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Modular Asynchronous Control Design

BERNARD J. NORDMANN, JR., MEMBER, IEEE, AND BRUCE H. MCCORMICK

Abstract-A modular design strategy for the implementation of
control logic is discussed. After discussing several basic control
modules, the overall design of control sequencing is described and
a particular control sequence taken from the Illiac III computer
is worked as an example of the technique. Finally, the diagnostic
features incorporated as part of the technique are discussed and
a comparison made with microprogramming.

Index Terms-Asynchronous control, control logic, control se-
quencing, microprogramming, modular design.

I. INTRODUCTION

T HE PURPOSE of this paper is to describe a
I modular design strategy for the implementation of

control logic. Suitable general-purpose, modular, asyn-
chronous control devices will be introduced and their use
demonstrated in the control logic design process. The
processes to be described were used in the design of the
control logic of the Illiac III computer system, a large-scale
pattern recognition computer designed at the University
of Illinois.1
To accomplish this, we briefly describe the historical

development of these modular control devices and their
relationship to other similar work. Then we give a detailed
description of their operation and their use in a fully in-
tegrated design process: from the specification of a control
sequence, through the design of the control line drivers,
to considerations of automated diagnosis. Finally, com-
parison with other control logic techniques, notably mi-
croprogramming, is made.

A. Historical Development

The control logic design technique to be described in this
paper had its origin in an early theoretical formulation by
Muller [1], [2], which in turn led to several ideas used in the
design of the Illiac III computer at the Digital Computer
Laboratory of the University of Illinois. The engineering
result was called "speed-independent" asynchronous
control [3]-[5]. This mode of control evoked reply signals
from the data-flow logic being controlled to govern the
sequencing from one step to the next. The "speed inde-
pendence" requirement merely meant that the control
logic would function regardless of how long it took the
data-flow logic to complete its operation.
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Rigorous asynchronous design limits the possible control
processes to basically an initiate-wait-continue type of
operation. Because of the limited nature of asynchronous
design, the Illiac III project staff decided to use what was
basically a modification of the circuits used in the prior
Illiac II computer control, updating these to current
technology by using TTL. The result was a family of cir-
cuits which are called control points, with each processing
unit in the system employing slightly different designs.
Later a coherent design philosophy emerged [6]-[8], as well
as a formalized diagnostic technique [9].
Most forms of asynchronous control operate in a fun-

damentally similar fashion. In particular, the Illiac III
control points are almost identical in operation to Clark's
macromodule concept of a decision mode calling element,
which can initiate an operation and then wait for one of
several returns [10]. The principal differences are in im-
plementation and in the complexity of the operation to be
controlled. Robinson [11] has also described a similar
asynchronous control module which can be used with
data-flow structures that are basically synchronous.

Still another group is Bell et al. who have described a set
of register-transfer modules (RTM's) for high-level digital
systems design [12]-[14]. Their system consists of various
types of modules which allow digital systems to be ex-
pressed in a flow chart form with the complete construc-
tion information included. The K. evoke (Ke) module
described in the RTM system is also very similar in oper-
ation to a control point.

In addition to the physically implemented asynchronous
control modules, several other sets of modules have been
suggested as the result of theoretical asynchronous control
studies. In particular, Altman et al. [15], [16] and Patil [17]
have proposed differing sets of such modules. In general,
the theoretical approaches to asynchronous control have
begun with the assumption of a separation of the data-flow
structure from the control structure and then have pro-
ceeded with an analysis of the control structure in graph
theoretical terms. This approach has also been taken by
Luconi [18], Petri [19], and others.

B. Modular Design Strategy

The control organization of the Illiac III central pro-
cessing unit (known as the Taxicrinic Processor) is an ex-
ample of multilevel modular design. At the hardware level,
the Taxicrinic Processor is divided into data-flow logic and
control logic. Each of these areas is in turn subdivided: the
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registers into various structural groupings, i.e., base reg-
isters, pointer registers, etc., and the control logic into
functional instruction groups. A particular instruction
within a functional instruction group is executed by acti-
vating appropriate control subsequences and thereby
manipulating control lines to the data-flow logic. Thus the
entire hierarchy of control logic for the processor consists
of nested levels of control sequences, with each lower level
performing more basic operations.

C. Control Sequence Description

A control sequence can be decomposed into a series of
logical operations or control steps interspersed with se-
quence steps such as "branches" or "waits." The control
steps include elementary logical/arithmetic operations on
the data, transfers between registers, or the activation of
other control subsequences. For each control step certain
control lines must be activated and, upon completion of
the operation, turned off. Then the next control step is
activated, either directly, or by means of an intermediate
sequence step.

Determining when an operation has been completed
varies depending on the control philosophy used. In a
synchronous system the time is determined by counting
clock pulses for a time interval greater than the worst case
time limit for the operation. In an asynchronous system
the logic being activated produces a reply signal when it
has completed its operation. In practice the production of
this reply signal is often quite complex and for simple op-
erations is not cost effective. As a result, a pseudoasyn-
chronous philosophy is often used in which a "model" of
the operation being performed (often a simple delay cir-
cuit) produces a "done" pulse at some adjustable time after
the initiation of the operation. The control logic design
strategy described here uses both asynchronous and
pseudoasynchronous design philosophies.

II. MODULE DESCRIPTIONS

Control steps are executed using a hardware device
called a control point module. Sequence steps are imple-
mented using sequence and wait modules. In the Illiac III
system several different variants of these modules came
into use. The versions to be described here incorporate
those features found generally desirable and useful.

A. Control Point Implementation

The operation of a control point begins when it receives
an aduance in signal Al. It then performs its operation by
activating a task signal T, which in turn activates the
necessary control lines. Finally, when the operation has
been completed, the advance out signal AO is activated,
which in turn will activate the next control point.
The implementation of the control point module is

shown in Fig. 1. The falling forward edge of the advance

in pulse will set the input flip-flop so that on the rising edge
of AI the task signal T will become active. A pseudoasyn-
chronous delay model can be implemented by attaching
one end of a capacitor to the charging pin CH and
grounding the other end. The length of the T pulse (and
the delay before the occurrence of the delay out signal DO)
can then be controlled by the selection of the capacitor. If
fully asynchronous operation is desired, pin CH can be
grounded and T will remain active from the time the con-
trol point is activated until it is reset by some external
signal.
Two reset signal options are provided: normal return

NR and interrupt return IR. A logical 'O'.on either line will
cause the control point to reset and will activate either the
AO signal or the IO signal, resppctively. Pseudoasynchro-
nous operation is obtained by connecting DO to NR. Al-
ternatively, NR can be connected to an external reply signal
which will produce asynchronous operation. Note that the
purpose of the IR and io signals is to allow the logic being
activated to indicate the occurrence of special conditions
(such as an interrupt situation) which would call for a
transfer of control to a control step other than the next one
in the subsequence.
A CLEAR signal is used to initialized the control logic at

turn-on time. The IN signal (an activation indicator) is
used in diagnostics. The GOTASK signal will be discussed
in conjunction with diagnostic techniques.

B. Sequence and Wait Implementations
The final action of any control point is the production

of either an AO or an IO pulse signifying the completion of
the control step. The routing of this pulse to the next
control step to be executed is accomplished by a sequence
step. In many cases, a sequence step is implemented with
a single direct logic line. More complicated cases are han-
dled by using combinational logic, which directs the ad-
vance out signal according to the status of various Boolean
inputs. Alternatively, we can evoke a wait module which
produces an output pulse after receiving input pulses on
all of its input lines. Fig. 2 shows an example of a simple
wait module.

Regardless of implementation, the effect of the sequence
step is to deliver the advance out pulse of a preceding
control point to the next control point in logical sequence.
The falling edge of this negative pulse2 sets the new control
point and the subsequent rising edge will activate the new
control step.

III. CONTROL LOGIC SUBSEQUENCES

A. Advantages of a Modular Approach
The advantages of a modular approach to the subse-

quence design are several. Each subsequence is designed
2 For implementation reasons, most of the control point signals are

negative-going pulses.
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Fig. 1. Possible control point implementation.

(a) Flow Chart

(b) Logic Design

Fig. 2. Wait module.

as a logically complete entity and is usually fitted on an

integral number of cards so that it can be checked out as

a unit. The modular approach allows several designers to
work on the control logic of a single processor with fewer
problems of the interface definition. Furthermore, as will
be seen in the next section, the design techniques used
allow for a comparatively simple method of converting a

flow chart (which is the initial level of control sequence
design) into control logic which maintains the topological
structure of the flow chart.

B. Calling of Subsequences

As mentioned previously, the control logic in the Illiac
III central processing unit predominantly consists of
subsequences of operations which are "called" by some

other sequence. This structure simplifies the logic re-

quirements by allowing common operations to be done
using the same physical logic. The control logic is easier to
visualize conceptually when it is placed in this modular
format and is also easier to debug and check out.

Control logic subsequences resemble subroutines in
software. Each sequence may have certain control flip-flop
and/or control signals which must be preset to their desired
states before the sequence is activated. Activation of the

sequence is initiated by an external "calling" control point,
which upon completion of the sequence is reset by the
advance out signal of the final control step in the sequence.
Activation is performed by a level signal which is "on" for
the duration of the sequence execution. This use of a level
signal has certain advantages since the task signal T can
then be used to turn on control signals (i.e., "parameters")
for the entire control sequence and the sequence activation
signal is available for diagnostic purposes.3

C. Control Subsequence Preamble

Generally, the Illiac III central processor control logic
subsequences make use of a fairly standardized "pream-
ble." An illustrative example of this type of logic is show--
in Fig. 3. The various control points which can activate the

3 This scheme has a disadvantage in that the task signal (a level) cannot
always be directly used as the advance in signal for the initial control
point. In most situations involving a level signal, a control point can rest
in the set position, and the level can be used as a rising input to set off the
control step. However, if a decision must be made between two different
control points with a level input, the method becomes unreliable, since
any change in the parameters used in the choice may cause the "uncho-
sen" CP to start. This problem is solved by having the level signal drive
a one-shot or other impulse creating a circuit, the output of which is used
to start the first control step. An altemative solution is to use a pulse-type
task signal, but this then involves additional logic to obtain diagnostics
and parameter selection.
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Fig. 3. Example of a control subsequence "preamble."

sequence have their task signals fanning into a single ac-
tivate line (possible after several levels of fan-in logic
spread throughout the physical mainframe). As part of the
diagnostic hardware, a sequence halt signal is provided
which, when activated, will prevent the control logic from
proceeding. Since the activate line remains on, and since
all of the subsequence activate lines are made accessible
to the diagnostic hardware, a means is thereby available
to trace the hardware call.

D. Sequence Returns

Once the sequence has been started, it will continue to
run until it reaches a point where it must return. In general
there can be either oftwo types of returns: a normal return,
from which the calling sequence proceeds in a normal
fashion by activating the AO signal, and the interrupt re-
turn, from which the calling sequence may have to perform
some special repair sequence by activating the IO signal.
The type of return which has been performed is differen-
tiated by the return signal in the calling control point
which the returning subsequence activated: NR for a nor-
mal return and IR for an interrupt return. Note that either
of these signals will reset the control point flip-flop, but
that each one only activates its own corresponding "out"
signal.

At this point, a word might be said about interrupts.
Throughout the Iliac III control logic a variety of so-called
"interrupt conditions" can occur. A major reason for this
is that a great deal of the supervisory bookkeeping is done

by the machine hardware. As a result, the hardware control
logic subsequences often encounter situations which must
be "bucked" back to the supervisor program in the oper-
ating system. In addition, of course, the subsequences may
also discover the more mundane interrupt situations in-
volving memory faults, arithmetic overflow, etc.
The general interrupt philosophy used in the control

logic subsequence design was that each subsequence must
detect and identify any interrupt conditions which occur
because of its own operations. If such a condition is found,
the subsequence must attempt to return the machine to
the state which existed when it was called and then make
an interrupt return. If this can be done, then the sequence
is "restartable" and there are no further hardware prob-
lems with the interrupt at least as that sequence is con-
cerned.4

IV. SUBSEQUENCE DESIGN TECHNIQUE

The fundamental problem in control logic design is to
convert a description of a particular control process or

4 Unfortunately, due to insufficient buffering and an occasional ov-
erambitious machine instruction, there are several cases in which the
Illiac III central processor makes irrevocable changes in the data base
before detecting an interrupt. Thus it became necessary to devise a logical
structure which could stop for an interrupt in the middle of an instruction
sequence and return later with the machine in the same state. Needless
to say, this created several headaches. However, by more care in the in-
struction design, this problem can be eliminated entirely and only the
traditional interrupt point between instructions need be provided.
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Fig. 4. UNSTACK PR sequence flow chart.

subsequence from a flow chart to a logical drawing from
which a wiring list can be made. The primary advantage
of using a modular control design technique is that this
conversion process can be performed quickly, efficiently
and with relative ease.

A. Sequence Flow Chart

The starting point in the design technique is a sequence
flow chart. The level of detail in a sequence flow chart is
such that the operations consist of register transfers,
simple arithmetic operations, or any logical operation
which might be performed by simultaneous activation of
a set of control signals such as gates, enables, inhibits, etc.
The task operations themselves are usually represented
by Boolean expressions.
An example of a sequence flow chart is given in Fig. 4.

This is the sequence flow chart for an Illiac III control
subsequence known as UNSTACK PR. Basically, this se-
quence removes the top entry from a linked list and returns
the entry to an available space list. This linked list is a very
special form, called a pointer stack in the Illiac III system.
There are 15 of these stacks and the top entry of each re-
sides in a hardware register within the central processor.

Within these registers, the link field is contained in the left
half of the word. The main points in the flow chart which
are important to its understanding are as follows:

1) TGR is a 4-bit register which indicates which pointer
register stack is to be manipulated.

2) Certain stacks (i.e., #13 and #0) require special
operations in addition to the normal sequence.

3) AR, DR, and LR are the names of general purpose
registers.

4) AS RESTORE is a control subsequence which will re-
turn the cell whose address is in the DR to the available
space list.

5) MEMORY is a control sequence which accesses a cell
in memory. The cell's address must be contained in the
DR. If MSTOR = 0, the sequence performs a read operation
and leaves the data in the LR.
With this in mind we can now begin the design pro-

cess.

B. Control Step Flow Chart

The first step is to redraw the flow chart in a very explicit
form (called the "control step" flow chart) so that every
control signal which must be influenced is expressed. Thus
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PST12

EQ = 1 if AR = O

NOS = 1 if TGR = 0

N13S = 1 if TGR = 13
OS = 1 if OS has already been cleared

Fig. 5. UNSTACK PR control step flow chart.

if a particular operation consists of gating from one register
to another while inhibiting certain bits, all the necessary
gating signals which must be activated to accomplish the
operation should be written down. Each set of basic op-
erations which can be performed in parallel should be
written as the contents of one control step of the flow
chart. These control step blocks thus become in effect the
list of control signals which must be turned on by the task
signal of a given control point. The sequence logic between
control points will be represented by the various decisions
in the flow chart.

Fig. 5 shows the results of this conversion process for the
UNSTACK PR sequence. Note that at this stage, each sep-
arate control step is clearly separated out and labeled (i.e.,
PST12, PST13, etc.).

Completion of the control step flow chart is the last
design stage which must be performed by a designer inti-
mately familiar with the total machine logic. From this
point on, the design process becomes mechanical and can
be performed entirely by support technicians. This mod-
ularity of the design process is especially important for
implementing a large scale machine, such as the Illiac III,

where only a very small number of the engineering staff can
be expected to be familiar with the entire machine.

C. Control Logic Layout

The next design step is to draw the actual control logic.
This basically involves converting every control step rep-
resented in the flow chart to a control point, producing the
necessary sequence logic between control points, and de-
signing any additional combinational logic which might
be necessary for the operation of the sequence. The logic
drawing for the first part of UNSTACK PR is shown in Fig.
6. The notational conventions used are described in the
Appendix. Generally, we have tried to keep each sequence
on one card or some whole multiple of cards. This allows
easier debugging.

Although there are no examples in UNSTACK PR, it often
happens that a control step will contain signals which are

only activated if certain conditions hold. This type of
control signal is called a conditional task signal and in the
control step flow chart would be represented by a separate
box which is entered if the condition is satisfied. The

PSTl4
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Fig. 6. UNSTACK PR logic drawing.

conditions are included on the sequence card and a sepa-
rate pin is used for the conditional task output.
At this point, the logical design for the single sequence

is finished. In the Illiac III central processing unit, the
various subsequences are grouped according to their
functional operations. Thus, for example, in the case being
discussed, UNSTACK PR is grouped with those other sub-
sequences which are concerned with the pointer registers
and their stacks. The rationale for these functional
groupings is that it tends to group those sequences which
use the same control lines.

D. Control Signal Driver Design

Once all of the sequences in a functional group have been
completed, the design of the control signal drivers can be
started. The task and conditional tasks from all of the
cards in the group are collected on a small number of driver
cards. These cards collect the task signals from the group
which turn on each particular control line and produce one
output for each control line activated by the group. These
outputs are then connected with the outputs of other
functional groups (usually by means of common collector

connections) to produce a single control line going to the
logic to be activated. Thus we have a modular means of
handling the very large fan-in of control task signals to the
control lines themselves. (See, however, Section VI for an
alternative strategy.)
The final step in the control sequence design process is

to update the original control step flow chart so that it
reflects the final logical design. In its general layout, the
control step flow chart should now follow the logical design,
i.e., the parts of the flow chart corresponding to each logic
card should be delimited by dotted lines across the entire
flow chart. Lines crossing these delimited areas as well as
those coming from entry and exit circles represent specific
control lines on the logic cards and if labelled, allow an easy.
comparison between flow chart and logic. Fig. 5 exhibits
the layout for the UNSTACK PR sequence.

V. CONTROL POINT DIAGNOSTICS

The problem of diagnosing faults in control logic can be
separated into two levels: the initial "local" checkout of a
particular subsequence (intracard) and the "global"
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checkout of the interactions between subsequences (in-
tercard).

A. Local Checkout

In previously published work [9], [20], Rey has described
an automated test procedure which can be used to analyze
and then test each control logic card. The essential analysis
technique involves:

1) partitioning the control design into "independent
subnetworks";

2) finding the tests for these subnetworks; and
3) cQncatenating these tests according to a set of rules

which take into account the connectivity properties
of the control network.

The tests are physically applied using a PDP-8/e mini-
computer connected to the card through a special interface
called the sequence tester. The tester submits input pat-
terns to the cards and preprocesses the card response be-
fore transmitting it to the PDP 8/e. A more detailed ex-
planation of the test procedure along with the techniques
used in the initial circuit analysis can be found in the cited
references.

B. Global Checkout

In the "global" checkout the PDP 8/e again plays a part,
this time as a "console processor" working through a spe-
cial interface to the central processing unit of the Illiac III.
The interface allows the console processor to read and/or
change the data in any register in the machine and also to
issue a very simple set of debugging commands.
There are two goals in the second level of diagnosis:
1) to check the control sequence operation with respect

to calls, parameter passing, an other subsequence inter-
actions; and

2) to check the fan-in logic connections to the data flow
logic to ensure that each task signal does indeed cause the
desired action to occur in the bowels of the machine.
C. Control Point Hardware Aids

The design of the control logic includes several features
to facilitate the debugging process. These include:

1) a method of halting a normally running sequence
whenever it "calls" an arbitrary picked subsequence or set
of subsequences;

2) a method of determining the current location of
control in a stopped sequence; and

3) a method to provide step-by-step execution of a
control sequence.
The sequence halt feature utilizes a special multistate

sequence halt selector which can be set by commands from
the console. If the selector bit for a particular sequence is
set, the sequence halt line in that sequence's "preamble"
will be activated and the-execution will halt when the se-
quence is reached. The sequence can be made to continue
by using a momentary override of the sequence halt se-
lector, thereby disabling the halt condition.

The current location of control is, by definition, the
control point which is currently activated to perform some
operation. In any particular sequence, there can be only
one such control point. However when one subsequence
is "called" by another there can be several active control
points, since a calling control point remains active during
a call, and the called subsequence will also have an active
control point. In the Illiac III diagnostic logic, the control
point indicator signals IN are encoded on a bus so that each
control point produces a number corresponding to its name
on the control step flow charts. In order to avoid the
problem of several active control points during subse-
quence calls, the control points which perform calls are not
encoded. Instead each subsequence has a status line in-
dicating if it is active. By establishing a hierarchy of se-
quences based on their calling patterns, the subsequences
can be broken down into levels such that no two subse-
quences within a given level can be on simultaneously.
Thus an encoding scheme by levels can be used to specify
the flow of control through the various subsequences. In
order to specify any control point in the machine one need
only concatenate the individual control point encoding
with the active subsequence information.

D. Use of GOTASK and GODELY

The implementation of the step-by-step control mode
of operation involves the use of two control signals, GO-
TASK and GODELY, which are sent to every control point.
These control signals are generated using the logic shown
in Fig. 7. Note that when the machine is running normally,
both signals will be active. In the step-by-step mode, only
one of these two signals will be active, with the normal rest
state being GOTASK = '1' and GODELY = '0'.

Stepping through a sequence is illustrated by the two
control point sequence shown in Fig. 8. When the GOTASK
signal first goes to 1 (assuming an immediately prior con-
trol point has activated CP# 1), the task signal, CPT1, will
turn on. After a short delay caused by CP# l's delay ele-
ment, CPT1 will turn off again. However, since GODELY
= '0', the delayed signal will not be able to set the next
control point or reset itself. Thus CP# 2 will be unable to
begin and the results of CP #l's operation can be in-
spected. At this time, CP#l's indicator, CPIN1, will be
active, but CP# 2's will not.
When the engineer decides to continue, the console

processor will cause the single step line to be activated,
which activates the GODELY/GOTASK one-shot. When
GOTASK becomes '0' and GODELY becomes '1', the delay
signal will propagate through and set CP#2 and reset
CP# 1. After a short delay, advance out of CP# 1, CPA01,
will return to '0'. This would normally cause the next
control step to start except that GOTASK is now '0'. How-
ever, since the timing of the GODELY/GOTASK one-shot
is set to be only moderately larger than the longest possible
delay in a control point's resetting loop, the rest state of
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GOTASK GODELY

RUN

Fig. 7. Logic for production of GOTASK and GODELY signals.

GODELY

Fig. 8. Control point sequence showing the use of GOTASK and GODELY.

GOTASK = 1 and GODELY = 0 is rapidly reached and
CP#2 becomes fully activated and left to perform its
task.
The operation just described used pseudoasynchronous

control points as examples. The technique also works for
asynchronous tasks-provided the tasks are not forced to
halt by the operation of GOTASK and GODELY. If they are

not, their return signals (levels, not pulses) will eventually
come back and be halted by the '0' state of GODELY; oth-
erwise, the technique remains the same.

The major points in favor of this stepping scheme are

its simplicity, its requirement for only two control signals
throughout the entire machine, and its ability to let each
control step be performed at the speed which it would
normally operate in a nonstepping mode (i.e., task signals
remain on for the same length of time in either mode). The
"artificial" delays occur after the task is completed and
after the step sequencing logic has made up its mind and
committed itself. The major disadvantage is that it is
necessary to single step through every control step in a

sequence to stop at a single intermediate point.
Together the single step and position location facilities

allow the checkout procedure to proceed on a step-by-step
basis throughout the machine. By using a table lookup
scheme in the console processor, the sequence activation

information can be converted to the original alphanumeric
coding used in the documentation, with the result that the
unit can be checked out from the console using the control
point flow charts.

It can be argued that the diagnostic scheme just outlined
is a rather expensive and complicated technique just to
check out the operation of sequence interactions and the
proper wiring of the task signals. For a production model
machine, this may be true. However, in a highly experi-
mental machine with many novel instruction sequences
such as the Illiac III, a large number of control sequence
errors must be anticipated, despite the fact that consid-
erable simulation was done prior to actual construction.
In addition, although the concepts in the diagnostic
techniques are somewhat complicated, the additional logic
is simple and can be added in a more or less mechanical
fashion.

VI. CONTROL POINT DESIGN VERSUS
MICROPROGRAMMING

The control point design technique outlined above has
several interesting similarities and contrasts with micro-
programming control techniques. In the latter, a micro-
program controller operates with a read-only memory
(ROM) to execute a control sequence and turn-on control
signals.
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Both techniques utilize task signal producing logic and
control signal producing logic (Fig. 9). The control point
design produces task signals as a direct result of the acti-
vation of control points. These task signals are transmitted
to the control line driver logic to activate the appropriate
control signals. By comparison microprogram design uses
a programmed selection of a particular ROM word to ac-
tivate a specific task and the control line fields within the
selected ROM word then activate the appropriate control
lines.
The economic tradeoffs between control point and mi-

croprogramming design appear to hinge on the scale and
applications of the machine to be designed. For small de-
signs the control point technique has a low "initial cost,"
since the control point modules are self-contained. How-
ever, as the designs become bigger, the number of control
points increases and the fan-in problems for the control
line drivers become worse. Microprogramming, on the
other hand, has a higher "initial cost" because the micro-
code controller must be designed before any control
functions can be implemented. As the number of control
sequences become larger, the incremental micropro-
gramming cost is basically the cost of increased memory.
Thus for a constant number of control lines, as the number
of control sequences is increased, a crossover point occurs
where for larger machines the microprogram approach is
cheaper and less complicated.

Hybrid modes of control implementation would appear
appropriate for systems of medium complexity. For ex-
ample, it would appear advantageous to generate task
signals using the basic control point idea but then create
control signals, as in microprogrammed control, by the use
of a ROM. The resulting control system has the advantage
of low overhead because of the absence of a microcode
controller while retaining the advantage of low-cost, reg-
ular control line driver logic as implemented in a micro-
programmed control.
To implement a large scale computer system, it would

appear reasonable to retain a mixed control point micro-
code controller design. The microcode controller would
activate subsequences while delegating individual regis-
ter-to-register transfers to the subsequence control point
logic. Both the number of words needed to execute a par-
ticular macro-instruction and the length of the micro-
instructions are considerably reduced by this strategy.5
The problem of large-scale computer control logic design
thus reduces to choosing a set of basic control functions
which are activated as "subroutines" by microcode se-
quences. If the data flow design is also on a functional
modular basis, the basic control functions can be tied in
a one-to-one relationship and thus minimize the control
line fan-in problem still further. The computer architec-
ture thus takes the form of a group of functional blocks,
each with local control and buffering, interconnected by

5 It should be noted in reference to footnote 4, that such a scheme would
greatly ease the Illiac III interrupt problem since interrupts could then
be bucked back to the beginning of the last microstep which would then
be the only control information to be stored.

buses and controlled centrally by a microcode controller.
In many respects this is similar to the structure proposed
in RCA's LIMAC concept [21], [22], although as presently
conceived, the functional units could probably not be
manufactured as single LSI chips if only because of their
experimental status. However, once we know what is ap-
propriate, the LSI fabrication of the functional units would
be the next. logical step.

VII. SUMMARY AND CONCLUSIONS

This paper has discussed the techniques used in the
design of the modular asynchronous control logic of the
Illiac III computer. After discussing several basic control
modules, the overall design of control sequencing was de-
scribed and a particular control sequence was worked as
an example of the technique. Finally, the diagnostic fea-
tures incorporated as part of the technique were discussed
and a comparison with microprogramming was made.
We have tried to show how the modular design of a

control logic system, at both the functional and component
levels, can lead to a conceptually simple design process.
The use of standardized control point modules allows the
control logic design process to proceed in a relatively
mechanized manner once the control sequence algorithm
has been specified.
The main advantages of modular control point design

would appear to be in small units or in larger units when
the data flow logic is highly variable with time as in some
experimental machines. A possible merge of the modular
control point and microprogramming techniques might
occur in larger machines whose main microcode controller
operates various numbers of specialized functional units
implemented with control points.

APPENDIX

CONTROL POINT NOTATION CONVENTIONS

In actual use control points are represented on logic
drawings by one of the symbols shown in Fig. 10. The
CLEAR and GOTASK signals are omitted from the input
signals since their use is always the same and their presence
would have cluttered up the symbol. They are always
connected to standardized input pins on the card. The
upper part of the symbol is divided into either two or three
boxes (depending on the control point variant being used),
which represent the chips used to implement the control
point. The location of these chips on the circuit board is
indicated by the letter and number at the center of each
box.
The four boxes in the lower part of the symbol are used

to describe parameters for the control point. The leftmost
box contains the control point delay in nanoseconds. The
second box contains the capacitor value needed to generate
this size time delay. The third and fourth boxes contain the
control point variant name and the unique name for that
particular control point, respectively.
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Fig. 10. Control point symbols.

In general, the individual control point names are clas-
sified into functional groups corresponding to the func-
tional grouping of the sequences. Each group is assigned
one or two characteristic letters (i.e., M for memory se-

quence, MU for main utility sequences). These letters are

prefixed to all of the signals related to each individual
control point. For example, the main utility sequences use

control points whose names are designated MUn where n

is a 1 or 2 digit number, optionally followed by a single
letter a, b, c, or d. Thus if it is necessary to assign a name

to any of the signals directly attached to one of those
control points, they would conform to the following for-
mat:

advance in
advance out
indicator
interrupt out
task signal

Al MUAIn
AO MUAOTn
IN MUNn
IO MUIOTn
T MUTn.
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