p)×p, S ∈ Ssym
p

}
,

where

W : R
(n−p)×p × Ssym

p → Sskew
p

D : R
(n−p)×p × Ssym

p → R
p×(n−p)

E : R
(n−p)×p × Ssym

p → R
(n−p)×(n−p)
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are linear maps. Since map E is linear, we can decompose it as E = E1 + E2 with E1 : R
(n−p)×p →

R
(n−p)×(n−p), E2 : Ssym

p → R
(n−p)×(n−p), and similarly for W and D.

Observe that the l.h.s. of condition (5) reduces to

[h, p] =

[
Σ K
0 L

] [
S + W D

B E

]
−

[
S + W D

B E

] [
Σ K
0 L

]

=

[
ΣS + ΣW + KB − SΣ −WΣ ΣD + KE − SK −WK −DL

LB − BΣ LE − BK − EL

]
, (6)

with Σ ∈ Sskew
p , K ∈ R

p×(n−p) and L ∈ R
(n−p)×(n−p). The proof is now as follows.

Proposition 3.4 The homogeneous space GLn/StabE ≃ S+(p, n) is reductive only for p = n.

Proof. We will show that for p < n, there are no linear maps W,D, E in (6) such that (5) is
satisfied for all Σ, S,K, L, B arbitrary matrices of suitable form.
First, if p = n, linear maps D, E and matrices K, L,B are void. We immediately get that W = 0
satisfies (5), as is known from Smith (2005).
Next, we prove the case p < n by contradiction. Take K = 0 and Σ = 0, then condition (5) with
(6) implies [

0 −D(B, S)L
LB LE(B, S) − E(B, S)L

]
=

[
W(LB, 0) D(LB, 0)

LB E(LB, 0)

]
. (7)

So one of the conditions is E(LB, 0) = LE(B, S) − E(B, S)L, or E1(LB) = LE1(B) + LE2(S) −
E1(B)L − E2(S)L for all L, B and S. Hence when B = 0, we get that LE2(S) − E2(S)L = 0,
or, in other words, that E2(S) commutes with L. For general L and S, this can only be if
E2(S) = α(S)In−p where α is a scalar-valued function. Now take L = 0 and Σ = 0, then condition
(5) with (6) satisfies

[
KB KE(B, S) − SK −W(B, S)K
0 −BK

]
=

[
X + W(0, X) D(0, X)

0 E(0, X)

]
, (8)

where
X = (KB + BT KT )/2.

We get the condition E(0, (KB + BT KT )/2) = −BK. From above, we already know that
E(0, (KB + BT KT )/2) = α((KB + BT KT )/2)In−p. This leads to a contradiction if BK is not a
scalar, i.e., n − p > 1. If n − p = 1, then α(S) = −tr(S) satisfies the condition.
We continue with proving the case n − p = 1. Take again (7), since the lower-right corner
of the l.h.s. is now zero, it implies E(LB, 0) = E1(LB) = 0 for all L, B. Hence E1 = 0 and
E(B, S) = −tr(S). In addition (7) also implies D(LB, 0) = −D(B, S)L, and, since L is a
scalar, also LD1(B) = −LD1(B) − LD2(S). From this we have D = 0. From (7) we have
also W(LB, 0) = 0, so W1 = 0. Finally, from (8) again, we get that −tr(S)K−SK−W2(S)K = 0
for all K. Since W2(S) is always skew-symmetric and tr(S)Ip +S symmetric, their sum can never
be zero and we have a contradiction.

3.5 Riemannian metric

For p < n, manifold S+(p, n) is no longer reductive and we lose the existence of a natural metric.
The typical choice to equip GLn with the Euclidean metric

gEucl
A (ηA, νA) := tr(ηT

AνA), for all ηA, νA ∈ TAGLn, A ∈ GLn,

turns out to be less than ideal when one is concerned about geodesics. Take e.g. curve t 7→ In−tIn.
It is obviously a length minimising geodesic, but it is not complete since at t = 1 its image is zero.
Complete geodesics are important however, since, by virtue of the Hopf–Rinow theorem (Boothby,
1986, Th. VII.7.7), they allow one to define a distance function on S+(p, n) as the minimal length
of all connecting geodesics between two points.
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Since all left- and right-invariant vector fields on GLn are complete (Boothby, 1986, Cor. V.5.8),
it is reasonable to have a left- or right-invariant metric also. (Note that both left- and right-
invariant is not possible on GLn.) In this paper, we therefore choose the right-invariant metric g,
defined as

gA(ηA, νA) := gI(ηAA−1, νAA−1) = tr(A−T ηT
AνAA−1), for all ηA, νA ∈ TAGLn, A ∈ GLn. (9)

In §4.1, we will explicitly show that, although the geodesics of (GLn, g) are not always right-
invariant, they are still complete.

At first sight, an equally logical choice would be the left-invariant metric for which all left-
invariant vector fields are complete. We will later see in §7.3 however that the left-invariant metric
does not allow us to reuse the geodesics of GLn in the same way as the right-invariant does.

3.6 Tangent space

Similar to the representatives of §3.3, we want to use the tangent space of GLn to represent tangent
vectors of GLn/StabE . This requires the notion of the vertical and horizontal space: a specific
decomposition of TAGLn ≃ R

n×n.
Since StabE is closed, π−1(π(A)) is a submanifold embedded in GLn (Boothby, 1986, Lemma

IV.9.7). This means that its tangent space is a subspace of the embedding space R
n×n and it is

called the vertical space VA. In A =
[
Y Z

]
it is given by

VA =
[
Y Sskew

p R
n×(n−p)

]
= A

[
Sskew

p R
p×(n−p)

0 R
(n−p)×(n−p)

]
. (10)

The horizontal space HA is any complementary subspace of VA in R
n×n and we will take the

orthogonal complement of VA w.r.t. the right-invariant metric. So, using the right-invariant metric
g of (9), the horizontal space becomes

HA = A−T

[
Ssym

p 0

R
(n−p)×p 0

]
AT A. (11)

The tangent space of GLn/StabE can now be represented uniquely by tangent vectors from the
horizontal space. These are called the horizontal lifts and we will consistently denote the (hori-
zontal) lift of ηπ(A) ∈ Tπ(A)GLn/StabE by ηA ∈ TAGLn. Let η denote such a unique horizontal
lift on GLn of a vector field η on GLn/StabE . It satisfies

Dπ(A)[ηA] = ηπ(A), ηA ∈ HA. (12)

We have in addition that the lifts are related along the equivalence class π−1(π(A)) in the following
way.

Proposition 3.5 A horizontal vector field η of GLn is the horizontal lift of a vector field η on
GLn/StabE if and only if, for all A ∈ GLn, it holds that

ηAL = ηAL, for all L ∈ StabE .

Proof. First observe that HI = L−THIL
T for all L ∈ StabE , from which it follows that HAL =

HAL. Thus, we have constructed a horizontal space that satisfies a connection Kobayashi &
Nomizu (1963, Ch. II) on the principal bundle GLn(GLn/StabE ,StabE) and the proof follows by
Kobayashi & Nomizu (1963, Prop. II.1.2).

We construct the space (GLn/StabE , g) by restricting the right-invariant metric of (GLn, g) to
the horizontal space.

7



Proposition 3.6 Let g be the right-invariant metric (9). Then the relation

gπ(A)(ηπ(A), νπ(A)) = gA(ηA, νA) = tr(A−T ηT
AνAA−1) (13)

defines a Riemannian metric g on GLn/StabE . The metric g turns the quotient map

π : GLn → GLn/StabE

into a Riemannian submersion and (GLn/StabE , g) is a Riemannian quotient manifold of (GLn, g).

Proof. The lifted metric is invariant on each fibre

gAL(ηAL, νAL) = gI(ηALL−1A−1, νALL−1A−1) = gI(ηAA−1, νAA−1) = gA(ηA, νA),

hence Dπ(A)|HA
is an isometry for each A. This makes π a Riemannian submersion (O’Neill,

1983, Def. 7.44).

3.7 Some useful expressions

We will derive some relations regarding the horizontal space which will be convenient later on.
Take A =

[
Y Z

]
as in (4). We have the identity

A−T =
[
P⊥

ZY (Y T P⊥
ZY )−1 P⊥

Y Z(ZT P⊥
Y Z)−1

]
. (14)

The choice Z = Y⊥, i.e.,

A =
[
Y Y⊥

]
, Y ∈ R

n×p
∗ , Y⊥ ∈ R

n×(n−p)
∗ , Y T Y⊥ = 0, Y T

⊥ Y⊥ = In−p, (15)

allows to simplify the horizontal space to

HA =
[
Y (Y T Y )−1Ssym

p (Y T Y ) + Y⊥R
(n−p)×p 0n×(n−p)

]
. (16)

Still using Z = Y⊥, the inner product of two tangent vectors η1, η2 ∈ HA can also be written
succinctly. Suppose η1 =

[
Y (Y T Y )−1H1(Y

T Y ) + Y⊥K1 0
]

and analogously for η2, then

gA(η1, η2) = tr((Y T Y )−1(H1(Y
T Y )H2 + KT

1 K2)). (17)

3.8 Orthogonal projection onto the horizontal space

Now that we have defined the metric, we can specify the projection onto the horizontal space
orthogonal w.r.t. this metric. Since TAGLN ≃ R

n×n = VA ⊕HA for all A ∈ GLn, we can define
for every A ∈ GLn the following orthogonal projections:

Ph : R
n×n → HA, with Ph(V ) = 0 for all V ∈ VA and Ph(H) = H for all H ∈ HA. (18)

Pv : R
n×n → VA, with Pv(H) = 0 for all H ∈ HA and Pv(V ) = V for all V ∈ VA, (19)

So we can decompose every Z ∈ R
n×n into a horizontal term Ph(Z) and a vertical term Pv(Z) for

which gA(Ph(Z),Pv(Z)) = 0 and Z = Ph(Z) + Pv(Z).
These projections can be computed for all A and Z as oblique projections onto HA along

VA, and vice versa. We will derive an efficient expression for these projections by exploiting the
equivalence along the fibre [A]. First, we need a technical Lemma regarding the so-called stable
and symmetric generalized Lyapunov equation. This equation is well-known in control theory, but
we reformulate it for convenience.

Lemma 3.7 Let S1, S2 ∈ Ssym
n with S1, S2 ≻ 0 be given and define the generalised Lyapunov

operator
LS1,S2 : Ssym

n → Ssym
n , X 7→ S1XS2 + S2XS1. (20)

Then operator LS1,S2
is linear and bijective. Furthermore, equation LS1,S2

(X) = B, can be solved
for X in O(n3) time and memory.
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Proof. See Penzl (1998, Th. 3).

The choice A =
[
Y Y⊥

]
∈ GLn allows for a direct computation of the projections.

Lemma 3.8 Let A =
[
Y Y⊥

]
∈ GLn be as in (15). The horizontal projection Ph from (18) of a

tangent vector ηA =
[
η1 η2

]
, with the same partitioning as A, is given by

Ph(ηA) =
[
Y (Y T Y )−1H(Y T Y ) + P⊥

Y η1 0n×(n−p)

]

with H ∈ Ssym
p the solution of the Lyapunov equation

(Y T Y )−1H(Y T Y ) + (Y T Y )H(Y T Y )−1 = (Y T Y )−1(Y T η1) + (ηT
1 Y )(Y T Y )−1. (21)

The vertical projection Pv from (19) is given by

Pv(ηA) =
[
PY η1 − Y (Y T Y )−1H(Y T Y ) η2

]
.

Proof. We will give a constructive proof. The vertical and horizontal space are given by (10) and
(11) respectively:

VA =
[
Y Y⊥

] [
Ω M
0 N

]
and HA =

[
Y Y⊥

] [
(Y T Y )−1H(Y T Y ) 0

K(Y T Y ) 0

]
,

with Ω, M, N, H and K coefficient matrices of suitable form. The horizontal projection of ηA must
satisfy Ph(ηA) = ηA − v, v ∈ VA. Writing the tangent vector as

ηA =
[
η1 η2

]
=

[
Y Y⊥

] [
X11 X12

X21 X22

]
,

this condition reduces to
[
(Y T Y )−1H(Y T Y ) 0

K(Y T Y ) 0

]
=

[
X11 − Ω X12 − M

X21 X22 − N

]
,

which immediately gives that K = X21(Y
T Y )−1, M = X12 and N = X22. The condition

(Y T Y )−1H(Y T Y ) = X11 − Ω with H = HT and Ω = −ΩT

is solved by adding it to its transpose. This gives (Y T Y )−1H(Y T Y ) + (Y T Y )H(Y T Y )−1 =
X11 + XT

11. Since Y T Y ≻ 0, Lemma 3.7 guarantees a unique and symmetric solution H. This
way, we have determined all the coefficients H,K of the projected matrix Ph(ηA). Since η1 =
Y X11 + Y⊥X21, it is straightforward to express the obtained matrix for Ph(ηA) into the form of
the Lemma.

Using the previous Lemma, we can compute the horizontal projection of a tangent vector ηA

at an arbitrary A =
[
Y Z

]
by transporting ηA along the fibre [A] to a point B =

[
Y Y⊥

]
.

Since B = AL for some L ∈ StabE , it suffices to compute the projection of the tangent vector
ηB = ηAL and transporting Ph(ηB) back to A by Ph(ηB)L−1.

Proposition 3.9 Let A =
[
Y Z

]
∈ GLn be as in (4). The horizontal projection Ph from (18)

of the tangent vector ηA =
[
η1 η2

]
, with the same partitioning as A, is given by

Ph(ηA) =
[
ηh
1 ηh

1 (Y T Y )−1Y T Z
]

with ηh
1 = Y (Y T Y )−1H(Y T Y ) + P⊥

Y η1 and H the solution of the Lyapunov equation (21).

9



Proof. Suppose we fix B =
[
Y Y⊥

]
for some orthonormal Y⊥, then we have BL = A with

L =

[
Ik (Y T Y )−1Y T Z
0 Y T

⊥
Z

]
. (22)

The transported tangent vector ηB = ηAL−1 has the same first p columns as ηA. By Lemma 3.8,
we have as horizontal projection Ph(ηB) =

[
ηh
1 0

]
. Transporting this back to A gives the desired

projection Ph(ηA) = Ph(ηB)L

Notice that we can compute the projections based only on Y , the first p columns of A, and we
do not need to construct nor use Y⊥.

3.9 Levi-Civita connection

We will use the Levi-Civita connection on (GLn/StabE , g), denoted by ∇. Since this connection
can be related to the one on (GLn, g), denoted by ∇, we will first derive this connection for two
arbitrary vector fields.

Proposition 3.10 Let η, ν be two vector fields on GLn, then the Levi-Civita connection of
(GLn, g) in A ∈ GLn satisfies

(∇νη)(A) = Dη(A)[ν] +
1

2

{
[A−T ηT , νA−1]A + [A−T νT , ηA−1]A − ηA−1ν − νA−1η

}
. (23)

Proof. Let η, ν, λ be vector fields on GLn. Notice that since GLn is a vector space, one has
[ν, η] = Dη[ν]−Dν[η], and likewise for all permutations between η, ν and λ. Furthermore, we have
the identity

DgA(η, λ)[ν] = tr(A−T ηT Dλ[ν]A−1) + tr(A−T λT Dη[ν]A−1)

− tr(A−T ηT λA−1νA−1) − tr(A−T λT ηA−1νA−1)

and again for all permutations. Substituting these identities in Koszul’s formula (Lee, 1997, (5.1)),

2gA(∇νη, λ) = DgA(η, λ)[ν] + DgA(ν, λ)[η] − DgA(η, ν)[λ]

+ gA(λ, [ν, η]) + gA(η, [λ, ν]) − gA(ν, [η, λ]),

we obtain

2tr(A−T λT∇νηA−1) = 2tr(A−T λT Dη[ν]A−1 − A−T ηT λA−1νA−1 − A−T λT ηA−1νA−1

− A−T νT λA−1ηA−1 − A−T λT νA−1ηA−1 + A−T ηT νA−1λA−1 + A−T νT ηA−1λA−1).

This identity holds for all λ, hence we recover (23).

Remark 1 Despite the widespread use of GLn, to the best of our knowledge, the expression of
the connection for arbitrary vector fields on (GLn, g) is new. For left- or right-invariant vector
fields however, the connection simplifies considerably since it is again left- or right-invariant. This
has been observed by many authors; see, e.g., Cheeger & Ebin (1975, Prop. 3.18) and Mahony
(1994, Ex. 5.8.3).

Since (GLn/StabE , g) is a Riemannian quotient manifold, the connection on (GLn/StabE , g)
can be expressed in terms of horizontal lifts. Recall that the unique horizontal lift of a vector field
η is denoted by η.

Proposition 3.11 Let ∇ and ∇ denote the connections on (GLn/StabE , g) and (GLn, g) respec-
tively. Then for all vector fields ν, η on (GLn/StabE , g), the horizontal lift of ∇νη satisfies

∇νη = ∇νη − 1

2
Pv[ν, η] = Ph(∇νη),

where Pv and Ph denote the orthogonal projections (19)–(18).
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Proof. The first identity follows from (3.25) in Cheeger & Ebin (1975), while the second is stated
in O’Neill (1983, Lemma 7.45).

4 Geodesics

According to Prop. 3.6, the quotient map π : GLn → GLn/StabE is a Riemannian submersion.
This means that we can identify all the geodesics on (GLn/StabE , g) as the geodesics on GLn for
the right-invariant metric g that stay horizontal; see, e.g., O’Neill (1983, Cor. 7.46) or Gallot et al.
(2004, Prop. 2.109). In this section, we will therefore first derive the geodesics of (GLn, g), restrict
them to the horizontal space HA and finally formulate and solve them in a closed form.

4.1 Geodesics of (GLn, g)

The geodesics of (GLn, g) satisfy the following initial value problem (IVP).

Lemma 4.1 Let A0 ∈ GLn and U0 ∈ R
n×n be given. Let g be the metric (9). Then the geodesic

in (GLn, g) through A0 along U0A0 is the solution A(t) of the IVP

Ȧ(t) = U(t)A(t), A(0) = A0, (24)

U̇(t) = U(t)U(t)T − U(t)T U(t), U(0) = U0, (25)

with U(t) ∈ R
n×n. Furthermore, A(t) is defined for all t ∈ R.

Proof. We apply the Euler–Lagrange formalism to the length functional (or strictly speaking, the
energy Lagrangian). Since we can (formally) write A(t) as the solution of the initial value problem
Ȧ(t) = U(t)A(t) with A(0) = A0 for some U(t) ∈ R

n×n, this functional is given by

S(U) :=

∫ 1

0

gA(t)(Ȧ(t), Ȧ(t)) dt =

∫ 1

0

gI(U(t), U(t)) dt.

The extremals of S will be exactly the geodesics A(t) (Postnikov, 2001, Prop. 11.1). A calculus
of variations then gives that U(t) has to satisfy (25) in order for S(U) to be stationary. Since
d(tr(UUT ))/ dt = 2tr(U̇U) = 0, matrix U(t) has constant Frobenius norm. The differential
equations are thus Lipschitz on R and the solution of the IVP exists and is unique on the whole
real line for all initial conditions (Stoer & Bulirsch, 1992, Th. 7.1.1.).

Alternative proof. Curve A(t) is a geodesic if and only if (∇ȦȦ)(A(t)) = 0 for all t. Since

DȦ(A(t))[Ȧ] = d2A/dt2,

formula (23) for the connection becomes

(∇ȦȦ)(A(t)) = d2A/dt2 + [A−T ȦT , ȦA−1]A − ȦA−1Ȧ.

Taking the derivative of (24) and using (25), we obtain (∇ȦȦ)(A(t)) = 0.

Remark 2 In the same way geodesics for the left-invariant metric have been proved in Lee et al.
(2007). Another proof based on a more general framework can be found in Miller et al. (2003).

We derive the closed-form solution of the IVP in Lemma. 4.1. First observe that IVP (25) is
actually a Lax pair with solution

U(t) := Q(t)U0Q(t)T , with Q(t) := expm(t(U0 − UT
0 )) ∈ On.

This is easily verified using the relation U̇(t) = Q(U0 − UT
0 )U0Q

T + QU0(U
T
0 − U0)Q

T . Hence,
A(t) is the solution of the IVP

Ȧ(t) = Q(t)U0Q(t)T A(t), A(0) := A0 ∈ GLn.

11



Take B(t) := Q(t)T A(t), then

Ḃ(t) = (UT
0 − U0)Q(t)T A(t) + U0Q(t)T A(t) = UT

0 B(t).

Together with B(0) := A0, this gives B(t) = expm(tUT
0 )A0, and so we have basically proved the

following result.

Proposition 4.2 The geodesics of (GLn, g) are given by

A(t) = expm(t(U0 − UT
0 )) expm(tUT

0 )A0,

for all A0 ∈ GLn and U0 ∈ R
n×n. They are complete.

Proof. The fact that A(t) is a geodesic follows by the construction above. Since the image of
the matrix exponential is always a full-rank matrix (Boothby, 1986, Th. IV.6.2), matrix A(t) is
well-defined and will be in GLn for all t.

Let γI(t) be a geodesic of Prop. 4.2 with foot γI(0) = I. Then for any A ∈ GLn, the curve
γA(t) := γI(t)A is also a geodesic. Furthermore, their velocity vector fields are related by right-
translation RA : GLn → GLn, X 7→ XA since

dRA(γ̇I(t)) = γ̇I(t)A
!
= γ̇A(t),

with dRA := RA the differential of RA. Such vector fields are called right-related. They are however
not always right-invariant, or in other words, their flow does not need to be same after right
translation. Take again γI(t) at t = 0. Now we right-translate γI(t) to itself, i.e., RA := RγI(T )

for some t = T . Right-invariance would mean equality for each T in

dRA(γ̇I(0)) = γ̇I(0)γI(T ) = U0γI(T )
?
= γ̇I(T ) = U(T )γI(T ).

We have equality when U(t) = U0 stays constant, e.g., when U0 is a normal matrix. In this case
the geodesic is simply a matrix exponential t 7→ expm(tU0)A0, which is obviously right-invariant.

There is another property which depends on the normality of U0. Let n > 1 and let γI(t) again
be a geodesic with γI(0) = I. Since there are initial conditions U0 for which

γI(t + s) 6= γI(t)γI(s) 6= γI(s)γI(t),

the geodesics do not form a one-parameter subgroup in general. However, when U0 is a normal
matrix, the matrix exponentials in Prop. 4.2 commute and the geodesics can be written as

t 7→ expm(tU0)A0. (26)

This is e.g. the case for (skew-)symmetric and orthogonal matrices U0. In fact, one can show,
together with the formula for the Riemannian connection, that the normality condition [U0, U

T
0 ] =

0 captures all the cases for which the geodesics are one-parameter subgroups (Cheeger & Ebin,
1975, Prop. 3.18). Since there is a one-to-one correspondence between one-parameters subgroups
in GLn and expm (Boothby, 1986, Cor. IV.6.3), the curves (26) will be geodesics if and only if
U0 is normal. We will later see in Prop. 4.3 that the case for general U0 is necessary to have
meaningful horizontal geodesics on GLn/StabE .

Remark 3 There are other affine connections for which the curves (26) do describe all the
geodesics, most notably the Cartan connections (Postnikov, 2001, §6.4). However, these connec-
tions do not share some important properties of the Levi–Civita connection like geodesics that are
length-minimising. For these reasons, we prefer to work with the Levi–Civita connection.

Remark 4 Geodesics on Lie groups for the right-invariant metric are widespread in Lagrangian
and symplectic dynamics; see, e.g., Marsden & Tudor (1999). In this field, the geodesics are usually
derived based on the Euler–Arnold formalism: the Euler–Poincaré equations lead to an IVP for
the intrinsic velocity U(t) as the Lax pair (25); the IVP for the geodesic follows directly by the
definition of U(t) = Ȧ(t)A(t)−1. Since these derivations require some more involved differential
geometry, we prefer our more constructive approach.

12



4.2 Horizontal geodesics of (GLn, g)

By restricting a geodesic on (GLn, g) to stay horizontal we obtain a representative of a geodesic on
the abstract manifold (GLn/StabE , g). At first sight, these geodesics on (GLn/StabE , g) appear
to be easily found, since the geodesics of (GLn, g) are right-related and available in closed form.
This is however not as useful as it seems, since the horizontal space does not share the same right
relation and the matrix exponentials involve large n×n matrices. We will therefore derive, in this
and the next two sections, an alternative IVP for the horizontal geodesics that allows us to solve
the first p columns of a geodesic efficiently.

Proposition 4.3 Let A0 ∈ GLn, H0 ∈ Ssym
p and K0 ∈ R

(n−p)×p be given and let A(t) be the
solution of the initial value problem

Ȧ(t) = A(t)−T

[
H0 0
K0 0

]
A(t)T A(t), A(0) = A0. (27)

Then the complete geodesic on (GLn/StabE , g) through π(A0) along ηπ(A0) with horizontal lift

ηA0
:= Ȧ(0) is given by π(A(t)) for all t ∈ R.

Proof. First observe that since Ȧ(t) ∈ HA(t), the curve A(t) stays horizontal in (GLn, g). By
Gallot et al. (2004, Prop. 2.109), π(A(t)) will be a complete geodesic on (GLn/StabE , g) if A(t)
is a complete geodesic in (GLn, g). Identifying A(t) in (27) as the curve A(t) of (24) we see that
U(t) has to satisfy

U(t) = A(t)−T

[
H0 0
K0 0

]
A(t)T

in order that A(t) satisfies the ODE of Lemma. 4.1. Taking the derivative,

U̇(t) = −A(t)−T Ȧ(t)T A(t)−T

[
H0 0
K0 0

]
A(t)T + A(t)−T

[
H0 0
K0 0

]
Ȧ(t)T ,

we see that U̇(t) also satisfies (25). Thus, A(t) is a geodesic in (GLn, g).

The following corollary is a simple consequence of the partitioning in (4) and identity (14).

Corollary 4.4 Let A(t) :=
[
Y (t) Z(t)

]
be a geodesic as defined in Prop. 4.3 and be partitioned

like (4). Then the matrices Y (t) and Z(t) are solutions of the IVP

Ẏ = P⊥

Z Y (Y T P⊥

Z Y )−1H0(Y
T Y ) + P⊥

Y Z(ZT P⊥

Y Z)−1K0(Y
T Y ), Y (0) = Y0,

Ż = P⊥

Z Y (Y T P⊥

Z Y )−1H0(Y
T Z) + P⊥

Y Z(ZT P⊥

Y Z)−1K0(Y
T Z), Z(0) = Z0.

4.3 Moving the geodesics along the fibre

Take the usual partitioning A(t) =
[
Y (t) Z(t)

]
. Since in the end we are only interested in Y , we

are free to pick another representative of π(A) such that matrix Z is of a more suitable form. We
choose Z to be orthogonal to Y . This can always be done, since A is of full rank. The aim of this
section is to transform the IVP of Cor. 4.4 into a more suited “triangular” form by moving Z(t)
along the equivalence class [A(t)]. This will introduce a new variable, called W (t).

At t = 0, we can simply take an A(0) :=
[
Y0 Z0

]
such that Y0 ⊥ Z0. For t > 0 however, Z(t)

will not stay orthogonal to Y (t). We will therefore introduce a new variable

W := P⊥

Y Z = Z − Y (Y T Y )−1Y T Z (28)

and derive equations of motion in terms of only Y and W . Since W ⊥ Y , it will turn out that the
projectors in Cor. 4.4 disappear and that the new ODE is of more suited form.
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Let us first introduce the operator E : (Ssym
p , R) → Ssym

p defined as

E(S, t) = Qdiag(di) QT , with di =

{
t, λi = 0,

(etλi − 1)/λi, λi 6= 0,

where S = Qdiag(λi) QT is an eigenvalue decomposition. Observe that λi = 0 is a removable
singularity and dE(S, t)/dt = expm(tS). The following identities can be proved directly from
Cor. 4.4.

Lemma 4.5 Suppose Y0 ⊥ Z0, then Y (t) and Z(t) of Cor. 4.4 satisfy

Y (t)T Y (t) = expm(tH0)Y
T
0 Y0 expm(tH0), (29)

Y (t)T Z(t) = expm(tH0)Y
T
0 Y0 E(H0, t)K

T
0 . (30)

Proof. First observe that from Cor. 4.4, we get that Y T Ẏ = H0Y
T Y , Y T Ż = H0Y

T Z and
Ẏ T Z = Y T Y KT

0 . Next, we have

d(Y T Y )

dt
= Ẏ T Y + Y T Ẏ = (Y T Y )H0 + H0(Y

T Y ), Y (0)T Y (0) = Y T
0 Y0.

So (29) is indeed the solution of this initial value problem. In addition, we get

d(Y T Z)

dt
= Ẏ T Z + Y T Ż = expm(tH0)Y

T
0 Y0 expm(tH0)K

T
0 + H0(Y

T Z), Y (0)T Z(0) = 0.

After substituting X := expm(−tH0)Y
T Z we get Ẋ = Y T

0 Y0 expm(tH0)K
T
0 with X(0) = 0. Its

solution is X(t) = Y T
0 Y0E(H0, t)K

T
0 and we recover (30) as solution.

The equation of motion for W can be found by taking the derivative of (28). This gives

Ẇ = Ż − Ẏ (Y T Y )−1Y T Z − Y
d

dt
((Y T Y )−1Y T Z).

According to Cor. 4.4, we have that Ẏ (Y T Y )−1(Y T Z) = Ż. Together with Lemma 4.5, we can
simplify the expression for Ẇ to

Ẇ = −Y
d

dt
(expm(−tH0)E(H0, t)K

T
0 ) = Y (H0 expm(−tH0)E(H0, t) − Ip)K

T
0

= −Y expm(−tH0)K
T
0 . (31)

We have in addition the identity

Z = W + Y expm(−tH0)E(H0, t)K
T
0 . (32)

Next, we rewrite Ẏ in terms of W instead of Z. For this we need the following technical result.

Lemma 4.6 Suppose Y0 ⊥ Z0, then Y (t) and Z(t) of Cor. 4.4 satisfy

P⊥

Z Y (Y T P⊥

Z Y )−1H0 + P⊥

Y Z(ZT P⊥

Y Z)−1K0 = Y (Y T Y )−1H0 + W (WT W )−1K0 expm(−tH0)

with W := P⊥
Y Z.

Proof. Matrix A :=
[
Y Z

]
will be full rank for any Y and Z of Cor. 4.4, so it suffices to verify

that

AT {P⊥

Z Y (Y T P⊥

Z Y )−1H0 + P⊥

Y Z(ZT P⊥

Y Z)−1K0}
?
= AT {Y (Y T Y )−1H0 + W (WT W )−1K0 expm(−tH0)}. (33)
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Working out AT in partitioned form and using that Y ⊥ W , this gives

Y T P⊥

Z Y (Y T P⊥

Z Y )−1H0
!
= Y T Y (Y T Y )−1H0,

ZT P⊥

Y Z(ZT P⊥

Y Z)−1K0
?
= ZT Y (Y T Y )−1H0 + ZT W (WT W )−1K0 expm(−tH0).

The first equality is trivially satisfied. Plugging in Z as given by (32), the second expression
becomes

K0
?
= K0(E(H0, t)expm(−tH0)H0 + expm(−tH0)).

It is straightforward to check that E(H0, t)expm(−tH0)H0 + expm(−tH0)
!
= Ip.

Now we can rewrite Ẏ directly as

Ẏ = Y (Y T Y )−1H0Y
T Y + W (WT W )−1K0 expm(−tH0)Y

T Y. (34)

Summarising all the transformations, we have almost proved the following result.

Lemma 4.7 Let A(t) =
[
Y (t) Z(t)

]
be defined as in Prop. 4.3 with the partitioning (4). In

addition, assume that Y (0) ⊥ Z(0), then Y (t) is the solution of the initial value problem

Ẏ (t) =
(
Y (t) expm(−tH0)(Y

T
0 Y0)

−1H0 + W (t)(ZT
0 Z0)

−1K0

)
Y T

0 Y0 expm(tH0), Y (0) = Y0,
(35)

Ẇ (t) = −Y (t) expm(−tH0)K
T
0 , W (0) = Z0,

(36)

with W (t) ∈ R
n×(n−p). Furthermore, Z(t) is given by

Z(t) = W (t) + Y (t) expm(−tH0)E(H0, t)K
T
0 . (37)

Proof. Equations (36) and (37) follow from the construction above. Observe that from (31) it
follows that d(WT W )/dt = 0 and so W (t)T W (t) = ZT

0 Z0. Plugging this and (29) into (34), we
obtain (35).

4.4 Closed-form solution of the geodesics

Now we are ready to solve the geodesics in closed form. First, we make the assumption that Z0 is
an orthonormal basis for the orthogonal component of Y0, so Z0 := Y⊥0 and ZT

0 Z0 = In−p. This
can always be done by transporting the foot of the geodesic along the equivalence class [A]. Next,
we introduce the new variable

Ỹ (t) := Y (t)expm(−tH0)(Y
T
0 Y0)

−1/2.

With (Y T
0 Y0)

1/2 we denote the unique principal matrix square root of Y T
0 Y0. Since Y T

0 Y0 ≻ 0,
this square root is symmetric positive definite and it satisfies (Y T

0 Y0)
1/2(Y T

0 Y0)
1/2 = Y T

0 Y0. It
can be easily computed by means of an eigenvalue decomposition, see Higham (2008). Taking

the derivative of Ỹ (t), we obtain an IVP equivalent to the one in Lemma 4.7. Let Ω0 denote the
following skew-symmetric matrix:

Ω0 := (Y T
0 Y0)

−1/2H0(Y
T
0 Y0)

1/2 − (Y T
0 Y0)

1/2H0(Y
T
0 Y0)

−1/2.

Then the new IVP is homogeneous and linear with constant coefficients:

d

dt

[
Ỹ W

]
=

[
Ỹ W

] [
Ω0 −(Y T

0 Y0)
1/2KT

0

K0(Y
T
0 Y0)

1/2 0

]
,

Ỹ (0) = Y0(Y
T
0 Y0)

−1/2,
W (0) = Y⊥0.

(38)

Its solution is

[
Ỹ (t) W (t)

]
=

[
Y0(Y

T
0 Y0)

−1/2 Y⊥0

]
expm

(
t

[
Ω0 −(Y T

0 Y0)
1/2KT

0

K0(Y
T
0 Y0)

1/2 0

])
.
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Although this closed-form solution is straightforward to compute, it is rather expensive since it
involves the matrix exponential of an n × n matrix. Furthermore, we would like to avoid having
to use matrices Y⊥0 and K0 explicitly.

Thanks to the choice Z0 := Y⊥0, the horizontal lift of the initial velocity ηπ(A0) of a geodesic
can be written like in (16):

ηA0
=

[
V 0

]
, V = Y0(Y

T
0 Y0)

−1H0(Y
T
0 Y0) + Yp ∈ R

n×p, Yp ⊥ Y0. (39)

We can identify matrix V as Ẏ (0) in Lemma 4.7. This results in the identity Yp = Y⊥0K0Y
T
0 Y0.

Substituting W̃ (t) := W (t)K0(Y
T
0 Y0)

1/2 in (38) we get an IVP without Y⊥0 and K0:

d

dt

[
Ỹ W̃

]
=

[
Ỹ W̃

] [
Ω0 −Σ0

Ip 0

]
,

Ỹ (0) = Y0(Y
T
0 Y0)

−1/2,

W̃ (0) = Yp(Y
T
0 Y0)

−1/2.
(40)

where Σ0 := (Y T
0 Y0)

−1/2Y T
p Yp(Y

T
0 Y0)

−1/2. Now we can summarize all the transformations in the
following proposition. For ease of exposition, we formulate it stand-alone.

Proposition 4.8 Let Y0 ∈ R
n×p
∗ , H0 ∈ Ssym

p and Yp ∈ R
n×p with Y T

p Y0 = 0 be given. Define

Ω0 := (Y T
0 Y0)

−1/2H0(Y
T
0 Y0)

1/2 − (Y T
0 Y0)

1/2H0(Y
T
0 Y0)

−1/2, Σ0 := (Y T
0 Y0)

−1/2Y T
p Yp(Y

T
0 Y0)

−1/2

and [
X11(t) X12(t)
X21(t) X22(t)

]
:= expm

(
t

[
Ω0 −Σ0

Ip 0

])
.

Then the geodesic of (GLn/StabE , g) through π(
[
Y0 Y⊥0

]
) along η with horizontal lift

η :=
[
Y0(Y

T
0 Y0)

−1H0(Y
T
0 Y0) + Yp 0n×(n−p)

]

is the curve t 7→ π
([

Y (t) Y⊥(t)
])

where

Y (t) :=
(
Y0(Y

T
0 Y0)

−1/2X11(t) + Yp(Y
T
0 Y0)

−1/2X21(t)
)

(Y T
0 Y0)

1/2 expm(tH0).

Proof. The solution of (40) is

[
Ỹ (t) W̃ (t)

]
=

[
Y0(Y

T
0 Y0)

−1/2 Yp(Y
T
0 Y0)

−1/2
]
expm

(
t

[
Ω0 −Σ0

Ip 0

])
.

Undoing the transformation of Ỹ gives Y (t) = Ỹ (t)(Y T
0 Y0)

1/2 expm(tH0). By the construc-
tion above, matrix Y (t) represents the first p columns of a representative of a geodesic on
(GLn/StabE , g) and this is sufficient to define the whole geodesic.

4.5 Metric space

By the Hopf–Rinow theorem, (GLn/StabE , g) is a complete metric space since the geodesics can
be extended indefinitely. This means that given two s.p.s.d. matrices in S+(p, n), we can always
construct a geodesic of minimal length that connects these two matrices. The length of this
geodesic defines the distance function on (GLn/StabE , g) and, as we will see in the next section,
on S+(p, n) also.

A practical use of this distance function requires an efficient algorithm to construct the con-
necting geodesics, preferably in closed form. We have not found such a closed-form solution for two
arbitrary matrices. As alternative, one can numerically solve a relatively simple boundary value
problem since the ODE can be integrated analytically as in Prop. 4.8. This is however beyond the
scope of the current paper and we will not explore this further.
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5 Isometric embedding in the space of real matrices

In this section, we will give an interpretation of the homogeneous space geometry with the right-
invariant metric. It has been shown in Helmke & Moore (1994) that S+(p, n) is also an embedded
submanifold of R

n×n. Since the structure of a submanifold is easier to understand than that of
a quotient manifold, we will see how the two relate. Specifically, we will construct an isometry
between the two manifolds.

Since we are dealing with three manifolds now, we will fix some notation in order to avoid
confusion. As depicted in the table below, we use · for objects of GLn and ·̃ for S+(p, n), except
for A ∈ GLn which simply denotes a matrix. For an arbitrary function or map, its domain will
determine the notation. (Observe that the metric and the connection satisfy this convention.)

Manifold GLn/StabE GLn S+(p, n)

Elements π(A) A S̃

Vector fields η η η̃

Metric g g g̃

Connection ∇ ∇ ∇̃

5.1 Related elements

In Prop. 3.3 we have constructed a diffeomorphism ΘE between GLn/StabE and S+(p, n): there is
a one-to-one correspondence between the equivalence class π(A) ∈ GLn/StabE and the fixed rank
matrix ΘE(π(A)) ∈ S+(p, n). The meaning of this map is not difficult to understand. Suppose
we select A =

[
Y Z

]
as a representative of π(A). Now ΘE(π(A)) = θE(A) gives a fixed rank

matrix on S+(p, n) by selecting the first p columns of A, i.e. Y ∈ R
n×p
∗ , and forming the matrix

S̃ = Y Y T , an s.p.s.d. matrix of rank p. The equivalence along the fibres is also clear: matrix
A∗ =

[
Y Q Z∗

]
, Q ∈ Op belongs to the same fibre π−1(π(A)) as A and θE(A∗) gives indeed the

same s.p.s.d. matrix S̃ = Y Y T .
This equivalence along the fibre was a useful property to exploit when deriving the expressions

of the geodesics in §4. In what follows we will continue using it.

5.2 Related tangent vectors

One can relate a vector field on GLn/StabE to a vector field on S+(p, n) by means of the differ-
ential of ΘE . Suppose we take A =

[
Y Z

]
as representative of π−1(π(A)) with corresponding

s.p.s.d. matrix S̃ = Y Y T ∈ S+(p, n). Then the differential is

Fπ(A) := DΘE(π(A)) : Tπ(A)GLn/StabE → TeSS+(p, n),

where we introduced the notation Fπ(A). A tangent vector ηπ(A) is so-called F -related to a tangent
vector η̃eS if it satisfies

Fπ(A)(ηπ(A)) = η̃eS .

This relation is unique because ΘE is a diffeomorphism (Boothby, 1986, Th. IV.2.7.). In other
words, Fπ(A) is an isomorphism between vector spaces. By slight abuse of notation, this relation
carries over directly to vector fields: we say that the vector fields η and η̃ are F -related if F (η) = η̃.

Since GLn/StabE contains abstract elements, we worked with the horizontal lift of a tangent
vector. We can relate these horizontal lifts in a similar way to the tangent vectors of S+(p, n). If
we take the derivative of the identity θE = ΘE ◦ π and use property (12) for horizontal lifts, we
get

DθE(A)[ηA] = DΘE(π(A))[Dπ(A)[ηA]] = DΘE(π(A))[ηπ(A)], for all ηA ∈ HA. (41)
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We see that the differential of ΘE can be computed by taking a classical derivative of the matrix
valued function θE where the directions lie in the horizontal space. Let us examine the underlying
isomorphisms. From Prop. 3.6 we know that

Dπ(A)|HA
: HA → Tπ(A)GLn/StabE

is a bijection. So, by restricting the domain of DθE to the horizontal space, map

FA := DθE(A)|HA
: HA → TeSS+(p, n). (42)

is again an isomorphism. The corresponding diagram,

HA

F A

((R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Dπ(A)

��

Tπ(A)GLn/StabE
Fπ(A)

// TeSS+(p, n)

(43)

expresses the identity FA = Fπ(A) ◦ Dπ(A)|HA
.

Before we proceed, we recall the following characterisation of the tangent space of S+(p, n)
from Vandereycken & Vandewalle (2010, Prop. 5.2).

Proposition 5.1 The tangent space at S̃ = Y Y T ∈ S+(p, n) is satisfies

TeSS+(p, n) =
{

Y HY T + Y⊥KY T + Y KT Y T
⊥ : H ∈ Ssym

p , K ∈ R
(n−p)×p

}
.

Now, the following proposition shows how these relations can be computed explicitly in case
of A =

[
Y Y⊥

]
.

Proposition 5.2 Let η be the horizontal lift of a vector field η on GLn/StabE . Then η is F -
related to a unique vector field η̃ on S+(p, n). For A =

[
Y Y⊥

]
, this relation can be computed

as

FA :
[
Y (Y T Y )−1H(Y T Y ) + Y⊥K 0n×(n−p)

]
7→ Y L(H)Y T + Y⊥KY T + Y KT Y T

⊥ , (44)

F
−1

A : Y HY T + Y⊥KY T + Y KT Y T
⊥ 7→

[
Y (Y T Y )−1L−1(H)(Y T Y ) + Y⊥K 0n×(n−p)

]
, (45)

with L the bijection

L : Ssym
p → Ssym

p , X 7→ (Y T Y )−1X(Y T Y ) + (Y T Y )X(Y T Y )−1.

Proof. From diagram (43) we have FA = Fπ(A) ◦ Dπ(A)|HA
. Take A =

[
Y Z

]
and S̃ = Y Y T .

Since dim(HA) = dim(TeSS+(p, n)), we have that FA is a bijection for every A. Now restrict A
to be of the form A =

[
Y Y⊥

]
. The horizontal lift of a tangent vector ηπ(A) will be of the form

ηA =
[
Y (Y T Y )−1H(Y T Y ) + Y⊥K 0

]
. Working out the derivative of θE(A), we get

FA(ηA) = DθE(A)[ηA] = ηAEAT + AEη T
A

= Y (Y T Y )−1H(Y T Y )Y T + Y⊥KY T + Y (Y T Y )H(Y T Y )−1Y T + Y KT Y T
⊥

= Y L(H)Y T + Y⊥KY T + Y KT Y T
⊥ = η̃eS .

Based on Prop. 5.1 it is clear that FA(ηA) corresponds to only one tangent vector in TeSS+(p, n).

Likewise, the inverse F
−1

A is also unique: given the tangent vector η̃eS = Y HY T + Y⊥KY T +
Y KT Y T

⊥
in TeSS+(p, n), matrix ηA =

[
Y (Y T Y )−1L−1(H)(Y T Y ) + Y⊥K 0

]
represents the hori-

zontal lift at A =
[
Y Y⊥

]
. Since Y T Y ≻ 0, we know know from Lemma 3.7 that L is a bijection.

Hence equation L(X) = H has a unique and symmetric solution.

It is illustrative to verify that the maps (44)–(45) are indeed invariant along the fibre π−1(π(A)).
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5.3 Related metrics

Next, we relate the metrics. Let η, ν be two vector fields on GLn/StabE with related vector fields
η̃, ν̃ on S+(p, n). The aim is to find an inner product g̃ on S+(p, n) such that, by definition,

g̃(η̃, ν̃) := g(η, ν).

We call the inner products g and g̃ then again F -related. Recall from Prop. 3.6 that the inner
product g(η, ν) is actually defined in terms of the horizontal lifts η, ν since

g(η, ν) := g(η, ν).

This makes the inner product g in addition F -related to g̃.
Since S+(p, n) is embedded in the Euclidean space R

n×n ≃ R
n2

, we will construct g̃ as the
weighted Euclidean metric

g̃eS(η1, η2) := vec(η1)
TW vec(η2), for all η1, η2 ∈ TeSS+(p, n),

for some matrix W ∈ R
n2

×n2

. We have used the vectorisation operator vec : R
n×n → R

n2

, which
makes a vector from a matrix by column-wise stacking. In order that g̃ is an inner product, W
should be symmetric and positive definite for all vectors in TeSS+(p, n). However, W may be

indefinite on R
n2

×n2

.
The following proposition gives such a matrix W. It makes use of the Kronecker product ⊗

and the following property of the vec operator (Horn & Johnson, 1991, Ch. 4)

vec(AXB) = (BT ⊗ A) vec(X), A ∈ R
m×n, X ∈ R

n×p, B ∈ R
p×q. (46)

Proposition 5.3 Let S̃ = Y Y T ∈ S+(p, n) and define M := Y T Y . Then the relation

g̃eS(η̃1, η̃2) :=
1

2
vec(η̃1)

TW vec(η̃2), ∀η̃1, η̃2 ∈ TeSS+(p, n), (47)

with

W = (Y ⊗ Y )(M3 ⊗ M + M ⊗ M3)−1(Y T ⊗ Y T ) + Y M−3Y T ⊗ Y⊥Y T
⊥ + Y⊥Y T

⊥ ⊗ Y M−3Y T .

defines a Riemannian metric g̃ on S+(p, n). Furthermore, g̃ is F -related to the metric g on
GLn/StabE of Prop. 3.6.

Proof. We first check that (47) is well defined and that is fulfils the three axioms of an inner
product. Linearity is trivial. Next, observe that we can write W = YCYT with

Y =
[
Y ⊗ Y Y ⊗ Y⊥ Y⊥ ⊗ Y Y⊥ ⊗ Y⊥

]

and

C =




(M3 ⊗ M + M ⊗ M3)−1 0 0 0
0 M−3 ⊗ In−p 0 0
0 0 In−p ⊗ M−3 0
0 0 0 0(n−p)2×(n−p)2


 .

Since M ≻ 0, one can verify that C � 0, from which, by Sylvester’s law of inertia, W � 0. This
immediately gives symmetry. Positive-definiteness follows from the fact that g̃eS(X, X) vanishes

only for matrices X ∈ R
n×n of the form Y⊥LY T

⊥
for some L ∈ R

(n−p)×(n−p). Since these matrices
do not belong to the tangent space, g̃eS(η̃, η̃) = 0 implies η̃ = 0. Furthermore, the metric is
independent of the choice of Y and Y⊥. Suppose we take Z = Y Q, for some Q ∈ Op and
Z⊥ = Y⊥P for some P ∈ On−p. Then it is straightforward to show that matrix

(Z ⊗ Z)(W 3 ⊗ W + W ⊗ W 3)−1(ZT ⊗ ZT ) + ZW−3ZT ⊗ Z⊥ZT
⊥ + Z⊥ZT

⊥ ⊗ ZW−3ZT
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with W = ZT Z = QT MQ is equal to W. Hence, the inner product stays the same.
Second, we will prove by construction that (47) coincides with the right-invariant metric (13).

Let us take the usual related base points A =
[
Y Y⊥

]
and S̃ = Y Y T and related tangent

vectors η̃1 = F (η1) and η̃2 = F (η2). All these tangent vectors can be parameterized by matrices
H1, H2 ∈ Ssym

p and K1, K2 ∈ R
(n−p)×p satisfying the relations in Prop. 5.2. In case of η̃1 and η1.

This gives

η̃1 = Y H1Y
T + Y⊥K1Y

T + Y KT
1 Y⊥, η1 =

[
Y M−1L−1(H1)M + Y⊥K1 0

]

and similarly for η̃2 and η2. First, we work out g̃eS(η̃1, η̃2). Using property (46), we get that

vec(η̃1) = (Y ⊗ Y ) vec(H1) + (Y ⊗ Y⊥) vec(K1) + (Y⊥ ⊗ Y ) vec(KT
1 )

= Y




vec(H1)
vec(K1)
vec(KT

1 )
0(n−p)2×1


 .

Now we have that

2g̃eS(η̃1, η̃2) =




vec(H2)
vec(K2)
vec(KT

2 )
0(n−p)2×1




T

YTYCYTY




vec(H1)
vec(K1)
vec(KT

1 )
0(n−p)2×1




= vec(H2)
T (M−1 ⊗ M + M ⊗ M−1)−1 vec(H1)

+ vec(K2)
T (M−1 ⊗ I) vec(K1) + vec(KT

2 )T (I ⊗ M−1) vec(KT
1 )

= vec(H2)
T vec(L−1H1) + vec(K2)

T vec(K1M
−1) + vec(KT

2 )T vec(M−1KT
1 ).

Changing to matrices and using the definition of L from Prop. 5.2 gives

2g̃eS(η̃1, η̃2) = tr(L(L−1(H2))L−1(H1)) + tr(M−1KT
2 K1) + tr(K2M

−1KT
1 )

= 2tr(ML−1(H2)M
−1L−1(H2)) + 2tr(M−1KT

2 K1).

Now applying formula (17) for gA(η1, η2), we get immediately that

gA(η1, η2) = tr(ML−1(H2)M
−1L−1(H1) + M−1KT

2 K1) = g̃eS(η̃1, η̃2).

Since the metrics are independent of the choice of Y and A, this concludes the proof.

The following is immediate.

Corollary 5.4 Map
ΘE : (GLn/StabE , g) → (S+(p, n), g̃)

is an isometry with metric g of Prop. 3.6 and metric g̃ of Prop. 5.3.

Observe that any change to W that is restricted to the normal space of S̃ will have no influence
on (47). Specifically, we can choose any W = YCYT with

Y =
[
Y ⊗ Y Y ⊗ Y⊥ Y⊥ ⊗ Y Y⊥ ⊗ Y⊥

]

and

C =




(M3 ⊗ M + M ⊗ M3)−1 0 0 X1

0 M−3 ⊗ In−p 0 X2

0 0 In−p ⊗ M−3 X3

XT
1 XT

2 XT
3 X4


 ,

X1 ∈ R
p2

×p2

X2 ∈ R
p(n−p)×p(n−p)

X3 ∈ R
p(n−p)×p(n−p)

X4 ∈ Ssym
(n−p)2

.
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5.4 Related connection

By virtue of the naturality of the Levi-Civita connection (Lee, 1997, Prop. 5.6), isometry ΘE of

Prop. 3.2 induces a DΘE-related connection ∇̃ on (S+(p, n), g̃). In other words, ∇̃ := DΘE ◦ ∇
with ∇ the connection on (GLn/StabE , g).

We would like to express this again in terms of horizontal lifts. Recall from Prop. 5.2 that the

bijection F
−1

A allows us to lift each vector field on S+(p, n) to a unique vector field on GLn with

A =
[
Y Y⊥

]
the ΘE-related element of S̃ = Y Y T . Furthermore, this lifted vector field can be

parameterized by a classic matrix function:

η(A) := F
−1

A (η̃(S̃ )) =
[
Zη(Y ) 0n×(n−p)

]
with Zη : R

n×p → R
n×p. (48)

Now, Prop. 3.11 allows us to express the connection ∇̃ of (S+(p, n), g̃) in terms of the horizontal
lifts as

∇̃eν η̃ = F (Ph(∇νη)) = F (∇νη),

where we used the property that Pv belongs to the null space of F . Summarizing, this results in
the following proposition.

Proposition 5.5 Let η̃, ν̃ be two vector fields on S+(p, n). Let Zη, Zν be the parametrization

(48) of the related vector fields η, ν on GLn/StabE . Then the Levi-Civita connection in S̃ = Y Y T

w.r.t. metric g̃ of Prop. 5.3 is given by

∇̃eν η̃(S̃) = (DZη(Y )[Zν ] + W )Y T + Y (DZη(Y )[Zν ] + W )
T

(49)

where

W :=
1

2
{Y (Y T Y )−1(ZT

η Zν +ZT
ν Zη)−Zν(Y T Y )−1(ZT

η Y +Y T Zη)−Zη(Y T Y )−1(ZT
ν Y +Y T Zν)}.

5.5 Related geodesics

The geodesics on (S+(p, n), g̃) are simply the ΘE-related geodesics of (GLn/StabE , g).

Proposition 5.6 Let S̃0 = Y0Y
T
0 ∈ S+(p, n) with Y0 ∈ R

n×p
∗ be given. Define N0 := (Y T

0 Y0)
1/2

and Z(t) := Y0N
−1
0 X11(t) + YpN

−1
0 X21(t) with

[
X11(t) X12(t)
X21(t) X22(t)

]
:= expm

(
t

[
N−1

0 H0N0 − N0H0N
−1
0 −N−1

0 Y T
p YpN

−1
0

Ip 0p×p

])
.

Then the geodesic in S̃0 along

Y0(N
−1
0 H0N0 + N0H0N

−1
0 )Y T

0 + YpY
T
0 + Y0Y

T
p ,

with given H0 ∈ Ssym
p and Y0 ⊥ Yp ∈ R

n×p is the curve

t 7→ S̃(t) := Z(t)N0 expm(2tH0)N0Z(t)T .

Proof. All geodesics on (S+(p, n), g̃) are of the form S̃(t) = Y (t)Y (t)T with Y (t) from Prop. 4.8.
The initial tangent vector is identified by taking the derivative in t = 0.

6 Special geodesics and quasi-geodesics

Observe that every Y ∈ R
n×p
∗ can be written as Y = UC with orthonormal U ∈ R

n×p
∗ and C ∈

GLp. The corresponding s.p.s.d. matrix can be decomposed as S̃ = UWUT with W = CCT ≻ 0.
In this section we will see whether we can derive a geodesic as a decomposed curve also: one
curve for the orthonormal part U(t) and one for the small matrix W (t) ≻ 0. The general answer
will turn out to be negative although the resulting curve will be a first-order approximation of a
geodesic, called a quasi-geodesic.
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6.1 The case K0 = 0.

Take K0 = 0 in (38), or equivalently Yp = 0 in Prop. 4.8, then the geodesic, which we denote by
YK(t), is given by

YK(t) = Y0(Y
T
0 Y0)

−1/2expm(tΩ0)(Y
T
0 Y0)

1/2expm(tH0). (50)

Observe that this curve does not change the column span of Y0. This geodesic is in fact directly
related to the geodesics on (S+(p, p), g̃) ≃ (GLp/Op, g). Since we can always write Y0 = U0C0

with orthonormal U0 ∈ R
n×p
∗ and C0 ∈ GLp, we have YK(t) = U0C(t) with

C(t) = C0(C
T
0 C0)

−1/2expm(tΩ0)(C
T
0 C0)

1/2expm(tH0).

and
Ω0 = (CT

0 C0)
−1/2H0(C

T
0 C0)

1/2 − (CT
0 C0)

1/2H0(C
T
0 C0)

−1/2.

Suppose we take C0 as a representative in GLp/Op for matrix C0C
T
0 ∈ S+(p, p). Looking at

Prop. 4.8, we see that π(C(t)) is indeed a geodesic on (GLp/Op, g).

6.2 The case H0 = 0.

Let L0 := K0(Y
T
0 Y0)

1/2. If H0 = 0 and p < n, we can write the matrix exponential in expression
(38) as follows

expm

(
t

[
0 −LT

0

L0 0

])
=

[
V 0 0
0 U1 U2

] 


cos(tΣ) − sin(tΣ) 0
sin(tΣ) cos(tΣ) 0

0 0 I







V T 0
0 UT

1

0 UT
2




with

L0 =
[
U1 U2

] [
Σ
0

]
V T

a partitioned singular value decomposition. The geodesic, now denoted YH(t), satisfies

YH(t) = (Y0(Y
T
0 Y0)

−1/2V cos(tΣ) + Y ⊥

0 U1 sin(tΣ))V T (Y T
0 Y0)

1/2. (51)

Observe that span(YH(t)) is no longer constant along this geodesic.
In this case, YH(t) is related to a geodesic on the Grassmann manifold of linear subspaces

equipped with the natural metric. To see this, observe that span(YH(t)) coincides with the ex-
pression in Th. 3.6 of Absil et al. (2004) for a geodesic in the Grassmann manifold. Contrary to
the Grassmann manifold where YH(t) belongs to the equivalence class Y GLp, the equivalence of
YH(t) in GLn/StabE is restricted to the orthogonal group only, i.e., Y Op; see also §3.3.

6.3 A quasi-geodesic

We have seen that we can classify the geodesics into two disjoint types, depending on whether
they change span(Y (t)) or not. These two types correspond to either H0 or K0 zero. In case H0

and K0 are both non-zero, we can construct a curve by composition of these two geodesics. Take
again Y0 = U0C0. In order that the composition of the geodesics match, we rewrite the geodesic
by isolating the constant orthonormal matrix and obtain

YK(t) = U0C0(C
T
0 C0)

−1/2

︸ ︷︷ ︸
=:eU0, eUT

0
eU0=Ip

γK(t) with γK(t) := expm(tΩ0)(C
T
0 C0)

1/2expm(tH0).

In the same way, we obtain

YH(t) = γH(t)(CT
0 C0)

1/2 with γH(t) := (U0C0(C
T
0 C0)

−1/2V cos(tΣ) + Y ⊥

0 U1 sin(tΣ))V T
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Now we have YK(t) = γH(0)γK(t) and YH(t) = γH(t)γK(0). The new curve for H0 6= 0 and
K0 6= 0 is then

γHK(t) := γH(t)γK(t),

which is complete, i.e., it stays in GLn/StabE for all t.
This curve is obviously not a geodesic, but it is a first-order approximation of it in the following

sense: take Y (t)Y (t)T the geodesic on (S+(p, n), g̃) with Y (0) = γHK(0), then

disteg(γHK(t)γHK(t)T , Y (t)Y (t)T ) = O(t2), t → 0.

Here disteg is the distance on the metric space (S+(p, n), g̃) defined by the length of the minimal
geodesic. In §5.3 metric g̃ was shown to be a weighted Euclidean metric, so we can bound this
distance by the usual Frobenius norm of the embedding space. This gives the following equivalent
property of quasi-geodesics

‖γHK(t)γHK(t)T − Y (t)Y (t)T ‖F = O(t2), t → 0. (52)

Curves of this type are called quasi-geodesics of order one (Nishimori & Akaho, 2005) or first-order
retractions (Absil et al., 2008, Def. 4.1.1). Amongst other uses, they appear in optimization on
manifolds as a cheap but equally good substitute of the exponential map and geodesics; see Absil
et al. (2008) for a general overview.

To verify that γHK(t)γHK(t)T is indeed of first-order, apply the Baker–Campbell–Hausdorff
formula (Hairer et al., 2006, III.4.2) to split an exponential:

expm(tA)expm(tB) = expm (t(A + B)) + O(t2), t → 0.

Using this expansion for the exponential of (38), we obtain with L0 := K0(Y
T
0 Y0)

1/2

expm

(
t

[
Ω0 −LT

0

L0 0

])
= expm

(
t

[
0 −LT

0

L0 0

])
expm

(
t

[
Ω0 0
0 0

])
+ O(t2).

Now working out each exponential like in the cases above, we arrive at Y (t) = γHK(t)+O(t2), t →
0.

Curve γHK(t) of (52) shows some resemblance to the curves in Bonnabel & Sepulchre (2009).
In §7.4, we will come back to these curves and compare them more thoroughly.

7 Comparison with other metrics

In §3.4 we have already established that for p < n there is no longer a natural choice for the metric
as in the case p = n. In this paper, we have chosen the right-invariant metric since it turned the
canonical projection π : GLn → GLn/StabE into a Riemannian submersion, a useful property to
exploit for deriving geodesics. In the literature there exist other metrics however. Each choice
has advantages and disadvantages. Below we will briefly compare them with our choice and focus
most attention on the properties of the geodesics.

Note that, in order not to make the notation of this section too dense, we depart from the
notational convections of §5 and simply use plain matrices and vector fields that belong to S+(p, n).

7.1 Embedded submanifold with the Euclidean metric.

One can regard S+(p, n) as a submanifold embedded in R
n×n and equip it with the usual Euclidean

metric, as was done in, e.g., Helmke & Moore (1994), Helmke & Shayman (1995), Orsi et al. (2004),
Orsi et al. (2006), Vandereycken et al. (2009), Vandereycken & Vandewalle (2010). The advantage
of this familiar metric is that it allows us to interpret many geometric objects in a straightforward
way. Take e.g. two vector fields ν, η on S+(p, n), then the Levi-Civita connection in S ∈ S+(p, n)
satisfies

∇νη(S) = PS(Dη(S)[ν]),
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with PS the usual orthogonal projection onto the tangent space TSS+(p, n) and Dη a classic
Euclidean directional derivative of a matrix-valued function η.

Hence, it may seem appropriate to use this metric, but it is not the most appealing from
a theoretical perspective since S+(p, n) is not a complete metric space. In Vandereycken et al.
(2009), the authors derive the equations of motion of the geodesics and clearly show that they
can not always be extended indefinitely. Still, the simplicity of many expressions makes this an
interesting geometry.

We have seen in §5 that our homogeneous space geometry also coincides with an embedded
submanifold but now with a much more involved and nonconstant metric. It is however still a
weighted Euclidean metric. In principle this allows for the same interpretation of the Levi-Civita
connection involving a projection but now w.r.t. to the metric of Prop. 5.3.

7.2 Quotient manifold R
n×p
∗

/Op with the Euclidean metric

One can factor every S ∈ S+(p, n) as S = Y Y T with orthonormal Y ∈ R
n×p
∗ . This factorization

is unique up to the action of the orthogonal group, i.e., transformation Y 7→ Y Q gives the same
matrix S for all Q ∈ Op. This allows one to the describe S+(p, n) as the quotient manifold

S+(p, n) ≃ R
n×p
∗ /Op.

In Journée et al. (2010), Meyer et al. (2010), Bonnabel et al. (2010), Sepulchre et al. (2010), the
authors equip this quotient manifold with the Euclidean metric. The horizontal space at Y ∈ R

n×p
∗

is given in (15) of Journée et al. (2010):

HEucl
Y =

{
Z ∈ R

n×p
∗ : ZT Y = Y T Z

}
,

which, by counting dimensions, is equivalent to

HEucl
Y =

[
Y (Y T Y )−1Ssym

p + Y⊥R
(n−p)×p

]
.

It is not difficult to see that this description is equivalent to equipping GLn/StabE with a metric
gEucl which is derived from the Euclidean metric on GLn,

gEucl(η, ν) := tr(ηT ν).

Indeed, reiterating the steps of the derivation in §3, but now with gEucl, we get

HEucl
A = A−T

[
Ssym

p 0

R
(n−p)×p 0

]

as horizontal space at A ∈ GLn. In A =
[
Y Y⊥

]
, the horizontal lifts are of the form

HEucl
A =

[
Y (Y T Y )−1Ssym

p + Y⊥R
(n−p)×p 0n×(n−p)

]
.

Notice that the first p columns of HEucl
A are exactly HEucl

Y of above. Metric gEucl on GLn/StabE

is now the restriction of gEucl to HEucl
A , which is the same as in Journée et al. (2010).

Since πEucl : (GLn, gEucl) → (GLn/StabE , gEucl) is again a Riemannian submersion, we have
that the geodesics are the projection of horizontal geodesics on (GLn, gEucl). These will be straight
curves

t 7→ Y0 + tẎ0, for all Y0 ∈ R
n×p
∗ , Ẏ0 ∈ HEucl

Y0
,

which are obviously not complete; the underlying reason being that (GLn, gEucl) is not complete.
This is the primary reason why we disregarded the Euclidean metric in §3.5.
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7.3 Quotient manifold R
n×p
∗

/Op with a special metric

In Absil et al. (2009), the authors equip R
n×p
∗ /Op with the following specially chosen metric on

R
n×p
∗ :

gLeft
Y (Z1, Z2) = tr(ZT

1 P⊥

Y (Z2) + ZT
1 Y (Y T Y )−2Y T Z2)

where P⊥
Y := I − PY denotes the usual orthogonal projection. In this case, the horizontal space

at Y ∈ R
n×p
∗ satisfies

HLeft
Y =

[
Y Ssym

p + Y⊥R
(n−p)×p

]
.

This simple expression allows to pick a specific affine (not the Levi-Civita) connection which
results in a particularly lean expression for a Newton equation on R

n×p
∗ /Op. We refer to Absil

et al. (2009) for details. Here, we only want to point out that this metric coincides with equipping
GLn/StabE with the left-invariant metric

gLeft
A (ηA, ηA) = gLeft

I (A−1ηA, A−1ηA) = tr(ηT
AA−T A−1ηA). (53)

Analogously as in the previous section, quotient manifold (GLn/StabE , gLeft) has

HLeft
A = A

[
Ssym

p 0

R
(n−p)×p 0

]

as horizontal space at A ∈ GLn. In A =
[
Y Y⊥

]
, this gives

HLeft
A =

[
Y Ssym

p + Y⊥R
(n−p)×p 0n×(n−p)

]
=

[
HLeft

Y 0n×(n−p)

]
.

For the previous choice of A, let η =
[
Vη 0

]
∈ HLeft

A with Vη = Y Sη +Y⊥Kη ∈ HLeft
Y and similarly

for η and Vη. Then metric gLeft satisfies

gLeft
A (ηA, ηA) = tr

([
Sη KT

η

0 0

]
AT A−T A−1A

[
Sη 0
Kη 0

])
= tr(SηSη + KT

η Kη),

which is obviously the same as

gLeft
Y (Vη, Vη) = tr

(
(SηY T + KT

η Y T
⊥ )Y (Y T Y )−2Y T (Y Sη + Y⊥Kη)

)

+ tr
(
(SηY T + KT

η Y T
⊥ )Y⊥Y T

⊥ (Y Sη + Y⊥Kη)
)
.

The downside of this description is that this horizontal space does not define a connection on the
principal bundle GLn(GLn/StabE ,StabE) since HLeft

AH 6= HLeft
A H for all H ∈ StabE . Consequently,

it is not immediately obvious whether

πLeft : (GLn, gLeft) → (GLn/StabE , gLeft)

is a Riemannian submersion or not. We do have however HLeft
Y Q = HLeft

Y Q for all Q ∈ Op. So
projection

πLeft : (Rn×p
∗ , gLeft) → (GLn/StabE , gLeft)

is Riemannian. However, the geodesics of (Rn×p
∗ , gLeft) are most likely rather difficult to find, and

it is not known whether they are complete or not.

7.4 Quotient manifold (St(p, n) × S+(p, p))/Op with a polar metric

We can factor every S ∈ S+(p, n) as S = UPUT with orthonormal U ∈ R
n×p
∗ and P ∈ S+(p, p).

This factorization is unique up to the action of the orthogonal group, i.e., transformation

U 7→ UQ, P 7→ QT PQ, for all Q ∈ Op
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gives the same matrix S. This allows one to the describe S+(p, n) as the quotient manifold

S+(p, n) ≃ (St(p, n) × S+(p, p))/Op,

with St(p, n) the Stiefel manifold of n×p orthonormal matrices. In Bonnabel & Sepulchre (2009),
the authors equip this manifold with a so-called polar metric which is a linear combination of the
natural metrics on St(p, n) and S+(p, p). Since St(p, n) and S+(p, p) both have a rich geometry,
the metric on (St(p, n) × S+(p, p))/Op inherits most of the useful invariance properties (but not
all) of the reductive space S+(n, n).

A difficulty regarding this approach is that the quotient map

πPolar : (St(p, n) × S+(p, p)) → (St(p, n) × S+(p, p))/Op

is not a Riemannian submersion. Although the horizontal geodesics on (St(p, n) × S+(p, p)) are
available in closed form as (Bonnabel & Sepulchre, 2009, Th. 5.2),

t 7→ U(t)R2(t)U(t)2, with U(t) ∈ St(p, n) and R2(t) ∈ S+(p, p), (54)

their projection under πpolar will not be geodesics on (St(p, n) × S+(p, p))/Op; they will only be
quasi-geodesics. In addition, it is not obvious if this description will eventually lead to complete or
efficient geodesics. These curves do however have nice properties: they are complete, available in
closed-from and it is straightforward to construct a curve connecting to s.p.s.d. matrices, see, e.g.,
Meyer et al. (2009), Meyer et al. (2010), Bonnabel et al. (2010), Bonnabel & Sepulchre (2010),
Sepulchre et al. (2010).

These quasi-geodesics of Bonnabel & Sepulchre (2009) show some resemblance to our quasi-
geodesics: compare the curve (54) of Bonnabel & Sepulchre (2009, Th. 5.2) to γHK(t)γHK(t)T of
§6.3. While the curves for the orthonormal part, i.e., U(t) and γH(t), are both based on geodesics
on the Grassmann manifold, the curves for the small matrix S+(p, p), i.e., R2(t) and γK(t) are
based on different geodesics. In Bonnabel & Sepulchre (2009), this curve R2(t) is a geodesic on
S+(p, p) for the natural (affine-invariant) metric

gNatural
P (η, ν) := tr(ηP−1νP−1) = vec(η)T (P ⊗ P )−1 vec(ν), for all η, ν ∈ TP S+(p, p),

while in our case, the curve γK(t)γT
K(t) is based on the related right-invariant metric for S+(p, p)

from Prop. 5.3. When p = n and P = Y Y T , this metric becomes

gRight
P (η, ν) := vec(η)T (Y ⊗ Y ){(Y T Y )3 ⊗ (Y T Y ) + (Y T Y ) ⊗ (Y T Y )3}−1(Y T ⊗ Y T ) vec(ν).

Since we can always take Y = P 1/2, the symmetric square root of P , the metric can also be written
as

gRight
P (η, ν) := vec(η)T (P 2 ⊗ I + I ⊗ P 2)−1 vec(ν).

Admittedly, metric gRight is more complicated than gNatural and finding a connecting geodesic
between two s.p.s.d. matrices is more involved for gRight. On the other hand, since curve γHK(t)
is not a geodesic anyway (for both metric spaces), this is probably not a major disadvantage.

8 Conclusions

We introduced a homogenous space geometry for S+(p, n), the symmetric positive semidefinite
matrices of fixed rank. By choosing the right-invariant metric on GLn we made the canonical
projection onto GLn/StabE ≃ S+(p, n) a Riemannian submersion. This had the appealing prop-
erty that the complete horizontal geodesics of GLn could be used as pre-image of the geodesics
on GLn/StabE . The derivation of an efficient closed-form expression of these geodesics opens the
door to the practical application of this complete space to rank-constrained problems involving
positive semidefinite matrices. Since the quotient space GLn/StabE consists of abstract equiva-
lence classes as elements, we embedded it isometrically in the space of real matrices. This should
allow for a more concrete understanding of the vector fields, the metric and the geodesics in terms
of classic matrices. As final contribution we compared our geometry with other existing geometries
in the literature. Specifically, we compared the geodesics and the quasi-geodesics for the different
metrics.
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