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Understanding Air-Core Photonic-Bandgap Fibers:
Analogy to Conventional Fibers
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Abstract—TIt is shown from basic principles that the core modes
of an air-core photonic-bandgap fiber (PBF) exhibit similar qual-
itative and quantitative behavior as the linearly polarized (LP)
modes of an equivalent conventional fiber whose step-index profile
is entirely determined by the band edges of the PBF. This analogy
leads to the concept of effective numerical aperture (NA), which
is used to provide an intuitive interpretation of the qualitative
behavior of PBF modes. By using this equivalence, several key
properties, including the number of modes, their cutoff, effective
index, size, and divergence, and the dependence of these quanti-
ties on the PBF core and cladding parameters, can be predicted
approximately by simulating the LP modes of the equivalent step-
index fiber using standard LP-mode simulators or well-known
formula. Besides providing a convenient tool to model the modes of
a PBF, this analogy gives new physical insight into the fundamental
characteristics of these complex waveguides.

Index Terms—Air-core photonic-bandgap fibers, conventional
solid-core fiber, LP modes, numerical aperture, PBF.

I. INTRODUCTION

VER the past few years, there has been a surge of inter-

est in air-core photonic-bandgap fibers (PBFs), partly
because of their fundamental appeal as intriguing new optical
waveguides, and partly because of their numerous projected
applications. To date, experimental work has been compara-
tively limited due to the high cost of these fibers, and research
activity has been mostly theoretical. The basic physics of PBFs
is well understood by experts in the field, and many optical
properties have been analyzed, including transmission, phase
and group velocity dispersion, and surface modes [1]-[5].
However, theoretical models require lengthy and expensive runs
on a supercomputer, and they fail to give an intuitive feel for the
behavior of these fibers. We have recently developed a novel
numerical method that makes it possible for the first time to
simulate PBFs in mere minutes on a personal computer [6], so
part of this argument will soon be moot, but the fact remains
that there is a strong need for a simple physical model of
light propagation in PBFs. Such a model would provide greater
physical insight as well as a means to quickly predict the mode
properties of PBFs. It will also help neophytes grasp the basics
of a rather complex new type of waveguide.
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In this paper, by comparing air-core fibers to conventional
solid-core fibers, we develop a simple model that makes a
significant contribution in this direction. We demonstrate that in
spite of the major differences between the guiding mechanisms
of these two types of fibers, the analogy between them can be
pushed surprisingly far. We start by showing that the basic dis-
persion properties of a PBF can be well explained qualitatively
in terms of what we know of conventional fibers by defining
an equivalent numerical aperture (NA) for the PBF. Much as in
the case of solid-core microstructured fibers [7], this definition
provides a useful parameter by which to gauge a number of
basic fiber properties, such as mode divergence and spot size.
This NA is a frequency-dependent quantity that depends only
on the PBF bandgap, which means that all that is required to
evaluate the NA is a simple calculation of the bandgap. This
concept of NA leads to the definition of an equivalent step-index
fiber with the same core radius and NA as the PBF. Using simu-
lations, we proceed to demonstrate that a PBF and its equivalent
step-index fiber have similar quantitative mode properties. Such
fundamental characteristics as the number of core modes, their
dispersion, cutoff frequencies, intensity profile, and divergence,
as well as the dependence of these quantities on frequency,
core radius, air-filling ratio, and cladding geometry, can all be
quickly calculated using existing formulas or simulators for
linearly polarized (LP) modes. This approximate interpretation
provides a new approach to analyze the modes of PBFs both
qualitatively and quantitatively by comparing them to well-
understood conventional fibers.

Throughout this paper, unless otherwise specified, we
illustrate our arguments with an exemplary silica PBF with a
cladding made of a two-dimensional periodic array of circular
air holes in a triangular pattern. The cladding holes have a
radius p = 0.47A, where A is the lattice period. The core is
created by introducing a larger circular air hole of radius R
at the center of the fiber, as illustrated in Fig. 1 for a few
core radii [5]. The core radius is varied throughout the paper,
as cited. Comparable quantitative and qualitative results have
been obtained with other PBF structures. All exact simulations
of the mode properties of this family of fibers were carried
out using a full-vectorial plane-wave expansion method [8]
on the University of Michigan AMD Linux cluster of parallel
Athlon 2000MP processors. We used a grid resolution of A/16
and a supercell size of 8A x 8A. These values provided a
good compromise between speed and accuracy. For example,
decreasing the grid size to A /32 or increasing the supercell size
to 10A x 10A increased the simulation time about fourfold,
but it modified the predicted effective indices of the modes
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circular core.

by less than 0.001. This change is essentially independent of
wavelength, so it amounts only to a very slight and incon-
sequential shift in the dispersion curves. “Conventional fiber”
refers to a traditional step-index fiber with a solid core and a
solid cladding, in which guidance is provided by total internal
reflection.

II. CONCEPT OF EQUIVALENT CONVENTIONAL FIBER
A. Numerical Aperture

To introduce the concept of equivalent conventional fiber in
an air-core fiber, we refer to the dispersion diagram of Fig. 2(a),
computed numerically for the exemplary fiber under study. Just
like in a grating, the periodic structure in the fiber cladding
introduces dead bands in the frequency space where modes
cannot propagate along the fiber axis (z-direction). This region,
shown as the shaded wedge in Fig. 2(a), is the bandgap. Adding
a core introduces a defect in the photonic crystal that breaks its
symmetry and allows a finite number of modes to propagate in
the defect (core modes). We label ki (w) the wavenumber of
the bandgap’s upper edge at frequency w, krz,(w) the equivalent
quantity for the lower edge, and ko(w) = w/c the light line,
where c is the speed of light in vacuum. A pivotal frequency
in this discussion is the frequency wgy, where the light line
crosses the lower band edge [wy ~ 1.6733 in units of 27¢c/A
in the example of Fig. 2(a)]. For a core mode to exist at w, its
propagation constant k,(w) must be both in the bandgap and
below the light line, i.e., it must satisfy

kuy <k, <kr (1a)

k., <ko. (1b)

At frequencies above wy, kr > ko [see Fig. 2(a)] and the
two equations can be combined to give ky < k. < kg. This
inequality means that k, can be equal to ky. Since k is the
highest possible amplitude for a k& vector in the core material
(air), the implication is that the mode can propagate right along
the fiber axis. The same argument can be made using the ray
picture by considering the angle of propagation # of the mode
with respect to z. For a mode with a propagation constant k.,
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Normalized frequency wA/2nc

1.5 1.6 1.7 1.8 19

20 — . ; | —

Y g -1
S 19f @ it
= B Lower band edge y 4 ]
& [ k (0) - ]
g 18[ L (0) SR ]
s B e - = 4
Q L F 1
= N 4
5 I -
§ ok ]
8 r Lightline ]
8 -
8- -
= 1.6 - ]
® 4
N -
N : ]
® 15 |~ R
g 18 ]
S 1
= ]

20° [

150 |

2]

o]

[=)]

c

(L]

(0]

Q

o

]

a

@

Q

Q

©

£

o §

E o r
2 100k
g L
i

= [
o L
g %
=2

£

E

= o[

I n L 1 1 L L 1 " 1 1 I 1 n L n i I
1.5 1.6 1.7 1.8 1.9

Normalized frequency wA/2rc

Fig. 2. (a) Calculated bandgap of the fiber under study. (b) Frequency
dependence of the minimum and maximum acceptance angle of the fiber
computed from (a). (c) Diagram of the fiber solid angle at representative
frequencies.
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traveling in a medium with a k-vector amplitude kg, this angle

is k, = ko cos#, or
6 = arccos <kz> . 2)
ko

When k, = ko, (2) yields 8 = 0, as expected. Similarly, the
maximum possible propagation angle occurs when k., = ki
(the mode is then on the upper band edge). From (2), this angle
is Omax = arccos(ky /ko). Hence, the range of angles at which
modes can propagate is 0 < 6 < arccos(ky /ko). By analogy
with a conventional fiber, we, therefore, define the NA of a PBF

as NA = sin O ax, 1.€.,
2
1- (kw) (w > wp).
ko

NA =sin (arccos (kU)> =
ko
(3)

The acceptance region of the PBF is, thus, a solid cone, as in a
conventional fiber. The main difference is that since &y and kg
are functions of w, the NA and acceptance angle of a PBF are
frequency dependent.

This analogy also enables us to define an equivalent refrac-
tive index for the core of a PBF and an equivalent refractive
index for its cladding. In a step-index fiber with a core index 71
and a cladding index ns, the minimum value that %, can take is
kons, and the maximum value is kgnq. In an air-core PBF, this
minimum value is ky and the maximum value is kg [see (1)].
It follows that one can define the equivalent core and cladding
indices of a PBF as

ny =1 (4a)
ky

=2 4b

ng ko (4b)

and we expect similarities between the mode behaviors of the
PBF and of the equivalent step-index fiber with these two
indices. This definition is, of course, entirely consistent with the
definition of the NA: Inserting (4) in the traditional expression
of the NA of a fiber [NA = (n2 — n2)"/?] yields (3).

For frequencies below wy, ky is now smaller than kq [see
Fig. 2(a)], so (1a) is sufficient. The range of propagation angles
for core modes is now bounded by k;; and kr, i.e., the minimum
and maximum propagation angles are

0 min = arccos (ZE)
Omax = arccos (ZI;) .

The expression for Oy, (5b) is the same as for w > wy, but
Omin is not: Since ky < kg, Onmin is no longer equal to zero,
and now, no mode can propagate right along the axis of the
fiber. There is a small cone of angles centered on the axis
where the core does not guide optical power. In other words,
the acceptance region of the PBF is a hollow cone. The fiber
is now characterized by two NAs, namely 1) a minimum NA
defined by the hollow portion of the cone and labeled N A’ and

(w < wp) (5a)

(5b)
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Fig. 3. Calculated frequency dependence of NA and N A’ of the air-core
PBF of Fig. 1 (solid and dotted curves, p = 0.47A), and of a PBF with the
same geometry but a larger cladding hole radius (p = 0.495A, dotted curves).

2) a maximum NA defined by the outer portion of the cone and
labeled N A. From (5), these quantities are given by

]{3 2
NA' = sin(fpin) = /1 — <L> (62)
ko
]f 2
NA = sin(Oax) = {/1 — <kU> . (6b)
0

As we shall see, N A is equivalent to the NA of a conventional
solid-core fiber, while N A’ is a new quantity that characterizes
the low-angle “hole” in the acceptance region. Again, both N A
and N A’ are frequency dependent. It is important to note that
(6a) also holds above wy: In that range, k1, = kg and (6a) yields
NA’ =0, which is correct. Similarly, (6b) is identical to (3)
and, therefore, it holds for w > wq as well. Therefore, (6a) and
(6b) are valid at all frequencies within the bandgap.

The calculated frequency dependence of the propagation
angles 6,,,;, and 6.« and of the acceptance region are plotted in
Fig. 2(b) and (c), respectively. The propagation angles were cal-
culated simply by inserting the calculated frequency-dependent
wavenumbers ky(w), kr(w), and ko(w) [see Fig. 2(a)] in
(5). At the lowest bandgap frequency wy, Omin = Omax, the
acceptance region vanishes, and no modes can propagate. As
w increases, 0,,;, and 0,,,« decrease, but 0,,;, remains smaller
than 6,,,, and the core can support modes. The acceptance
region is a hollow cone [see Fig. 2(c)]. As w approaches wy, this
cone becomes smaller (6,5 decreases), and it gradually fills in
(O min decreases), until at wq, min reaches zero and the cone is
full [see Fig. 2(c)]. Above wq, Omin = 0 and ,,,x continue to
drop [see Fig. 2(b)], i.e., the acceptance region is a solid cone
of diminishing angle, until at the highest bandgap frequency
wy, the cone vanishes [see Fig. 2(c)]. At wy and above, all
core modes are cut off. The frequency dependencies of N A
and N A’, calculated from (6a) and (6b), are plotted in Fig. 3.
From wp, where they are equal, NA and N A’ are decreasing
functions of frequency. N A’ reaches zero at w = wy and stays
at zero for w > wy. The value of NV A ranges from 0 to 0.35, i.e.,
it is of the same order as the NA of a conventional fiber.
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Fig. 4. (a) Bandgap diagram illustrating regions where lowest order modes

are cut off (below wy, e.g., at w2) and guided (above wo, e.g., at w1). (b) Index
profile of the equivalent conventional fiber at selected frequencies.

The existence of two NAs below wy can be understood
physically as follows. In this frequency range, the PBF can only
support modes that propagate at large angles [see Fig. 2(b)],
i.e., higher order modes but not lower order modes. The order
of the highest order guided mode, and the properties of these
modes, are by and large controlled by N A: For these modes,
the PBF behaves approximately like a conventional fiber with
an NA equal to NVA. However, the lower order modes that
would propagate mostly at angles smaller than 6., are not
guided. Which low-order modes are cut off is dictated by N A’.
This is illustrated graphically in Fig. 4(a), which reproduces the
dispersion diagram of Fig. 2(a). At frequency w; (above wy),
the entire region below the light line lies in the bandgap, which
means that all modes (lower and higher order) are guided. In
contrast, at frequency ws (below wy), the region between the
light line and the lower band edge, which defines N A’, is where
lower order modes would propagate, but these modes cannot
propagate, because they fall outside the bandgap. The order
of the last low-order mode not guided by the PBF is set by
N A’. The region between the band edges is where core modes
are guided, but these are higher order modes [see Fig. 4(a)].
To summarize, N A’ determines which low-order modes are
not guided, and NV A determines which high-order modes are
guided. Note that the fact that the center of the cone does
not support k vectors does affect the properties of the high-
order modes guided by the fiber. However, this effect is weak,
especially for modes far from cutoff, and the statement made
above that the mode properties are largely controlled by N A is
a good one, as demonstrated further on.
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B. Equivalent Index Profile

In the light of these considerations, we can also define an
equivalent index for the core and the cladding of a PBF for
w < wp. Since the main NA that controls the properties of core
modes is VA (6b), the behavior of the PBF is expected to
show similarities to the behavior of an equivalent conventional
fiber with a core index n; = 1 and a cladding index ng =
ky /ko. This definition is the same as in the w < wq region,
i.e., (4) holds at all frequencies. Similarly, to account for the
hollow portion of the acceptance region (quantified by N A"),
we define a third index ns that controls the cutoff of low-
order modes. From the expression of N A’ (6a), this index is
ng = kr,/ko. To illustrate these important definitions, we show
in Fig. 4(b) a schematic of the equivalent step-index profile of
the air-core PBF at selected frequencies across the bandgap. As
the frequency is increased from wy, the effective core index
remains constant and equal to 1, while the effective cladding
index ny monotonically increases towards 1, which it reaches
at wy. The shaded portion in each index profile in the w < wy
region represents N A’: The modes whose effective indices fall
within these shaded regions (index above n3) are not guided.

It is important to appreciate that N A and N A’ depend only
on the location of the band edges in the w—Fk plane. Since
the bandgap of a PBF is very weakly affected by the presence
of the core, NA and N A’ are essentially independent of the
core geometry and size. On the other hand, they depend on all
the parameters that affect the band edges, such as the crystal
symmetry and the cladding hole size. As an example, we
show in Fig. 3 NA and N A’ computed for the same triangu-
lar symmetry but for larger cladding air holes (p = 0.495A).
Increasing the air-hole size opens the bandgap and moves it
towards higher frequencies [9], which results in NAs that are
larger and downshifted in frequency.

C. Equivalent V- Number

With these definitions in place, we can define the equivalent
normalized frequency of a PBF in the same way as for a
conventional fiber, namely

2rRN A
v= (7a)
A
where A is the optical wavelength and R is the core radius. The
portion of the fiber that does not guide light is characterized by
a second V' number

!/
v 2rRN A . (7b)
A

Because N A and N A’ are strongly decreasing functions of fre-
quency, both V' and V' monotonically decrease as the frequency
increases, which is the opposite behavior of a conventional
fiber. In a PBF, the V number scales up with wavelength, not
with frequency.

In the rest of this paper, we use the NA concept and the
equivalence to conventional fibers established in this section
to compare key properties of the modes of an air-core PBF to
the LP modes of its equivalent step-index fiber. We investigate
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Fig. 5. Calculated dispersion curves of the core modes of the PBF of Fig. 1
for a core radius R = 1.8A.

in particular the accuracy of what we refer to as the LP mode
approximation (LPMA) model, which approximates properties
of PBF core modes by the properties of the LP modes of its
equivalent step-index fiber.

III. NUMBER OF MODES VERSUS FREQUENCY

Fig. 5 shows the calculated dispersion curves of all the core
modes of the PBF under study for a core radius R = 1.8A. The
first modes that appear at lower frequency are the highest order
modes. Because of degeneracy, these modes occur in a group of
degenerate modes, labeled ms, with nearly identical dispersion
curves. As the frequency increases, a second group of modes
(my) appears, then a third (mg3), a fourth (ms), and a fifth
(my), the modes within each new group having a lower order
than those of the previous group. As discussed elsewhere [10],
based on their field symmetry, the composition of these groups
is as follows: Group m; contains the two fundamental HE;;
modes; group ms the next four higher order modes, labeled
TMy;, HE2; odd and even, and TEg;; group ms (four modes)
the odd and even EH;; modes and the odd and even HEj3;
modes; group my (two modes) the odd and even HE;, modes;
and, finally, group ms (two modes) the odd and even HE
(or EHy1) modes. This mode distribution is the same as for a
conventional fiber [11]. The number of modes is maximum in
the vicinity of wqy. As the frequency increases above wg, the
groups disappear one by one in the order they appeared: Group
ms5 disappears first, followed by my, mj, and ms, until only
the fundamental modes remain. The fiber is “single mode” only
at the highest frequencies, just before the light line crosses the
upper band edge and they cut off, too.

This mode-count behavior is in sharp contrast with that of
a conventional fiber, in which 1) the NA is independent of
frequency, and, thus, the number of modes increases monoton-
ically with increasing frequency, and 2) the modes have a low-
frequency cutoff but no high-frequency cutoff. The different
behavior of PBFs is very well explained by the physical argu-
ments presented in Section II. At the lowest frequencies (w just
above wy,), the PBF’s acceptance region is a hollow cone that
can only support the highest order modes. As the frequency is
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Fig. 6. Frequency dependence of the number of core modes calculated exactly
for a core radius R = 1.8A (solid squares) and R = 1.4A (open squares).
Dashed curves are the approximate predictions of the LPMA model.

increased, the acceptance cone fills in [see Fig. 2(c)], and lower
order mode groups gradually reach cutoff and become guided.
At w = wy, the “available” NA, NA — N A’, is maximum, and
so is the number of guided modes. As the frequency increases
above wy, the acceptance cone is solid, but it gets smaller, i.e.,
N A decreases, and the number of guided modes decreases like
it does in a conventional fiber, i.e., the higher order modes go
first. This qualitative agreement with Fig. 5 fully supports our
NA definitions.

To further test this analogy between PBFs and conventional
fibers, we plot in Fig. 6 the dependence of the number of
core modes on frequency for the same PBF (solid squares
connected by segments, same data as Fig. 5). Again, the number
of modes grows in steps from zero at wy to a maximum (14
in this case) around wy, then drops to zero at wy. From basic
electromagnetic theory, it is well-known that for a conventional
fiber, the number of core modes at w is closely approximated
by N(w) ~ V?2/2[12]. In a PBF, N(w) is equal to the number
of modes guided by the equivalent step-index fiber numerical
aperture (N A) minus the lower order modes that fall within
the hollow cone numerical aperture (N A’) and are, thus, not
guided. Therefore

V2 Vl2

N(w) ~ 5 5 (®)
This expression was first proposed by Cregan et al. [13] to
estimate the minimum core radius that will support a mode. By
inserting the expressions of V and V' (7) in (8), then replacing
N A and N A’ by their respective expression (6), we obtain the
approximate expressions for the number of core modes in an
air-core PBF

v ()" ()]
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Again, the top expression is valid at all frequencies by replacing
kr, by ko when w > wy. Note that the maximum number of core
modes (which occurs around wy) is given by (8) in which V' =
V'(wg) =0, or N(w) =~ V?/2: It is the same approximate
formula as for a conventional fiber.

Applied to this fiber with R = 1.8A, (9) yields the top dotted
curve in Fig. 6. The agreement with the exact dependence is
reasonable, not only above wy, where the PBF’s solid angle
is filled and a PBF is expected to behave most closely like a
conventional fiber, but also below wg, where the acceptance
cone is hollow. The nonmonotonic behavior in the number of
modes and the agreement with (9) apply for all core radii,
as illustrated in Fig. 6 for R = 1.4 (lower two curves). The
agreement improves for more highly multimoded fibers, as in
conventional fibers.

Since the two fibers in Fig. 6 have the same cladding, the N A
dependence on frequency used to generate the two approximate
curves is the same. The two dashed curves differ only in their
core radius R, which means that they are scaled differently [see
(9)]: Their ratio is simply (1.8/1.4)2 ~ 1.65 at all frequencies.
This frequency dependence of the number of core modes is
contained entirely in the bandgap, which is quick to compute.
Calculating the approximate number of modes carried by a fam-
ily of fibers with the same photonic-crystal cladding (and, thus,
the same bandgap) but different core radii requires simulating
this bandgap only once.

IV. NUMBER OF MODES VERSUS CORE RADIUS

Fig. 7 plots the exact dependence of the maximum number of
modes (N at w =~ wq) supported by the PBF on the V' number.
It was generated by simulating the fiber dispersion for different
core radii, counting the number of modes N for each R, and
plotting IV versus V. As the core radius increases, the number
of modes increases in sudden steps from O to 2, then 6, 14, 18,
etc. For comparison, Fig. 7 also shows this dependence for the
LP modes of a weakly guiding step-index fiber. The behavior
is quite similar. As V' increases, the number of modes jumps
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up in incremental steps of generally four (the degeneracy of LP
modes) every time V reaches the cutoff value of the next LP
mode. Occasionally, the height of the jump is eight when two
modes happen to have the same cutoff (accidental degeneracy).
The number of modes, thus, evolves from 2 to 6, then 14, 18,
22, 26, 34, etc. The sequence is the same in a PBF. The main
difference is that in a PBF the cutoffs are shifted to higher V'
numbers. Note that the exact curve in Fig. 7 (solid diamonds)
is not a universal curve: The cutoff V' values only apply at
wp, and they are affected by the PBF geometry and the air-
filling ratio. For the fiber simulated here, the upper cutoff for
the fundamental modes is V' = 3.816 (compared to ~ 2.405 for
a conventional fiber). The dashed curve in Fig. 7 represents the
approximate number of LP modes predicted by (9) at wg. The
prediction of the LPMA model is as good for the PBF as it is for
a conventional fiber. These results confirm that (9) constitutes a
good approximation of the number of modes of a PBF.

V. CUTOFF FREQUENCIES OF INDIVIDUAL MODES

Fig. 8 shows the exact simulated dispersion curves of the
PBF modes for R = 1.8A. These curves are the same as in
Fig. 5, except that to follow the conventional representation
favored in fiber optics, they are plotted as the mode effective
index neg = k. /ko versus frequency. This figure also shows
the band edges and the light line (a horizontal line of index 1
in this representation). For clarity, only one mode per group is
represented. As in a conventional fiber, at a given frequency,
the effective index is highest for the fundamental modes, and
it decreases as the mode order increases. This description is
analogous to the discrete energy levels of a potential well. Here,
the maximum index (energy) is set by the light line (lowest
possible phase velocity) and the minimum index by the lower
band edge.

For each mode group, the low-frequency cutoff occurs at the
crossing point of the dispersion curve with the lower band edge,
and it is, thus, controlled by N A’. The high-frequency cutoff
occurs at the crossing point with the upper band edge, and it
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Fig. 9. Dispersion of the fundamental modes of the air-core PBF for three
values of the core radius R, calculated with the exact model (solid curves) and
with the LPMA model (dashed curves).

is controlled by N A. Interestingly, the low-frequency cutoff of
the fundamental modes is not far below wy (see Fig. 8). The
physical reason is that below wy, the acceptance region of the
fiber is a hollow cone. Since the angular (Fourier) spectrum of
the fundamental mode is essentially a Gaussian, much of the
mode energy is confined to small angles, which the PBF cannot
guide. That the cutoff is not exactly at wp indicates that the
mode can tolerate some low-angle filtering and still exist in a
PBF with a slightly hollow acceptance cone, but this tolerance
is expectedly limited and the mode cuts off not far below wy.
In the example of Fig. 8, at this cutoff, NA'/N A ~ 0.38: The
mode cuts off when the fraction of its angular spectrum that is
no longer guided reaches ~ 38%.

VI. APPROXIMATE DISPERSION CURVES

In the light of the equivalence between an air-core PBF and
a step-index fiber, it was interesting to attempt predicting the
dispersion curves of a PBF by simulating the LP modes of
its equivalent conventional fiber (LPMA model). To do so, we
used a standard LP-mode simulator to compute the dispersion
curves of the guided modes of the PBF under study (Fig. 8;
R = 1.8A), using as an input the frequency-dependent cladding
index my. The result of this LPMA simulation is shown as the
dotted curves in Fig. 8. There is good agreement between the
approximate and exact dispersion curves for the three lowest
mode groups at all frequencies, especially towards the center
of the bandgap. For example, for the fundamental modes at
the normalized frequency of 1.6710, the approximate n.g is
0.99398, compared to the exact value of 0.99355 (mean of
the two modes), or an error of only 0.04%. The agreement
is not as good for higher order modes (LPys and LP3;). The
LPMA model certainly cannot be expected to predict higher
order derivatives of the dispersion, such as group velocity, but it
predicts the effective indices of lower order modes reasonably
well. The accuracy of the LPMA model depends on the core
radius, as illustrated in Fig. 9. The accuracy is fairly good
for large cores (multimode fibers), but in single-mode fibers
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Fig. 10. Calculated z-cut and y-cut radial intensity profile of the fundamental
mode of the air-core PBF at the normalized frequency of 1.6156 for a core
radius R = 0.9A, and calculated profile of the LPy; mode of the equivalent
conventional fiber.

(0.5A < R < 1.2A for this filling ratio), the LPMA model can
only predict an approximate value for the effective index of the
fundamental mode. Note that even though the equivalent fiber
has a high NA (up to 0.37; see Fig. 3), the dispersion curves are
essentially the same (to 1073 — 10~%) whether they are calcu-
lated for the LP modes or for the true hybrid modes of the fiber.
The quantitative differences between the curves of Fig. 9 are
not due to limitations of the LPMA but to fundamental physical
differences in the guiding mechanisms of solid-core and air-
core fibers. It is, nevertheless, remarkable that in spite of these
differences, the curves turn out to have such similar trends.

VII. FUNDAMENTAL MODE PROFILE AND RADIUS

The shape and radius of the fundamental mode are other
parameters of interest. As an example, we plot in Fig. 10 the
radial intensity profile of the fundamental mode computed for
a core radius R = 0.9A at a normalized frequency of 1.6156.
Since the 2-D profile is not azimuthally symmetric, both the
z and y cuts are shown. Each figure also shows the profile
of the LPy; mode of the equivalent conventional fiber at that
frequency. Except for the small side lobes of the HE;; modes,
the actual and approximate profiles are close to each other. This
comparison demonstrates that the LPMA model can also give a
good qualitative description of the intensity profile of the funda-
mental modes of an air-core PBF, especially the dependence of
the main lobe on the structural parameters. Because the LPMA
model approximates the air-core fiber modes as LP modes,
it clearly cannot predict the presence of side lobes. When
the true mode field of the fiber has side lobes of substantial
magnitude, the LPMA is, therefore, going to be somewhat off
in its prediction of the fiber mode radius.

To determine the range of validity of this agreement, we
calculated the radius W, of the fundamental mode of a PBF
and compared it to the LPy; mode radius of its equivalent
conventional fiber for a wide range of frequencies and core
radii. In both the exact and the LPMA simulations, the mode
effective area A.g was calculated by integrating the intensity



4176

2.0 T T

x

=° ,

o] R=18A Ll

g 15 e ]
® =TT --

[«}]

® R=1.4A

= |

= B e

= S ]
£ A

("]

G I e

5 R=0.8A

[T

05 1 | " 1 1 1
1.60 1.65 1.70 1.75 1.80 1.85 1.90
Normalized frequency @A/2rc
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profile I(xz,y) numerically using the expression of A.g for a
first-order process

. 0o 0o
A = I(0,0) //I(l’,y)d{ﬂdy (10)
0 0

and defining the mode radius Wy using A.g = 7rW02 /2. The
dependence of the normalized mode radius Wy /A on frequency
is plotted in Fig. 11 for the HE;; mode for three values of the
air-core radius (solid curves) and for the LPy; mode radius of
the corresponding equivalent conventional fiber (dotted curves).
Again, the accuracy is fairly good for large cores but rather poor
in the single-mode range. However, there are several striking
similarities between the two fibers. At lower frequencies (below
~ 1.8), which is most of the mode’s existence range, the radii
of both modes depend weakly on frequency and are reasonably
close. The main discrepancy occurs at higher frequency (above
~ 1.8), where the radius of the HE;; mode does not increase
nearly as much as in a conventional fiber. The HE;; mode
radius is a weak function of frequency, and, thus, a weak
function of NV A. For example, for R = 0.8A, as the frequency
is increased from ~ 1.63 (low cutoff) to ~ 1.84 (high cutoff),
Wo/A varies from ~ 0.92 to ~ 1.05 (see Fig. 11), although
over this frequency range, N A varies from ~ 0.31 to ~ 0.16
(see Fig. 3).

This interesting behavior is a direct consequence of guiding
light with a photonic-crystal cladding. First, because of the
large index difference between the core (n; = 1) and the
medium surrounding it (here silica, index of ~ 1.45), the
electric field of the fundamental mode at the air—solid boundary
of the core is small (see Fig. 10), and, consequently, the shape of
the mode’s central lobe changes little with frequency. Second,
because light is guided by multiple reflections in a photonic
crystal, a small change in the field penetrating the cladding
results in a sizable change in the mode phase velocity. Stated
differently, the mode effective index is a strong function of the
(small) fractional energy in the cladding. For example, simula-
tions show that for R = 0.8A, when the frequency is increased
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from 1.62 to 1.84 (a change in NA from ~ 0.31 to 0.157),
the fractional energy in the cladding increases from 22.1% to
30.2% only (the same N A change in a conventional fiber would
change this fractional energy from ~ 7.7% to ~ 27%). This is
the basic reason why the mode intensity profile does not change
significantly when the frequency approaches wy, even though
N A approaches zero: The mode is forced to change shape, but
only minimally. As a result of these two combined properties,
at all frequencies, most of the mode energy is confined in the
central lobe, and since the shape of this lobe depends weakly on
frequency, the mode radius also depends weakly on frequency,
as predicted by the exact model in Fig. 11.

These results enable us to predict simply the divergence
angle 6, of the HE;; mode of a PBF. The 1/e divergence half-
angle is related to the mode radius W) by

A
’/TWO.

Hd ~ (1 1)
The divergence angle of the HE;; mode is, thus, also a weak
function of frequency.

VIII. BENDING LOSS

The analogy between solid-core and air-core fibers can also
be used to provide a qualitative interpretation for the so-far
unexplained bending-loss behavior of air-core fibers. Hansen
et al. [14] have shown experimentally that when an air-core
fiber is subjected to a macrobend, the bend-induced loss is
surprisingly weak, even for tight bends (4-mm radius). This
loss was also found to be essentially independent of wavelength
across most of the bandgap, except at the short-wavelength end
of the bandgap, where the loss increases abruptly.

These three features are indeed well predicted by the defini-
tion of NA introduced in Section II. First, at long wavelengths
(low frequencies), the NA of an air-core fiber (N A) is very
large (~ 0.35; see Fig. 3), and the fiber loss is, therefore,
expected to be quite tolerant to bending, as observed experi-
mentally. Second, because the NA remains high up to fairly
high frequencies (see Fig. 3), the bending loss is expected to
remain low across most of the bandgap. For example, if we
use, somewhat arbitrarily, an VA of 0.1 as representative of
a standard conventional fiber, and, thus, of a standard tolerance
to bending loss, then reference to Fig. 3 shows that the bending
loss should remain very small up to a normalized frequency
of ~ 1.88, i.e., over about 93% of the bandgap. This value
compares quite well with the value of 92% calculated from
[14, Fig. 6(b)]. Finally, for higher frequencies (above 1.88 in
this example), the N A drops towards zero extremely quickly
(see Fig. 3), which suggests that the bending loss should climb
abruptly, again, as observed in actual fibers [14]. Note that N A,
not NA’, is the relevant parameter that controls the bending-
loss behavior, because it describes the equivalent maximum
angle of propagation of the modes in the fiber, and because it is
only the high-angle portions of the mode’s angular spectrum
that suffer from bending-induced loss. The concept of NA
introduced in this paper, therefore, provides a simple qualitative
interpretation of the strength and wavelength dependence of
macrobend loss in air-core fibers.
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IX. CONCLUSION

From basic principles, we have shown that the core modes of
an air-core PBF are expected to exhibit similar qualitative and
quantitative behaviors as the LP modes of an equivalent conven-
tional (solid core) fiber. The step-index profile of this equivalent
fiber is a frequency-dependent quantity entirely determined by
the longitudinal propagation constants k, of the upper and
lower bandgap edges of the PBF, which are straightforward
to calculate on a standard computer. This analogy leads to the
important definition of the effective NA of a PBF. We confirmed
the validity of this equivalence by comparing the exact mode
properties of a PBF to the properties of the LP modes of
its equivalent conventional fiber and by showing that exact
and approximate predictions match quite well. This description
provides for the first time a simple intuitive means of explaining
qualitatively the mode behavior of PBFs, including dispersion,
mode size, and bending loss. It also constitutes a fast and
simple tool to model approximately, using a simple LP-mode
simulator, the main characteristics of the core modes of a PBF,
including the number of modes, their cutoffs, effective index,
and dispersion, and the dependence of these quantities on the
core size and the photonic-crystal geometry and air-filling ratio.
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