
Why Did Jim Gray Win the Turing Award?
Michael Stonebraker

CSAIL, MIT
77 Massachusetts Avenue

Cambridge, Ma 02139
603-714-4451

stonebraker@csail.mit.edu

Abstract
This short paper is intended to describe for the layman why Jim
Gray won so many awards, culminating in his being selected to
receive the 1998 ACM Turing Award, arguably the “Nobel Prize
of Computer Science”. It briefly summarizes his main
contributions to our field.

1. Transactions and More Transactions
After Ted Codd’s pioneering paper appeared in CACM in June of
1970, there was an immediate debate between:

The relational advocates who argued that a simple data model
(tables) and a high level language (at the time Codd’s Data
Language Alpha or relational algebra; now SQL) were obviously
good, and should form the basis of a sensible DBMS architecture

The IMS and CODASYL advocates, who argued that it was
impossible to implement relational query languages efficiently.
Moreover, no real programmers could possibly understand Codd’s
query languages
It was obvious to many researchers that the next required steps
were to:

1) Specify more user-friendly relational query languages
2) Prove that relational DBMSs were practical

The first task led to several new query languages, of which SQL is
the one that won in the marketplace (largely because of the “throw
weight” of IBM). The second task led to a collection of
implementations, of which Ingres (at Berkeley) and System R (at
IBM Research) were the most fully developed.
Jim was one of the researchers working on System R.
Two of the messy issues that had to be dealt with in any
implementation were:
crash recovery and
concurrency control.

Obviously, a DBMS should never lose customer data, regardless
of what sort of failure occurs. However, what exactly does this
mean and how should it be implemented? In addition, most
DBMSs must deal with parallel update from multiple users or
applications. For example, one user might be moving all shoe
department employees into the toy department while a
simultaneous user might be giving a 10% raise to all toy
department employees. Clearly, the collection of individuals
specified by the first user is being altered by the second user. In
such a situation, one must decide what semantics to enforce and
how to do so efficiently.

Jim wrote a pioneering paper in 1976 and followed this up with a
book in the mid 1980s on this topic. He is largely responsible for
the following (very simple in retrospect – but revolutionary at the
time) ideas.

One should divide DBMS activity into units of work, called
transactions. A transaction consists of one or more statements in
SQL (or whatever interaction language is supported) interspersed
with code in a general purpose programming language. For
example, a transaction might consist of moving $100 from
account A to account B. In SQL (and most other interaction
languages), this requires two statements, one to decrement
account A and one to increment account B.
Each transaction must have the following properties:

Atomic: either the entire transaction happens or none of it
happens. I.e. it is illegal to have the decrement happen unless the
paired increment also happens. Hence, transactions move the data
base from one consistent state to another.

Consistent: The data base is free to define a collection of
integrity constraints, that define legal data base states. One such
requirement might be that account balances are non-negative.
Any transaction that makes an update which violates an integrity
constraint must be aborted. Hence, it is illegal to execute a
transaction that produces an inconsistent DBMS state.
Isolation: This requirement means that parallel transactions
cannot see the intermediate states of other transactions. In other
words, the outcome of this collection must be the same as the
collection run in some serial order, one after the other. Any other
outcome is an inconsistent state. There is no requirement to obey
any specific serial order, just a requirement to obey some serial
ordering. This requirement defines legal data bases states when a
collection of parallel transactions are run,

Durable: In the event of a failure, there are only two possible
outcomes. Either a transaction “happened”, i.e. it is committed or
it did not happen, i.e. it is aborted. If the user was notified that the
transaction committed, then the DBMS agrees that it cannot
develop a case of amnesia. Hence, the effects of the transaction
can never be lost, regardless of what failures might occur.

Together, these are called the “ACID properties”. Supporting
these properties efficiently is a deep intellectual topic, about
which much has been written over the last quarter of a century.
For example, one simple scheme is to “lock” all objects a
transaction touches and hold all locks until the transaction ends.
Every time a transaction makes an update, a “log record” is
written holding both the “before image” of the object as well as
the “after image”. If the transaction must be undone, then the
before image is used to “rewind” the database. If the effect of a
committed transaction is lost, because of a storage failure, then the

SIGMOD Record, June 2008 (Vol. 37, No. 2) 33

after image is used to restore the effects of the committed
transaction.

Working out the properties of transactions and then constructing
efficient implementation schemes was the major contribution of
Jim Gray in the 1970’s and early 1980’s. For this pioneering
effort, he received the Turing Award in 1998.

In closing, I would like to mention that Jim had three
characteristics that I truly admire. First, he was an intellectual
sponge. He read voraciously in many areas of Computer Science,
and seemed to know “everything about everything”. Second, he
was always willing to spend time discussing new ideas, and would

freely give his perspective on other researchers’ thoughts. As
such, he mentored and helped many, many people, including me,
for which I am very grateful. Third, he is one of the smartest
people I have ever known. This combination of intellectual
curiosity, willingness to help others, and raw intellectual ability is
rarely found, and made Jim a true giant in our field.

34 SIGMOD Record, June 2008 (Vol. 37, No. 2)

