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Appendix A1   Matrix multiplication 
 
Two matrices can only be multiplied if they have the proper sizes.  To 
multiply matrix "A" by matrix "B",  A must have the same number of 
columns as B has rows.  Order of multiplication is important since, in 
general, A*B ≠ B*A.  Each single entry of the product matrix is a 
combination of an entire row from the first matrix and an entire column of 
the second matrix.  Each entry results from a sum of products.   
 

A is r by c B is s by d c = s A*B is r by d 
 

As an example, we will use these two matrices: 
A = | 1  2  3 | row 1   | a  d  g | row 1 
 | 4  5  6 | row 2  B = | b  e  h | row 2 
       | c  f  i | row 3 
column 1  2  3 
      column 1  2  3 
 

The numbers shown in matrix A are symbols that represent the entries for 
easy identification in the product, they are not to be considered actual 
numbers.   
 

 
A is 2 by 3 B is 3 by 3   A*B will be 2 by 3 
 
The entries in the product are calculated thus: 
 
A*B =  | 1a+2b+3c 1d+2e+3f  1g+2h+3i | row 1 
  | 4a+5b+6c 4d+5e+6f  4g+5h+6i | row 2 
 

 column   1     2      3 
 

Note that in the product, the entry in row r, column c comes from row r of the 
first matrix and column c of the second matrix.  This makes an entry in the 
product, call it Pij, come from row "i" of A and column "j" of B.  The more 
general way of writing it is this: 
 

     |A11 A12 A13| 
A = |A21 A22 A23| 
 
 |B11 B12 B13| 
B = |B21 B22 B23| 
 
 

A * B = 
 
|A11B11+A12B21+A13B31  A11B12+A12B22+A13B32  A11B13+A12B23+A13B33| 
|                                                                | 
|A21B11+A22B21+A23B31  A21B12+A22B22+A23B32  A21B13+A22B23+A23B33| 
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Appendix A2   Matrix Inverse 
 
A matrix must be square to have an inverse.  However, not all square 
matrices have an inverse.  The inverse of a matrix is another matrix which, 
when multiplied by the original matrix, results in the identity matrix.  The 
identity matrix is the equivalent to the number  1  in the normal number 
world.  that is: 
 In normal numbers 1/A = A-1  A * A-1 = 1 
 In matrices      inverse = A-1  A * A-1 = Identity matrix 
 

The identity matrix is also square (n by n) and has a diagonal of all ones with 
all other entries equal to zero.   
 
    |1 0 0 0 ..0| The identity matrix. 
   |0 1 0 0 ..0| 
A*A-1 =  |0 0 1 0 ..0| 
   |0 0 0 1 ..0| 
   |: : : : :::| 
   |0 0 0 0...1| 
 

This can be done with matrix math, but by looking at the rules for matrix 
multiplication, algebra can be used as well.  To derive the inverse of a matrix, 
we first set up an equation with the product of the matrix times its inverse set 
equal to the identity matrix. (the numbers here are actual numbers): 
 
 A  *    A-1  = Identity 
       (B) 
| 1 -2  1 |  | a d g |  | 1 0 0 | 
|-2  2  0 | * | b e h |  = | 0 1 0 | 
| 1  0  0 |  | c f i |  | 0 0 1 | 
 
Then we solve for the entries in the inverse matrix using algebra.  The 
quadratic Bézier basis matrix is used for an example. The inverse matrix (B) 
starts with unknowns that are solved for.  Using the multiplication rules, 
write the equation for each entry in the product matrix, which is the identity 
matrix.  Solve one column of the identity matrix at a time.  There will be an 
equation for each row, or three in this case.  The first column of the identity 
matrix comes from row 1, 2 & 3 of A and column 1 of B (A-1).   
 

Solving for the first column in B: 
  A       B    | 
1->  | 1 -2  1 |  | a d g |  | 1 0 0 | 
2->  |-2  2  0 |  * | b e h |  = | 0 1 0 | 
3->  | 1  0  0 |  | c f i |  | 0 0 1 | 
 

 
 
A row 1, B col 1  A row 2, B col 1  A row 3, B col 1 
1a - 2b + 1c = 1  -2a + 2b + 0c = 0  1a + 0b + 0c = 0 
 

From the right hand equation it is clear that:  a = 0 
 

Substituting this into the left and center equations gives: 
 -2b + c = 1   2b = 0or  b = 0 
 

Therefore c = 1 
 
Solving for the second column in B: 
    A       B      | 
1->| 1 -2  1 |  | a d g |  | 1 0 0 | 
2->|-2  2  0 |  * | b e h |  = | 0 1 0 | 
3->| 1  0  0 |  | c f i |  | 0 0 1 | 
 

A row 1, B col 2  A row 2, B col 2  A row 3, B col 2 
1d - 2e + 1f = 0  -2d + 2e + 0f = 1  1d + 0e + 0f = 0 
 

From the right hand equation it is clear that:  d = 0 
 

Substituting this into the left and center equations gives: 
 -2e + f = 0   2e = 1 or e = 1/2  
 

Therefore 
 -2(1/2) + f=0 -1 + f = 0  f = 1 
 
Solving for the third column in B: 
    A       B        | 
1->| 1 -2  1 |  | a d g |  | 1 0 0 | 
2->|-2  2  0 |  * | b e h |  = | 0 1 0 | 
3->| 1  0  0 |  | c f i |  | 0 0 1 | 
 

A row 1, B col 3  A row 2, B col 3  A row 3, B col 3 
1g - 2h + 1i = 0  -2g + 2h + 0i = 0  1g + 0h + 0i = 1 
 

From the right hand equation it is clear that:  g = 1  
 

Substituting this into the left and center equations gives: 
1 - 2h + i = 0  -2 + 2h = 0  h = 1   
 
Therefore 
1 - 2 + i = 0 i = 1 
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Putting these into the matrix gives the Quadratic Bézier basis matrix inverse: 
 
  | 0   0   1 |   | 0  0  2 |   1 
A-1 = | 0  1/2  1 |   or  | 0  1  2 | * - 
  | 1   1   1 |   | 2  2  2 |   2 
 
As a test for the correct solution, the original matrix and its inverse are 
multiplied and the identity matrix should result.  If the identity matrix does 
not result, the location of the bad entries helps identify which unknowns are 
in error.   
 

  This is a good place to put to use a spreadsheet program.  Modern 
spreadsheet programs have many built in functions for matrix operations.  If 
not, they can easily be built up with formulas. 
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Appendix A3   Conversions Between Types 
 
The conversions between many of the more common types of interpolation 
are shown here.  They are shown in two forms; matrix and equation.  The 
matrix is in Noskowicz notation and has been normalized to remove 
fractions.  When no normalization was required, 1/1 is shown explicitly to 
avoid ambiguity.  The equation forms have been reduced to the lowest 
common denominator.  They have been spaced into a columnar form for 
easier readability in order to help avoid mis-reading coefficients. 
 

Converting between types in this manner is a conversion between control 
points for the master curve of individual segments only.  The conversion is 
done for each segment of the original curve and must, of course, use the 
control points for that segment.  The converted piecewise curve will be 
identical.  However, because of differences in control point arrangements, the 
resulting control point sets may not always be handled in the normal way 
when stringing segments together.   
 

An example of this is a conversion from cubic Bézier control points to cubic 
B-spline.  Adjacent Bézier segments have only the end control points in 
common.  Adjacent B-spline segments have three control points in common.  
However, Bézier segments converted to B-spline will have no common 
control points between segments.  See Chapter 16 for a full explanation. 
 

Pa Pb Pc & Pd are the original geometry vector entries (starting control 
points). 
P0, P1, P2 & P3 are the new geometry vector entries (desired control points). 
 

Bézier to Hermite (in Bézier-like form) 
 

   Pa Pb Pc Pd 
P0| 3  0  0  0| P0 =    Pa 
T0| 3  1  0  0| 1  T0 = ( 3Pa +Pb          )/3 
T3| 0  0 -1  3| 3 T3 = (         -Pc +3Pd )/3 
P3| 0  0  0  3| P3 =                 Pd 
 
 
Hermite (in Bézier-like form) to Bézier 
 

   Pa Ta Td Pd 
P0| 1  0  0  0| P0 =   Pa 
P1|-3  3  0  0| 1  P1 = -3Pa +3Ta 
P2| 0  0 -3  3| 1 P2 =           -3Td +3Pd 
P3| 0  0  0  1| P3 =                  Pd 

 
 
 
Golden to Quadratic Bézier 
 

 Pa Pb Pc 
| 2  0  0| P0 =   Pa 
|-1  4 -1| 1  P1 = (-Pa +4Pb -Pc )/2 
| 0  0  2| 2 P2 =            Pc 
 
 
Quadratic Bézier to Golden 
 

 Pa Pb Pc 
| 4  0  0| P0 =   Pa 
| 1  2  1| 1  P1 = ( Pa +2Pb +Pc )/4 
| 0  0  4| 4 P2 =            Pc 
 
 
 
Parabolic to Quadratic Bézier 
 
 Pa Pb Pc 
| 1  1  0| P0 = ( Pa +Pb )/2 
| 0  2  0| 1  P1 =       Pb 
| 0  1  1| 2 P2 = (     Pb +Pc )/2 
 
 
Quadratic Bézier to Parabolic 
 

 Pa Pb Pc 
| 2 -1  0| P0 = 2Pa -Pb 
| 0  1  0| 1  P1 =      Pb 
| 0 -1  2| 1 P2 =     -Pb +2Pc 
 
 
 
Parabolic to Golden 
 

 Pa Pb Pc 
| 4  4  0| P0 = ( Pa  +Pb )/2 
| 1  6  1| 1  P1 = ( Pa +6Pb +Pc )/8 
| 0  4  4| 8 P2 = (      Pb +Pc )/2 
 
 
Golden to Parabolic 
 

 Pa Pb Pc 
| 5 -4  1| P0 = (5Pa -4Pb  +Pc )/2 
|-1  4 -1| 1  P1 = (-Pa +4Pb  -Pc )/2 
| 1 -4  5| 2 P2 = ( Pa -4Pb +5Pc )/2 
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B-Spline to Bézier 
 

 Pa Pb Pc Pd 
P0| 1  4  1  0| P0 = ( Pa +4Pb  +Pc     )/6 
P1| 0  4  2  0| 1  P1 = (     2Pb  +Pc     )/3 
P3| 0  2  4  0| 6 P2 = (      Pb +2Pc     )/3 
P4| 0  1  4  1| P3 = (      Pb +4Pc +Pd )/6 
 
 
Bézier to B-Spline 
 

 Pa Pb Pc Pd 
| 6 -7  2  0| P0 =  6Pa -7Pb +2Pc 
| 0  2 -1  0| 1  P1 =       2Pb  -Pc 
| 0 -1  2  0| 1 P2 =       -Pb +2Pc 
| 0  2 -7  6| P3 =       2Pb -7Pc +6Pd 
 
 
 
Bézier to Catmul 
 
 Pa Pb Pc Pd 
| 6 -6  0  1| P0 =  6Pa -6Pb       +Pd 
| 1  0  0  0| 1  P1 =   Pa 
| 0  0  0  1| 1 P2 =                  Pd 
| 1  0 -6  6| P3 =   Pa      -6Pc +6Pd 
 
 
Catmul to Bézier 
 

 Pa Pb Pc Pd 
| 0  6  0  0| P0 =         Pb 
|-1  6  1  0| 1  P1 = ( -Pa +6Pb  +Pc     )/6 
| 0  1  6 -1| 6 P2 = (      +Pb +6Pc -Pd )/6 
| 0  0  6  0| P3 = (            Pc 
 
 
 
B-Spline to Catmul 
 

 Pa Pb Pc Pd 
| 6  1 -2  1| P0 = (6Pa  +Pb -2Pc  +Pd )/6 
| 1  4  1  0| 1  P1 = ( Pa +4Pb  +Pc      )/6 
| 0  1  4  1| 6 P2 = (      Pb +4Pc  +Pd )/6 
| 1 -2  1  6| P3 = ( Pa -2Pb + Pc +6Pd )/6 
 
 
Catmul to B-Spline 
 

 Pa Pb Pc Pd 
| 7 -4  5 -2| P0 = ( 7Pa  -4Pb  +5Pc -2Pd )/6 
|-2 11 -4  1| 1  P1 = (-2Pa +11Pb  -4Pc  +Pd )/6 
| 1 -4 11 -2| 6 P2 = (  Pa  -4Pb +11Pc -2Pd )/6 
|-2  5 -4  7| P3 = (-2Pa  +5Pb  -4Pc +7Pd )/6 

Bézier to Cubic 4pt 
 

 Pa Pb Pc Pd 
|27  0  0  0| P0 =    Pa 
| 8 12  6  1| 1  P1 = ( 8Pa +12Pb  +6Pc  +Pd )/27 
| 1  6 12  8| 27 P2 = (  Pa  +6Pb +12Pc +8Pd )/27 
| 0  0  0 27| P3 =                     Pd 
 
 
Cubic 4pt to Bézier 
 

 Pa Pb Pc Pd 
| 6  0  0  0| P0 =    Pa 
|-5 18 -9  2| 1  P1 = (-5Pa +18Pb  -9Pc +2Pd )/6 
| 2 -9 18 -5| 6 P2 = ( 2Pa  -9Pb +18Pc -5Pd )/6 
| 0  0  0  6| P3 =                     Pd 
 
 
 
B-Spline to Cubic 4pt 
 
 Pa  Pb  Pc Pd 
|27 108  27  0| P0 = ( Pa  +4Pb   +Pc )/6 
| 8  93  60  1|  1  P1 = (8Pa +93Pb +60Pc  +Pd )/162 
| 1  60  93  8| 162 P2 = ( Pa +60Pb +93Pc +8Pd )/162 
| 0  27 108 27| P3 = (       Pb  +4Pc  +Pd )/6 
 
 
Cubic 4pt to B-Spline 
 

 Pa  Pb  Pc Pd 
|25 -48  33 -8| P0 = (25Pa -48Pb +33Pc  -8Pd )/2 
|-4  15 -12  3| 1  P1 = (-4Pa +15Pb -12Pc  +3Pd )/2 
| 3 -12  15 -4| 2 P2 = ( 3Pa -12Pb +15Pc  -4Pd )/2 
|-8  33 -48 25| P3 = (-8Pa +33Pb -48Pc +25Pd )/2 
 
 
 
Catmul to Cubic 4pt 
 

 Pa Pb Pc Pd 
| 0 27  0  0| P0 =          Pb 
|-2 21  9 -1| 1  P1 = (-2Pa +21Pb  +9Pc  -Pd )/27 
|-1  9 21 -2| 27 P2 = ( -Pa  +9Pb +21Pc -2Pd )/27 
| 0  0 27  0| P3 =                Pc 
 
 
Cubic 4pt to Catmul 
 

 Pa  Pb  Pc Pd 
|11 -18   9 -1| P0 = 11Pa -18Pb  +9Pc   -Pd 
| 1   0   0  0| 1  P1 =   Pa 
| 0   0   0  1| 1 P2 =                     Pd 
|-1   9 -18 11| P3 =  -Pa  +9Pb -18Pc +11Pd 
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Appendix A4   Bernstein Functions 
 
Here are the Bernstein Functions, how to interpret them and convert them to 
polynomials.  For a given degree (d), the Bernstein Functions provide a 
group of (d+1) equations.  Each of these equations is a weighting function for 
one control point.  Starting from the standard Bernstein definition requires a 
little algebra to get to our standard polynomial form.    
 

The standard Bernstein definition: 
 

 Jfd(t) = (B) * tf  * (1-t)(d-f) 
 

Where: 
d is the degree (2=Quadratic) (3=Cubic) 
f is the function number and goes from 0 to d  (f = 0, 1, 2, ..., d) 
B is called the binomial coefficient (explained in any college algebra book) 
that is: 
 

            d! 
  B = ------------- 
       f! * (d-f)! 
 
The "!" is the symbol for factorial.   The factorials are this: 
 

     0! = 1  (this is a definition, don't try to understand) 
     1! = 1 
     2! = 2*1 = 2 
     3! = 3*2*1 = 6 
     4! = 4*3*2*1 = 24 
 

As an example of the algebraic manipulation required, take the first equation 
(f=0) for the second degree (d=2) Bernstein function.   
 

Substituting values  (d=2  and f=0): 
 

                   2! 
    J02(t) = ------------- * t0  * (1-t)(2-0) 
              0! * (2-0)! 
 
Evaluating the factorials: 
                   2 
     J02(t) = ------------- * t0  * (1-t)(2) 
                 1 * 2 
Simplifying further and expanding the squared quantity: 
 
 

 
 
J02(t) = 1 *t0 *(1-t)2 =  
  1 *1 *(1-2t+t2) =  
   +t2 -2t +1 
 

Doing the same type of manipulations with the equation for f=1 and 2 until 
standard polynomials are obtained gives: 
 (d=2, so there are three functions f=0, 1, 2): 
 

J02(t) = (1) * t0 * (1-t)2 =   t2 - 2t + 1 
J12(t) = (2) * t1 * (1-t)1 = -2t2 + 2t 
J22(t) = (1) * t2 * (1-t)0 =   t2  

    (compare with equations 6.1a, b & c) 
 
The same procedure is followed for any degree Bézier. 
 



 A5  Lagrange Lagrange  A5 

Interpolation and Curves for Graphics © August 14, 2010 Stephen H. Noskowicz Interpolation Reference 134 
 134 

Appendix A5   Lagrange Interpolating Functions 
 
For a series of points defined as Pn = (xn,yn), n = 0 to d ,  the Lagrange function 
gives an equation of degree d that passes through all the points.   
 
Chapter 15 describes the parameterized version of the Lagrange. 
 
 
The general form of the Lagrange Functions for interpolation: 
 
 y = y0L0d(t) + y1L1d(t) + y2L2d(t) + y3L3d(t) ... 
 
Where: 
                         (x-xj) 
Lfd(x) = Product of all  ------- 
                         (xf-xj) 
 
d is the degree (2=Quadratic) (3=cubic) 
f is the function number (f=0, 1,...,d) 
j multiplicand number (j = 0, 1, 2...d; but never=f). 
 
For a given degree, d, you will have: 
 d+1 known data points. 
 d+1 "Lfd" equations (f=0, 1,...,d) 
 d factors in each equation (j = 0, 1, 2...d; but j not=f) 
 
 

The pattern looks like this. 
 
            (x-x1)    (x-x2)    (x-x3)    (x-x4)      (x-xd) 
L0d(x)=omit*------- * ------- * ------- * ------- ... ------- 
            (x0-x1)   (x0-x2)   (x0-x3)   (x0-x4)     (x0-xd) 
 
 
       (x-x0)         (x-x2)    (x-x3)    (x-x4)      (x-xd) 
L1d(x)=------- *omit* ------- * ------- * ------- ... ------- 
       (x1-x0)        (x1-x2)   (x1-x3)   (x1-x4)     (x1-xd) 
 
 
       (x-x0)    (x-x1)         (x-x3)    (x-x4)      (x-xd) 
L2d(x)=------- * ------- *omit* ------- * ------- ... ------- 
       (x2-x0)   (x2-x1)        (x2-x3)   (x2-x4)     (x2-xd) 
 
 
       (x-x0)    (x-x1)    (x-x2)         (x-x4)      (x-xd) 
L3d(x)=------- * ------- * ------- *omit* ------- ... ------- 
       (x3-x0)   (x3-x1)   (x3-x2)        (x3-x4)     (x3-xd) 
  .      .        .       .       .      .        . 
  .      .        .       .       .      .        . 
  .      .        .       .       .      .        . 
       (x-x0)    (x-x1)    (x-x2)    (x-x3)    (x-x4) 
LMd(x)=------- * ------- * ------- * ------- * ------- *omit 
       (xd-x0)   (xd-x1)   (xd-x2)   (xd-x3)   (xd-x4) 
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Appendix A6   Derivative 
 
The derivative of a function is the slope of that function.  It is useful to have 
the derivative of a polynomial for setting constraints on the slope of a 
function as well as determining end slope values of existing curves and 
determining continuity.  The first derivative of a (position) function is 
another function that defines the slope (velocity) of the function for any value 
of t.  The second derivative of position function is another function that 
defines the change in slope (acceleration or change in velocity) of the 
function for any value of t. The method to obtain the derivative of the type of 
polynomial used in interpolation is described here.   
 

There are two common ways to designate a derivative, the prime mark (') or 
the df/dt notation.  The first derivative of f(t) is shown as f'(t) or df/dt.  The 
second derivative is shown as f''(t) or  d2f/d2t.  These are not exponents, but 
part of the special notation for derivative.  We use the prime notation here. 
 

The derivative of a sum is the sum of the individual derivatives of those 
terms.  Since a polynomial is a sum of terms, the individual terms are done 
independently.  Each has a derivative that is a term in the resulting derivative 
function, or if: 
 

  f(t)  = g(t)  + h(t)  + i(t)  + j(t)    then 
  f'(t) = g'(t) + h'(t) + i'(t) + j'(t) 
 

In general, the derivative looks like this: 
 

  Derivative of  Atn  =  n * At(n-1)    
 

The three terms that have powers of t are all handled the same way.  The 
derivative of these terms is a simple two step process. 
 1- Multiply the term by the exponent of "t' in that term.(put the 
exponent of t as another factor "in front" of the term) 
 2- Subtract one from the exponent. 
Constant terms, such as "D", have a slope of zero and drop out.  This is not a 
special case.  This can be seen by considering the "D" term to actually have 
"t" to the zero power or: 
      Dt0 
 

The derivative then is: 0 * D t -1   that is  0. 
 

We will use a degree three polynomial as an example. 
 

   f(t) = At3 + Bt2 + Ct + D 
 
This makes our example: 
   f '(t) = 3At2 + 2Bt1 + 1Ct0 + 0    or just 
   f '(t) = 3At2 + 2Bt + C    
 
Repeating the procedure for the second derivative: 
 
   f''(t) = 2*3A2-1 + 1*2Bt1-1 
 
   f''(t) = 6At + 2B 
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Matrix Notation Derivative   
] 
Taking the derivative of a basis matrix is quite simple.  The same two steps 
are performed, however in the basis matrix this becomes a "multiply and 
move down" operation.  Multiply the matrix entry by the exponent of "t" to 
its left.  Then place it down one row in the derivative matrix.  The bottom 
row disappears and zeros in any location move down.   
 

Note that because in the second row from the bottom the exponent of t is one, 
the entries in this row move down unchanged.  The (g h i) row in the matrix 
appears in the bottom row of the first derivative.  The (2d 2e 2f) row in the 
first derivative appears in the bottom row of the second derivative.  This 
characteristic makes finding and comparing end tangents easy.  See 
Appendix A9. 
 

 Basis Matrix First Derivative Second Derivative 
 
  t3 |  a   b   c | t3 |  0   0   0 | t3 |  0   0    0 | 
  t2 |  d   e   f | t2 | 3a  3b  3c | t2 |  0   0    0 | 
  t |  g   h   i | t | 2d  2e  2f | t | 6a  6b   6c | 
  1 |  j   k   l | 1 |  g   h   i | 1 | 2d  2e   2f | 
 
 

A constant factor, such as the 1/6 of the B-spline, is unaffected since it 
appears as a coefficient of all terms. Just like the basis matrix, the derivatives 
will also have symmetric beginning (bottom row) and end (sum of columns) 
coefficients. The sum of columns will have the same pattern as the bottom 
row, just shifted to the align with the end of the segment. Examples of the 
Quadratic Bézier, B-spline and Cubic Bézier are shown. 

 

       Quadratic Bézier  Quadratic Bézier Derivative 
 
 t2 |  1  -2   1 | t2 |  0   0   0 | 
 t | -2   2   0 | t |  2  -4   2 | 
 1 |  1   0   0 | 1 | -2   2   0 | 
 
 
 
 
   B-spline    B-spline Derivative 
 
 t3 | -1   3  -3   1 | t3 |  0    0   0   0 | 
 t2 |  3  -6   3   0 | 1 t2 | -3    9  -9   3 | 1 
 t | -3   0   3   0 | - t |  6  -12   6   0 | - 
 1 |  1   4   1   0 | 6 1 | -3    0   3   0 | 6 
 
 
 
 
 
    Cubic Bézier     Cubic Bézier Derivative 
 
 t3 | -1   3  -3   1 | t3 |  0   0   0   0 | 
 t2 |  3  -6   3   0 | t2 | -3   9  -9   3 | 
 t | -3   3   0   0 | t |  6 -12   6   0 | 
 1 |  1   0   0   0 | 1 | -3   3   0   0 | 
 
        Second Derivative 
 
 t3 |  0   0   0   0 | 
 t2 |  0   0   0   0 | 
 t | -6  18 -18   6 | 
 1 |  6 -12   6   0 | 
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Appendix A7a  Mirror by Substitution 
 
The term "mirror function" used herein refers to the function that is a 
reflection, of a given function, about the t = 0.5 line. The method of deriving 
a mirror function by substituting (1-t) for t is shown here.  The equation used 
as the example is the cubic function with end-slopes of zero (equation 4.7). 
   F = -2t3 + 3t2      (4.7) 
 
Every occurrence of "t" is replaced by (1-t) to give the mirror function "Fm". 
   Fm = -2(1-t)3 + 3(1-t)2  
 
Evaluating the powers of (1-t) gives: 
(1-t)2 = t2 - 2t + 1 
(1-t)3 = - t3 + 3t2 - 3t +1 
 
Expanding these in the equation gives: 
  Fm = -2( - t3 + 3t2 - 3t +1) + 3( t2 - 2t + 1) 
 
Multiplying to remove the parentheses: 
  Fm = 2t3 - 6t2 + 6t - 2  +  3t2 - 6t + 3 
 
Arranging like terms for combining: 
  Fm =  2t3  -  6t2 + 3t2   +   6t - 6t   - 2 + 3 
Combining gives: 
  Fm =   2t3  -  3t2 + 1 
 
Also, substituting (1-t) for t in this equation would return us to the original 
function. 
 
 
 

 

 

 

 

 

 

 

Appendix A7b  Mirror By Constraints 
 
Another way to derive a mirror function is to define the constraints to mirror 
the original ones.  The procedure used here is identical to that in Chapter 4 
except the constraints are changed to reflect the mirror requirements.  The 
places where differences occur from Chapter 4. are shown as  bold 
underline. 
 
A cubic, or third degree function has a general form with the third power of t: 
 
    F = At3 + Bt2 + Ct + D   (4.1) 
 
Again, the goal is to find the four constants (A, B, C, D).  We proceed in the 
same manner starting with the two end values of one/zero then incorporating 
the end slopes. 
For the end values: 
When  t = 0, F = 1 = 0 + 0 + 0 + D Therefore D = 1 (4.2m) 
When  t = 1, F = 0 = A + B + C + D 
     Therefore A+B+C+1=0   (4.3m) 
 
The slope of equation 4.1m is the first derivative or: 
   Slope = dF/dt  = 3At2 + 2Bt + C  (4.4m) 
 
The mirror function also has zero slope at both ends.  Substitute into equation 
4.4m to get: 
When  t = 0, dF/dt = 0 = 0 + 0 + C Therefore C = 0 (4.5m) 
When  t = 1, dF/dt = 0 = 3A + 2B + 0    (4.6m) 
 
Again, with two unknowns and two equations (4.3m & 4.6m) we solve for A 
& B.  From equation 4.3m with C = 0 and D = 1    
   A + B + 1 = 0 
   B = -A-1.   
Substituting for B in 4.6m gives: 
    0 = 3A + 2(-A-1)  
    0 = 3A - 2A - 2 or  A = + 2 
 then since  B = -A-1   B = - 3 
 
Substituting all the constants into equation 4.1m gives the mirror function: 
    MF = 2t3 - 3t2 + 1    (4.7m) 
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Appendix A8   End-Slope Values for Center slope=0 
 
This is a derivation of the end-slope value that causes the slope in the center 
to be zero for the "adjustable end-slope cubic function" of Chapter 4 equation 
4.10. 
The slope of a function is the first derivative.  To find the value of end slope 
(S) that gives a slope of zero at t = 0.5,  we set t equal to 0.5 and the whole 
slope equation equal to zero, then solve for S. 
Starting with the function (equation 4.10) 
   F = (2S-2) t3 + (3-3S) t2 + S t   (4.10) 
 
The slope or first derivative is: 
   dF/dt = 3(2S-2) t2 + 2(3-3S) t1 + S  
 
Set this equal to zero and t equal to 0.5 then solve for the value of S. 
   0 = 3(2S-2) /4 + 2(3-3S) /2 + S 
 
Carry out the multiplications indicated: 
   0 = (6S-6) /4 + (6-6S) /2 + S 
 
Multiply by 4 to clear fractions: 
   0 =  6S-6 + 2(6-6S) + 4S 
 
Multiply as indicated: 
   0 = 6S - 6 + 12 - 12S + 4S 
 
Rearrange like terms: 
   0 = - 6 + 12 + 6S - 12S + 4S 
 
Combine like terms: 
   0 = 6 - 2S 
 
Subtract 6: 
   -6 = - 2S 
 
Divide by -2: 
   3 = S 
 
This is the value of S that causes the slope to be zero at t = 0.5. 
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Appendix A9   Observable Matrix Characteristics 
 

Direct observation of the basis matrix allows some characteristics of the 
curve to be easily determined.  These characteristics are valid for both the 
fixed and variable curves, however, since the Hermite basis matrix has the 
tangents directly, these methods are not needed. 
It is useful to remind the reader that the basis matrix is the collection of 
coefficients of a single polynomial equation and, as a result, we may handle 
them as we would handle terms in an equation.  The presence of the powers of 
"t" and the control point designations in Noskowicz Notation allows a number 
of characteristics to be found by observation of the basis matrix. 
 

Start Point 
The bottom row (t0) of the basis matrix shows us where the curve segment 
begins.  At the start of a segment, t = 0.  This makes all terms containing "t" 
also zero.  Therefore, since there are no "t" terms in the bottom row, only the 
bottom row of the basis matrix has any effect on the interpolated value.   
A one in this row is under the control point the segment begins on.   
 

For example, we see the following types have a one in the first row under P1 
and therefore start there - the Linear, Simple Cubic, Quadratic Bézier, 
Quadratic Lagrange and Catmul-Rom (remember the 1/2).  For the cubic 
Bézier the curve starts at P0 because the 1 in the bottom row is below it.   
 

If there are two or three entries in this row, the curve does not pass through a 
point.  In this case, the relative value of the coefficients in the row shows the 
relative weight or contribution of each control point to the location of the 
segment start.  This can be seen in the Parabolic and cubic B-spline. 
 

For all types, you must be careful to include the "true" values of the basis 
matrix since it is common practice to make them integers by having an 
external factor as a fraction; such as the Catmul-Rom with its 1/2.  This can be 
easily seen by looking at the Parabolic basis matrix.  There are two 1's in the 
bottom row and the main factor is 1/2.  This means that the two basis matrix 
values are 0.5.  The P0 and P1 weighting functions both have a value of 0.5.  
This is the formula for a linear interpolation half way between the ends - 
therefore, the Parabolic starts half way between P0 and P1.   
 

The B-spline has  [1  4  1] in the bottom row (divided by 6).  This shows 
that the segment start is nearest to P1 (weight of 4/6), with 1/6 of its location 
due to P0 and 1/6 due to P2.   
 

 
 
Linear 
    P1  P2 
   t | -1   1 | 
   1 |  1   0 | <-- Start location 
 
Simple Cubic 
    P1  P2 
   t3 |  2  -2 | 
   t2 | -3   3 | 
   t |  0   0 | 
   1 |  1   0 | <-- Start location 
 
Quadratic Bézier 
    P1   P2  P3 
   t2 |  1   -2   1 | 
   t | -2    2   0 | 
   1 |  1    0   0 | <-- Start location 
 
Quadratic Lagrange 
      P1    P2    P3 
   t2 |  n1    n2    n3   | 
   t |-n1-1  -n2  -n3*t2 | 
   1 |   1     0     0   | <-- Start location 
 
Catmul-Rom 
    P0    P1    P2   P3  
   t3 | -1     3   -3    1 |  1 
   t2 |  2    -5    4   -1 | --- 
   t | -1     0    1    0 |  2 
   1 |  0     2    0    0 | <-- Start location 
 
Cubic Bézier 
      P0    P1   P2   P3  
   t3 | -1    3   -3    1 | 
   t2 |  3   -6    3    0 | 
   t | -3    3    0    0 | 
   1 |  1    0    0    0 | <-- Start location 
 
Parabolic 
       P0  P1  P2 
   t2 |  1  -2   1 | 
   t | -2   2   0 |1/2 
   1 |  1   1   0 | <-- Start location 
 
B-spline 
    P0    P1   P2   P3  
   t3 | -1    3   -3    1 |  1 
   t2 |  3   -6    3    0 | --- 
   t | -3    0    3    0 |  6 
   1 |  1    4    1    0 | <-- Start location 
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Stop Point 
At the finish of a segment, t = 1 and the powers of t are also = 1.  All terms 
appear at face value.  Therefore, to see where the segment stops, we look at 
the sum of columns of the basis matrix.  The same characteristics apply here 
as at the segment start described above.  Since all interpolation types 
described in this book are symmetrical, the column sum will have the same 
pattern as the bottom row, just shifted to the segment stop point. 
 
End point Tangent Vectors 
The slope of a function is its first derivative.  We can determine tangent 
vectors at the segment end points, just as we did with the start and stop 
locations, by examining the derivative of the basis matrix.   
 
Start Tangent Vector 
At the start, t = 0.  The only remaining terms are in the bottom row of the 
derivative matrix, therefore, this shows the tangent vector.  However, this 
row is identical to the second row of the basis matrix itself due to the way the 
derivative works.  This is due to the fact that the exponent of t in the second 
row of the basis matrix is one, leaving the coefficients unchanged when 
moved to the bottom row of the derivative.  Therefore, the second row of the 
basis matrix also shows the tangent vector at the segment start.  We do not 
need to take the derivative to see this.  See Appendix A6. 
 
For the case where the curve is tangent to the line connecting two control 
points, these coefficients have a specific pattern.  There will only be two 
entries in this row and they will be equal and opposite in sign, the negative 
one being to the left.  The curve will be tangent to a straight line connecting 
these two points.  The magnitude of the entries gives the magnitude of the 
tangent vector relative to the spacing of these two control points. 
 
A trivial example is the linear that has [-1 1] in the second row.  These 
numbers are under P1 and P2.  Therefore, the tangent vector is parallel to the 
line connecting P1 and P2 and equal to that distance.    
 
The Parabolic has [-2  2] 1/2 in the second row.  These are under P0 and P1.  
Therefore, the start tangent vector is parallel to the line connecting P0 and P1 
and equal to that distance.   
 
The Quadratic Bézier has [-2  2] in the second row.  These numbers are under 
P1 and P2.  Therefore, the start tangent vector is parallel to the line 
connecting P1 and P2 and equal to twice that distance.   
 

 
 
Linear 
     P1  P2 
   t | -1   1  |<-- Start tangent 
   1 |  1   0  |<-- Start location 
 
 SUM->   0   1   <-- Stop location 
 
 
 
Parabolic 
       P0  P1  P2 
   t2 |  1  -2   1 |1/2  
   t | -2   2   0 |<-- Start tangent 
   1 |  1   1   0 |<-- Start location 
 
 SUM->   0   1   1  <-- Stop location 
 
 
 
Quadratic Bézier 
     P1   P2  P3 
   t2 |  1   -2   1 | 
   t | -2    2   0 |<-- Start tangent 
   1 |  1    0   0 |<-- Start location 
 
 SUM->   0    0   1  <-- Stop location 
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The Cubic Bézier has [-3  3] in the second row.  These numbers are under P0 
and P1.  Therefore, the start tangent vector is parallel to the line connecting 
P0 and P1 and equal to three times that distance. 
 
The B-spline and Catmul-Rom both have [-0.5  0.5] in the second row 
(remember the fraction outside the matrix).  However, notice that these 
numbers are under P0 and P2.  Therefore, both of these have start tangent 
vectors parallel to the line connecting P0 and P2 that are equal to one half that 
distance.   
 
This can also be seen in variable curves such as the two Bézier family curves 
with end velocity control.  Looking at the quadratic, we see  [-2-V  +2+V]  
in the second row.  These numbers are under P1 and P2.  Therefore, the start 
tangent vector is parallel to the line connecting P1 and P2 and equal to 2+V 
times that distance.  
 
Stop Tangent Vector 
As with the start point, the tangent vector at the segment stop would be found 
by examining the sum of the columns in the derivative of the basis matrix.  
The same characteristics apply here as at the segment start above. Since all 
interpolation types described in this book are symmetrical, the column sum 
will have the same pattern as the bottom row, just shifted to the segment stop 
point. 
 
This method can be used to determine the level of continuity that is exhibited 
at the joints by examination of only the basis matrix derivative. 
 
Determining Continuity 
We can determine the degree of parametric continuity at joints by a relatively 
simple analysis of the basis matrix.  From the above end position analysis we 
found where the segments start and stop from the basis matrix itself.  For 
higher levels of continuity we move to the derivatives of the basis matrix.  
Since the first derivative of the basis matrix gives the tangent, we use an 
identical analysis on it, giving us the tangent at the segment end point rather 
than the locations at the segment end.   
 
Of course, each segment is determined by a different set of control points.  
As we move from segment to segment, we may shift one, two, three or more 
in the list of control points.  To compare the derivatives on each side of the 
joint, we must therefore use the proper control points that determine the 
specific end conditions that we are comparing.  We examine two types here. 
 

 
 
Cubic Bézier 
      P0    P1   P2   P3  
   t3 | -1    3   -3    1 | 
   t2 |  3   -6    3    0 | 
   t | -3    3    0    0 | 
   1 |  1    0    0    0 | <-- Start location 
 
B-spline 
    P0    P1   P2   P3 
   t3 | -1    3   -3    1 | 
   t2 |  3   -6    3    0 | 1/6 
   t | -3    0    3    0 |   <--- Start Tangent 
   1 |  1    4    1    0 |   <--- Start location 
 
 SUM->   0    1    4    1    <--- Stop location 
 
Cubic B-spline derivative 
    P0    P1   P2   P3 
   t3 |  0    0    0    0 | 
   t2 | -3    9   -9    3 | 1/6 
   t |  6  -12    6    0 | 
   1 | -3    0    3    0 |    <--- Start Tangent 
 
 SUM->   0   -3    0    3     <--- Stop Tangent 
 
 
Cubic Bézier   
    P0    P1   P2   P3 
   t3 | -1    3   -3    1 | 
   t2 |  3   -6    3    0 | 
   t | -3    3    0    0 |  <--- Start Tangent 
   1 |  1    0    0    0 |  <--- Start location 
 
 SUM->   0    0    0    1   <--- Stop location 
 
Catmul-Rom 
    P0    P1    P2   P3 
   t3 | -1     3   -3    1 | 
   t2 |  2    -5    4   -1 | 1/2 
   t | -1     0    1    0 | 
   1 |  0     2    0    0 | <-- Start location 
 
Quadratic Bézier family with end velocity control 
     P0  P1     P2   P3 
   t3 |  0   -V     0    V   | 
   t2 |  0  1+2V  -2-V  1-V  | 
   t |  0  -2-V   2+V   0   |  <--- Start Tangent 
   1 |  0   1      0    0   | 
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We start with an analysis of the cubic Bézier.  The first segment starts on P0 
and stops on P3.  The next segment starts on P3 and stops on P6.  Similar to 
the end position analysis, the bottom row of the derivative matrix gives the 
start tangent and the sum of columns gives the stop tangent.  From the 
arrangement shown at the right, we see that the first segment's stop tangent is 
determined by points P2 & P3 (the -3 3 in the SUM row).  However, the 
second segment's start tangent is determined by points P3 & P4 (the -3 3 in 
the bottom row).  Because these two end tangents are determined by different 
control points, they are not equal.  Therefore, the Cubic Bézier does not have  
C1 continuity at the joints.  There is no need to look at the second derivative. 
 
For analyzing the B-spline, we can temporarily omit the 1/6 factor.  The first 
segment starts near P1 and stops near P2.  The next segment starts near P2 
and stops near P3.  From the arrangement shown at the right, we see that the 
first segment's stop tangent is determined by points P1 & P3 (from the -3 0 3 
0 in the SUM row).  The second segment's start tangent is also determined by 
points P1 & P3 (from the 0 -3 0 3 in the bottom row).  Because these two end 
tangents are determined by the same control points and the weighting 
function values are the same, they are equal.  Therefore, the B-spline has  C1 
continuity at the joints.  The second derivative can be analyzed similarly to 
show C2 continuity. 
 
This same kind of analysis can be done on the variable interpolation types as 
well.  The Quadratic Bézier family W/ End velocity control is shown on the 
right.  We see that the end tangent of segment #1 is determined by P2 & P3, 
but the start tangent of segment #2 is determined by P3 & P4.  Because these 
two end tangents are determined by different control points, they are not 
equal.  Therefore, it does not have  C1 continuity at the joints. 
 

Cubic Bézier derivative 
      P0  P1  P2  P3 
 t3 |  0   0  0   0 | 
 t2 | -3   9 -9   3 | 
 t |  6 -12  6   0 | 
 1 | -3   3  0   0 |<--- Start tangent 
 
   SUM->   0   0 -3   3  <--- Segment #1 stop tangent 
                  |   |   
                     -3  3  0  0 <--- Segment #2 start 
tangent 
                  |   |  | 
      P0  P1  P2  P3  P4  P5  P6 
 
 
 
Cubic B-spline derivative 
  P0  P1  P2   P3 
 t3 |  0    0   0   0 | 
 t2 | -3    9  -9   3 | 1/6 
 t |  6  -12   6   0 | 
 1 | -3    0   3   0 |    <--- Start Tangent 
 
   SUM->   0   -3   0   3  <--- Segment #1 stop tangent 
                |       | 
               -3   0   3   0 <--- Segment #2 start tangent 
                |       | 
      P0   P1   P2  P3  P4  P5  P6 
 
 
Quadratic Bézier Family W/End Velocity Control 
      P1   P2   P3 
   t3 |  -V    0    V  | 
   t2 | 1+2V -2-V  1-V | 
   t | -2-V  2+V   0  |   <--- Start Tangent 
   1 |   1    0    0  |   <--- Start location 
 
 SUM->    0    0    1     <--- Stop location 
 
 
First derivative 
      P1   P2    P3 
   t2 |  -3V    0    3V | 
   t | 2+4V -4-2V 2-2V |  
   1 | -2-V   2+V   0  |  <--- Start Tangent 
 
 SUM->     0  -2-V  2+V    <--- Segment #1 stop tangent 
                    |    | 
                   -2-V   2+V    0 <--- Segment #2 start 
                    |    |     | 
           P1   P2   P3    P4    P5 
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Appendix A10  Component Functions 
 

Functions that have desirable characteristics can be 
considered as fundamental building blocks.  They can be used 
for constructing and modifying quadratic and cubic weighting 
functions.  They are shown with the values of the functions 
and derivatives at the start (t=0) and stop (t=1). 
 f(0) f(1) f'(0) f'(1) f"(0) f"(1) 
Linear 0 1 1 1 0 0 
 t 
 
Hermite h1 1 0 0 0 -6 6 
 +2t3-3t2+1 
 

Hermite h2 0 1 0 0 6 -6 
 -2t3+3t2 
Also = Linear - "S" 
 

Hermite h3 0 0 1 0 -4 -2 
 +1t3-2t2+t 
 

Hermite h4 0 0 0 1 -2 4 
 +1t3 -1t2 
 

"S" 0 0 1 1 -6 6 
 +2t3-3t2+t 
Also = h3 + h4 
 

"Center" 0 0 1 -1 -2 -2 
 -t2+t 
Also = h3 - h4 
 

quintic 1 1 0 0 0 0 0 
-6t5+15t4-10t3+1 
 

quintic 2 0 1 0 0 0 0 
+6t5-15t4+10t3 
 

quintic 3 0 0 1 0 0 0 
-3t5+8t4-6t3+t 
 

quintic 4 0 0 0 1 0 0 
-3t5+7t4-4t3 
 

quintic 5 0 0 0 0 1 0 
-0.5t5+1.5t4-1.5t3+0.5t2 
 

quintic 6 0 0 0 0 0 1 
0.5t5-t4+0.5t3 
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Appendix  A11  Circle Approximations 
 
Four polynomial methods are shown that can be used to approximate a circle.  
Ellipses are obtained by skewing the control points as appropriate. 
 

Three Control Point Version 
The first curve, using the quadratic Golden with cubic tension added, produces a 
half circle with less than 0.5% (5000 ppm) radius error and only requires three 
control points.  The interpolated points are not uniformly spaced around the 
circle, but are slightly closer together at the center control point.  The three 
control points are at the arc center and ends.  The value of tension was chosen 
empirically to minimize the peak radius error.   

Golden W/Tension

P1 P3

P2

  

Radius Error

-0.50%

-0.40%

-0.30%

-0.20%

-0.10%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

-0.899Tension

t=1

  
Basis Matrix 
      P1   P2   P3 
   t3 |  -2T   0   2T  | 
   t2 | 2+3T  -4  2-3T | 
   t | -3-T   4   T-1 | 
   1 |   1    0    0  | Where T = -0.899 
 

   

Angle error (deg.) vs. t
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This plot shows the error of the actual location of the curve relative to an angle 
proportional to the parameter.

Cubic Bézier Version 
The second method, using the cubic Bézier, produces a quarter circle with less 
than 0.02% (200ppm) radius error and requires four control points.  This 
approximation was derived to place the arc mid point and ends on the circle, 
however the radius is greater everywhere else.  By applying a correction factor 
to reduce the value of "k", the peak radius error and angle error are reduced.  
The interpolated points are not uniformly spaced along the arc, but are slightly 
closer together at the arc ends.   
 

Cubic Bézier

1 P1

P2

P0

P3
             

With correction

Bézier Radius Error

-0.02%

-0.01%

0.00%

0.01%

0.02%

t=1

 
 

The standard cubic Bézier basis matrix is used, but the location of control points 
for a unit circle is as follows: 
 P0 P1 P2 P3 
 

X 0 k*c 1 1   Where k = 4(√2 - 1)/3 
Y 1 1 k*c 0   and correction factor c = 0.99933 
     Uncorrected c = 1 

Angle error (deg.) vs. t
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t=1

     

Bézier Radius Error

0.00%

0.01%

0.02%

0.03%

Without correction

t=1  
This plot shows the error of the  
actual location of the curve relative to  
the angle proportional to the parameter. 
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Hermite Method 
The third method, using Hermite functions, is a generalized form for an arc 
defined by half the angle between the arc end points.   
 

P0 & P1 are the arc end points.   
P2 is the point where the two tangents from P0 & P1 meet -  
    For the quarter circle in the first quadrant: 
  P0 = (0,1)   P1 = (1,0)   P2 = (1,1) 
 

Ø = theta = half the angle between the two end points P0, P1. 
r = radius. 
H = is the Hermite Basis functions (this is with the  
    parameter)  =  |h1 h2 h3 h4| 
He also appears to say that the center point of the curve,  
    p(0.5), is on the circle. 
 

The geometry vector in the standard Hermite form: 
 
        |          P0  |  P0 
        |          P1  |  P1 
        | | 
        |         4*Cos(th) | 
p = H * | (P2-P0)*--------- |  T0 
        |         1+Cos(th) | 
        | | 
        |         4*Cos(th) | 
        | (P1-P2)*--------- |  T1 
        |         1+Cos(th) | 
 

                              4*Cos(th) 

For a quarter circle (Ø=45°)  --------- = 4(√2 - 1) 
                              1+Cos(th) 
 

    

P0

P1

P2

Hermite arc diagram

r

2*Ø

 
This version was derived with a geometric construction described in Mortenson 
who reports that is has less then 10-6 error from the circle, but an analysis by the 
author shows it to be 2 x 10-4.  This version at a quarter circle (Ø= 45°) is 
equivalent to the Cubic Bézier.  They both produce equivalent representations of 
the same polynomial.  They produce a quarter circle and require four control 
points.  The whole circle is obtained by mirroring the coordinates.  The 

correction of 0.99933 can be applied to the tangents to obtain reduced error just 
as in the Bézier version above. 
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Zero Crossing Method 
The fourth method, using the cubic Bézier, is based on the zero crossings of the 
circle.  This version defines segments that join at the 45° points.  This version 
was derived using the cubic Bézier subdivision equations (equations 9.13 
through 9.18).  It produces a quarter circle with less than 0.02% (200ppm) radius 
error and requires four control points.  This approximation was derived to place 
the arc mid point and ends on the circle, however the radius is greater 
everywhere else.  The interpolated points are not uniformly spaced along the arc, 
but are slightly closer together at the arc ends.  These characteristics are the 
same as shown for the Cubic Bézier version above. 
 
The X axis crossing is "a" and the Y axis crossing is "b". 
 
        X            Y 

P0     a/√2        b/√2 
P1  a*(8-√2)/6   b*(7*√2-8)/6 
P2  a*(8-√2)/6  -b*(7*√2-8)/6 
P3     a/√2       -b/√2 
    

Cubic Bézier
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Insert the random arc approximation using Bezier.
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Appendix  A12  Basis Matrices, Fixed Types 
 
This appendix contains basis matrices for fixed interpolation 
types.  Included with each is information on the curve 
behavior, the inverse matrix, weighting function plots, and 
samples of the interpolated curve.  For a few types, the 
building block component functions are given. 
 
For interpolating long lists of control points, the start, step 
and end points are given so that segments connect end to end.    
Each basis matrix is shown in a 4x4 format because they have 
been extracted from a program that uses a common block of code 
to draw all of the curve types so they can be studied and 
compared.  Because of this, references to the start and end 
point should be closely examined.  Sometimes the first point 
used is called P0 and sometimes it is called P1.  Types that do 
not have a 4x4 basis matrix usually start on the point called 
P1.  For these types P0 may not exist.   
The rows, columns and entries of any specific type that are 
zero can be omitted from the calculation.  Some inverse 
matrices are shown their normal size.  Only some types have 
inverses and not all inverses are shown here. 
 
For the sample curves, the number of points per segment, the 
number of segments shown and the arrangement of control points 
were selected to best show the characteristics of each type.   
Note that some of the interpolated points can be obscured by 
the larger control points. 
 

Fixed Interpolation Types 
Linear 
Simple Cubic 
Parabolic (quadratic B-spline) 
Quadratic Bézier 
Quadratic Three Point (Golden) 
Cubic Bézier 
Cubic Four Point 
Hermite 
B-spline 
Catmul-Rom 
Quintic Super Segment 
 Improved Acceleration Factor 
 Equal Factors 
 Variable Factors 
 Cubic Bézier-like Acceleration 
 Hermite-like Form 
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Linear 
 
Produces interpolated points that are on a straight line 
between adjacent control points.  The spacing of the 
interpolated points (the velocity / first derivative) is 
constant within each segment.  The "curve" passes through both 
control points.  This is not a spline.   
 

  Basis Matrix    Inverse Matrix 
 

      P0  P1  P2  P3 
   t3 | 0   0   0   0 | 
   t2 | 0   0   0   0 | 
   t | 0  -1   1   0 |   | 0   1 | 
   1 | 0   1   0   0 |   | 1   1 | 
 

As t goes from 0 to 1 the curve goes from P1 to P2 
 

Piecewise loop parameters: 
 Start at the first control point P1. 
 Step one at a time. 
 End at next to last. 
 

This type needs two control points to interpolate a segment.  
One segment spans those two control points.   
 

0.0
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0.6

0.7
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P1

P2

 
        5 segments with 10 points  
      per segment.  End points are  
      covered by the control points. 
 

Simple Cubic 
 
Produces interpolated points that are on a straight line 
between adjacent control points.  The spacing of the 
interpolated points (the velocity / first derivative) decreases 
to zero at the control points.    The "curve" passes through 
both control points.  This is not a spline.  The weighting 
functions are the Hermite functions h1 & h2. 
 

Derived from source code found on the net written by Toby 
Orloff & Jim Larson.  U. of Minn. Geometry Supercomputer 
Project "omni_interp". 
 

  Basis Matrix   No inverse matrix exists 
 

      P0  P1  P2  P3 
   t3 | 0  +2  -2   0  | 
   t2 | 0  -3  +3   0  | 
   t | 0   0   0   0  | 
   1 | 0  +1   0   0  | 
 

As t goes from 0 to 1 the curve goes from P1 to P2 
 

Piecewise loop parameters: 
 Start at the first control point P1. 
 Step one at a time. 
 End at next to last. 
 

This type needs two control points to interpolate a segment.  
One segment spans those two control points.  The first 
derivative and therefore the velocity is always zero at control 
points.  This curve is a special case of the three variable 
Simple Cubic types with slope control. 
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t  
       5 segments with 8 new points  
      per segment.  End points are  
      covered by the control points. 
 

Component functions:  P1 = h1; P2 = h2 
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Quadratic B-spline / Parabolic 
 
Produces interpolated points that are on a curve that goes from 
the midpoint of line P0P1 to the midpoint of line P1P2 where it 
is tangent to those lines.  The curve does not pass through any 
control points.  This is a spline because the first derivatives 
are equal at the joints and it is a second degree function.  
This is the quadratic B-spline 
Provided by Leon de Boer. 
 
  Basis Matrix    Inverse Matrix 
 
       P0  P1  P2  P3 
   t3 |  0   0   0   0 | 
   t2 |  1  -2   1   0 |  1  | 0  -1   2 |  1 
   t | -2   2   0   0 | ---  | 0   1   2 | --- 
   1 |  1   1   0   0 |  2  | 4   3   2 |  2 
 
As t goes from 0 to 1 the curve goes from the midpoint of line 
P0P1 to the midpoint of line P1P2 . 
 
Piecewise loop parameters: 
 Start at the second control point P1. 
 Step one at a time. 
 End at next to last. 
 
This type needs three control points to interpolate a segment. 
The curve spans the two midpoints. For the curve to intercept 
the end points, there must be two co-located points.   
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1 segment with 10 points per segment.   
   This includes the points at t = 0 and t = 1. 
 
Component functions: P1 = 0.5 + Center Function 

Quadratic B-spline / Parabolic 
 

     

  

4 segments with 10 points per segment.  This  
  includes the two points at t = 0 and t = 1.  Since  
  the end points of each segment coincide, there  
  are 37 total unique points. 
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Quadratic Bézier 
 
Produces interpolated points that are on a curve starting on P1 
and ending on P3.  At P1 the curve is tangent to the line P1P2.  
At P3 the curve is tangent to the line P2P3 .  The result of 
this is that it appears that the curve goes "near" or is 
attracted to P2.  This is not a spline.  
 
  Basis Matrix   Inverse Matrix 
 
     P0  P1   P2  P3 
 t3 |  0   0    0   0 | 
 t2 |  0   1   -2   1 |  |  0   0   2 |  1 
 t |  0  -2    2   0 |  |  0   1   2 | --- 
 1 |  0   1    0   0 |  |  2   2   2 |  2 
 
As t goes from 0 to 1 the curve goes from P1 passing near P2 to 
P3 
 
Piecewise loop parameters: 
 Start at the first control point P1. 
 Step two at a time 
 End two from the last 
 
This type needs three control points to interpolate a segment.  
The segment spans the three control points.   
 
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

1
.0

t

P1

P2

P3

  

 

 

     

2 segments with 8 new points per  
     segment.  End points are   
     covered by the control points. 
 
Component functions: P2 = 2 * Center function 

Quadratic Three Point (Golden) 
 
Produces interpolated points that are on a curve through P1, P2 
and P3.  The center point P2 is at t = 0.5 on the curve.  This 
is not a spline. Derived by Sean Palmer and obtained in private 
e-mails. 
 
  Basis Matrix   Inverse Matrix 
 
       P0  P1  P2  P3 
   t3 |  0   0   0   0 | 
   t2 |  0   2  -4   2 |  |  0   0   4 |  1 
   t |  0  -3   4  -1 |  |  1   2   4 | --- 
   1 |  0   1   0   0 |  |  4   4   4 |  4 
 
As t goes from 0 to 1 the curve goes from P1 through P2 to P3 
 
Piecewise loop parameters: 
 Start at the first control point P1. 
 Step two at a time 
 End two from the last 
 
This type needs three control points to interpolate a segment.  
The segment spans the three control points.  This is also the 
quadratic Lagrange with t2 = 0.5.   
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2 segments with 8 new points  
      per segment.  End points are  
     covered by the control points. 
 
Component functions: P2 = 4 * Center function 
                     P3 = linear -2*h3 + 2*h4 
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Cubic Bézier 
 
Produces interpolated points that are on a curve starting on P0 
and ending on P3.  At P0 the curve is tangent to the line P0P1.  
At P3 the curve is tangent to the line P2P3.  The result of 
this is that it appears that the curve goes near or is drawn 
toward P1 and P2.  This is not a spline.   
 
  Basis Matrix    Inverse Matrix 
 
     P0    P1   P2   P3  
  t3 | -1    3   -3    1 | |  0   0   0   3 | 
  t2 |  3   -6    3    0 | |  0   0   1   3 |  1 
  t | -3    3    0    0 | |  0   1   2   3 | --- 
  1 |  1    0    0    0 | |  3   3   3   3 |  3 
 
As t goes from 0 to 1 the curve goes from P0, passes near P1 
and P2 to P3. 
 
Piecewise loop parameters: 
 Start at the first control point P0. 
 Step three at a time 
 End three from the last 
 
This type needs four control points to interpolate a segment.  
The segment spans the four control points. 
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     2 segments with 8 new points  
     per segment.  End points are   
    covered by the control points. 
 
Component functions: P1 =  3*h3 
                     P2 = -3*h4 
                     P3 = linear - h3 + 2*h4 
 

Cubic Four Point 
 
Produces interpolated points that are on a curve passing 
through P0, P1, P2 and P3.  This is not a spline.   
 
  Basis Matrix   Inverse Matrix 
 
    P0    P1    P2    P3  
t3 |  -9    27   -27    9 |  |  0   0   0  27 | 
t2 |  18   -45    36   -9 |  1 |  1   3   9  27 |  1 
t | -11    18    -9    2 | --- |  8  12  18  27 | --- 
1 |   2     0     0    0 |  2 | 27  27  27  27 | 27 
 
As t goes from 0 to 1 the curve goes from P0, through P1 and P2 
to P3. 
 
Piecewise loop parameters: 
 Start at the first control point P0. 
 Step three at a time 
 End three from the last 
 
This type needs four control points to interpolate a segment.  
The segment spans the four control points.  This is also the 
quadratic Lagrange with t1 = 1/3 and t2 = 2/3. 
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     2 segments with 32 new points  
     per segment   End points are   
    covered by the control points and   
   two coincide with the inner control   
   points). 
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Hermite 
 
Produces interpolated points that are on a curve starting on P0 
and ending on P3.  T0 is the tangent vector at P0 in Cartesian 
form (X1, Y1, Z1).  T3 is the slope or tangent vector at P3 in 
Cartesian form (X2, Y2, Z2).  T0 and T3 are not part of the 
image, but are tangent vectors relative to zero.    This is not 
a spline.  The end slopes are given directly by T0 and T3.  The 
first format accentuates the similarity to the cubic Bézier.  
It differs from what is usually shown for the Hermite (see 
below) where T0 & T3 are the right two columns.   
  Basis Matrix 
 
     h1   h3   h4  h2 
     P0   T0   T3   P3  
   t3 |  2    1    1   -2 | 
   t2 | -3   -2   -1    3 | 
   t |  0    1    0    0 | 
   1 |  1    0    0    0 | 
 
As t goes from 0 to 1 the curve goes from P0 to P3  
Piecewise loop parameters: 
 Start at the first control point P0. 
 Step three at a time. 
 End three from the last. 
 
This type needs four control points to interpolate a segment.  
The segment spans two of the control points (P0 P3).   T1 and 
T2 are the end tangent values.  They are absolute values and 
are not relative to the end points.    This arrangement was 
developed to allow it to fit in a piecewise interpolation loop 
like the other interpolation types. 
This arrangement can be related to the cubic Bézier.  On the 
cubic Bézier, the central two control points indirectly 
determine the end point tangents, relative to the end points. 
 
This is the more common format: 
 
     h1   h2  h3   h4 
       P0   P1   T0   T1  
   t3 |  2   -2    1    1 | 
   t2 | -3    3   -2   -1 | 
   t |  0    0    1    0 | 
   1 |  1    0    0    0 | 
 
As t goes from 0 to 1 the curve goes from P0 to P1  
Piecewise loop parameters: 
N/A 
 This arrangement does not easily fit into a piecewise loop 
like the arrangement above.   
 

Hermite 
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Add curves 
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Cubic B-Spline 
 
Produces interpolated points that pass near the control points.  
This is a spline.   
 
  Basis Matrix    Inverse Matrix 
 
   P0    P1   P2   P3  
t3 | -1    3   -3    1 |  |  0   2  -3   3 | 
t2 |  3   -6    3    0 |  1  |  0  -1   0   3 |  1 
t | -3    0    3    0 | --- |  0   2   3   3 | --- 
1 |  1    4    1    0 |  6  | 18  11   6   3 |  3 
 
As t goes from 0 to 1 the curve goes from near P1 to near P2  
 
Piecewise loop parameters: 
 Start at the second control point P1. 
 Step one at a time 
 End two from the last 
 
This type needs four control points to interpolate a segment.  
The segment spans the two inner control points although it does 
not pass through them. The end points are repeated to make the 
curve intercept them. 
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5 segments with 10 points per segment.   
      This includes the two points at t = 0  
      and t = 1.  Since the end points of  
      each segment coincide, there are 46  
      total points.  The joint points are  
      marked. 
 
 

Catmul-Rom 
 
Produces interpolated points that are on a smooth curve through 
all control points. 
 
  Basis Matrix   Inverse Matrix 
 
     P0    P1    P2   P3  
  t3 | -1     3   -3    1 |  |  1   1  -1   1 | 
  t2 |  2    -5    4   -1 |  1 |  0   0   0   1 |  1 
  t | -1     0    1    0 | --- |  1   1   1   1 | --- 
  1 |  0     2    0    0 |  2 |  6   4   2   1 |  1 
 
As t goes from 0 to 1 the curve goes from P1 to P2  
 
Piecewise loop parameters: 
 Start at the second control point P1. 
 Step one at a time 
 End two from the last 
 
This type needs four control points to interpolate a segment.  
The segment spans the two inner control points.  The slope at 
any control point is parallel to the line connecting the two 
adjacent control points. The end points are repeated to make 
the curve intercept them. 
 
   Add non-end repeat curve here 
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   5 segments with 8 new points per segment. 
 
Component Functions:  P0 = -h3 
                      P1 =  1-linear + h3 + 0.5*h4 
                      P2 =  linear - 0.5*h3 - h4 
                      P3 =  h4 
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Catmul-Rom 
 

    
  6 segments with 8 new points per segment. 
 
 
 
 
 
 
 

Quintic Super segment 
 
Improved Acceleration Factor 
Produces interpolated points that are on a curve starting on P0 
and ending on P5. The characteristics of this curve parallel 
the cubic Bezier with the addition of two control points that 
control the second derivative (acceleration) at the joints. 
Points P1 and P4 are the end tangent (velocity) control points 
just as in the cubic Bézier. At P0 the curve is tangent to the 
line P0P1. At P5 the curve is tangent to the line P4P5. Points 
P2 and P3 are the end acceleration control points and are 
manipulated like the tangent control points. At P0 the 
acceleration is tangent to the line P0P2.  At P5 the 
acceleration is tangent to the line P3P5. 
 

The tangents (velocities) at the ends are given by: 
V0 = 3(P1 - P0)  V5 = 3(P5 - P4) 
 

The accelerations at the ends are given by: 
A0 = 24(P2 - P0)  A5 = 24(P5 - P3)   
 

The result of this is that it appears that the curve goes near 
or is drawn toward P1 and P4.  This is not a spline.   
 

    Basis Matrix  V=3, A=24 
 

      P0   P1   P2    P3    P4    P5 
   t5 | 15   -9  -12    12   9   -15 | 
   t4 |-45   24   36   -24  -21   30 |  1 
   t3 | 44  -18  -36    12   12  -14 | --- 
   t2 |-12    0   12    0    0     0 |  1 
   t | -3    3    0    0    0     0 | 
   1 |  2    0    0    0    0     0 | 
 
As t goes from 0 to 1 the curve goes from P0, passes near P1 
and P4 and stops at P5.  The end tangents are equal to three 
times the spacing between the end point and the respective 
control point just as in the cubic Bézier. The end 
accelerations are equal to 24 times the spacing between the end 
point and the respective control point.  This factor was chosen 
to keep the acceleration control points near the respective end 
points (compared to the 3x version shown below). 
 
Piecewise loop parameters: 
 Start at the first control point P0. 
 Step five at a time 
 End five from the last 
 
This type needs six control points to interpolate a segment.  
The segment spans the six control points. 
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Quintic Super segment 
 
Equal factors 
In the following variation, the acceleration is three times the 
difference between the acceleration control point (P1P4) and 
the respective end point. 
 

The tangents (velocities) at the ends are given by: 
V0 = 3(P1 - P0)  V5 = 3(P5 - P4) 
 

The accelerations at the ends are given by: 
A0 = 3(P2 - P0)  A5 = 3(P5 - P3)   
 
 
 
 
    Basis Matrix  V=3, A=3 
 
      P0   P1   P2    P3    P4   P5 
   t5 |  9  -18   -3    3   18   -9 | 
   t4 |-27   48    9   -6  -42   18 |  1 
   t3 | 25  -36   -9    3   24   -7 | --- 
   t2 | -3    0    3    0    0    0 |  2 
   t | -6    6    0    0    0    0 | 
   1 |  2    0    0    0    0    0 | 
 
As t goes from 0 to 1 the curve goes from P0, passes near P1 
and P4 and stops at P5.  The end tangents are equal to three 
times the spacing between the end point and the respective 
control point just as in the cubic Bézier. The end 
accelerations are also equal to 3 times the spacing between the 
end point and the respective control point.  This factor was 
initially chosen to be the same as the velocity factor, but 
graphically the acceleration control points wind up rather far 
from the end points for reasonable changes in acceleration. 
 
Piecewise loop parameters: 
 Start at the first control point P0. 
 Step five at a time 
 End five from the last 
 
This type needs six control points to interpolate a segment.  
The segment spans the six control points. 
 
 
 
Needs sample curves. 
 
 

Quintic Super segment 
 
Variable factors 
The following variation is the more general form. The 
acceleration factor and velocity factor are variables. This 
implementation allows the user to adjust the factors A and V to 
place the graphics control points as desired. 
 
    Basis Matrix 
 
   P0      P1    P2   P3    P4       P5 
      (V0)  (A0) (A5) (V5) 
t5 |-12 +6V +A  -6V   -A    A    6V   12 -6V -A | 
t4 | 30-16V-3A  16V   3A  -2A  -14V  -30+14V+2A |  1 
t3 |-20+12V+3A -12V  -3A    A    8V   20 -8V -A | --- 
t2 |        -A   0     A    0    0       0      |  2 
t |    -2V     2V     0    0    0       0      | 
1 |  2          0     0    0    0       0      | 
 
As t goes from 0 to 1 the curve goes from P0, passes near P1 
and P4 and stops at P5.  The end tangents are equal to the 
spacing between the end point and the respective control point 
times "V". In the cubic Bézier this factor is three. The end 
accelerations are equal to the spacing between the end point 
and the respective control point times "A". A reasonable range 
for A is 6 to 30. By making the As and Vs under the left three 
control points different from those under the right three 
control points, indepentant factors are obtained for each end.   
 

The tangents (velocities) at the ends are given by: 
V0 = V(P1 - P0)  V5 = A(P5 - P4) 
 

The accelerations at the ends are given by: 
A0 = A(P2 - P0)  A5 = A(P5 - P3)   
 
Piecewise loop parameters: 
 Start at the first control point P0. 
 Step five at a time 
 End five from the last 
 

This type needs six control points to interpolate a segment.  
The segment spans the six control points. 
 
Cubic Bézier-like acceleration 
If it is desired to start with a segment equivalent to the 
cubic Bézier, use a velocity factor of 3 and place the 
acceleration control points as follows. 
P2 = [ (6+A)P0 - 12P1 + 6P4 ] / A 
P3 = [ (6+A)P5 - 12P4 + 6P1 ] / A 
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Quintic Super segment 
 
Hermite-like form 
In the following variation, the velocity and acceleration are 
given directly by the internal control values as in the 
Hermite. 
The tangents (velocities) at the ends are given by: 
V0 = Start tangent (velocity).  V5 = End tangent (velocity). 
 
The accelerations at the ends are given by: 
A0 = Start acceleration.   A5 = End acceleration.   
 
 
    Basis Matrix 
 
      P0   V0   A0    A5    V5   P5 
   t5 |-12   -6   -1    1   -6   12 | 
   t4 | 30   16    3   -2   14  -30 |  1 
   t3 |-20  -12   -3    1   -8   20 | --- 
   t2 |  0    0    1    0    0    0 |  2 
   t |  0    2    0    0    0    0 | 
   1 |  2    0    0    0    0    0 | 
 
As t goes from 0 to 1 the curve goes from P0 to P5.  The end 
tangents (velocities) are equal to V0 and V5 just as in the 
Hermite. The end accelerations are equal to A0 and A5   
 
Piecewise loop parameters: 
 Start at the first control point P0. 
 Step five at a time 
 End five from the last 
 
This type needs two control points to interpolate a segment.  
The segment spans the two control points.  Four additional 
controls are needed for each segment to define the end tangents 
(velocities) and accelerations. 
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Appendix  A13  Basis Matrices, Variable Types 
 
This appendix contains basis matrices for variable 
interpolation types.  These types contain additional parameters 
that can be varied to alter the shape of the curve without 
moving the control points.  Included with each is information 
on the curve behavior, the effect of the variable parameter and 
samples of the interpolated curve.   The inverse matrix and 
weighting function plots are not shown. 
Each basis matrix is shown in a 4x4 format because they have 
been extracted from a program that uses a common block of code 
to draw all of the curve types so they can be studied and 
compared.  Because of this, references to the start and end 
point should be closely examined.  Sometimes the first point 
required for a particular curve is called P0 and sometimes it 
is called P1.  Types that do not have a 4x4 basis matrix 
usually start on the point called P1.  For these types P0 may 
or may not exist.   
The rows, columns and entries of any specific type that are 
zero can be omitted from the calculation.    
For interpolating long lists of control points, the start, step 
and end points are given so that segments connect end to end.   
 
For the sample curves, the number of points per segment, the 
number of segments shown and the arrangement of control points 
were selected to best show the characteristics of each type.    
Note that some of the interpolated points can be obscured by 
the larger control points. 
 
 
  Variable Interpolation Types 

Simple Cubic W/ End Slope Control 
Simple Cubic W/ Midpoint Slope Control 
Simple Cubic W/ Independent End Slope Control 
Quadratic Bézier Family W/End Velocity Control 
Quadratic Lagrange W/Bias 
Cubic Lagrange W/Two Bias Controls 
Beta Spline W/Tension & Bias Controls 
Kochanek-Bartles W/Tension, Bias &  
    Continuity Controls 
Cubic Bézier Family W/End Velocity Control 
Quadratic three point W/Bias & Tension  
    Control (Palmer) 
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Simple Cubic with End Slope Control 
 
Produces interpolated points that are on a straight line 
between adjacent control points.  The spacing of the 
interpolated points (the velocity / first derivative) goes to 
the value of S0 at the control points.  The curve passes 
through both control points.  This is not a spline. 
 

   Basis Matrix  No inverse matrix exists 
 

      P0   P1    P2  P3 
   t3 | 0  2-2S0  2S0-2 0  | 
   t2 | 0  3S0-3  3-3S0 0  | 
   t | 0   -S0    S0  0  | 
   1 | 0    1     0  0  | 
 

As t goes from 0 to 1 the curve goes from P1 to P2 
 

Piecewise loop parameters: 
 Start at the first control point P1. 
 Step one at a time. 
 End at next to last. 
 

This type only needs two control points to interpolate a 
segment.  One segment spans those two control points.  The join 
points will connect, and the first derivative/velocity at the 
control points is specified by S0.  Because of this, the curve 
can over shoot the second control point in a segment (S0 > 9) 
or start headed away from the second control point (S0 < 0).  
For a value of S0 = 3 the velocity drops to zero half way 
between control points.  Please note that the values of S0 
shown for these weighting function plots were not selected to 
give all the same weighting function plots as shown for the 
simple-cubic-with-variable-midpoint-slope. 
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  P2 weighting Function    P1 weighting Function 
   With various values of S0 

Simple Cubic with End Slope Control 
 
 
Note: Because this type interpolates in a straight line between 
control points, the interpolated points can double back on 
themselves.  The weighting function plots give a good 
indication of the curve path.  To help visualize the curves, 
these plots are displaced to the right as t goes from 0 to 1 to 
eliminate the overlap. 
 
 

       
S0 = -1  S0 = 0  S0 = 1  S0 = 3 
     &         & 
    Simple Cubic  linear 
 
  1 segment with 32 new points per segment. 
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Simple Cubic with Midpoint Slope Control 
 
Produces interpolated points that are on a straight line 
between adjacent control points.  The spacing of the 
interpolated points (the velocity / first derivative) goes to 
the value of Sm at the midpoint between control points.  The 
curve passes through both control points.  This is not a 
spline. 
  Basis Matrix   No inverse matrix exists 
 
      P0   P1    P2  P3 
   t3 | 0  4Sm-4  4-4Sm 0  | 
   t2 | 0  6-6Sm  6Sm-6 0  | 
   t | 0  2Sm-3   3-2Sm 0  | 
   1 | 0    1     0  0  | 
 
As t goes from 0 to 1 the curve goes from P1 to P2 
 
Piecewise loop parameters: 
 Start at the first control point P1. 
 Step one at a time. 
 End at next to last. 
 
This type only needs two control points to interpolate a 
segment.  One segment spans those two control points. 
The join points will connect, and the first derivative/velocity 
at the midpoint of the segment is specified by Sm.  Because of 
this, the curve can over shoot the second control point in a 
segment (Sm < -3) or start headed away from the second control 
point (Sm > 1).  For a value of Sm = 0 the velocity drops to 
zero half way between control points.   
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P2 weighting Function  P1 weighting Function 
  With various values of Sm 

Simple Cubic with Midpoint Slope Control 
 
 
Note: Because this type interpolates in a straight line between 
control points, the interpolated points can double back on 
themselves.  The weighting function plots give a good 
indication of the curve path.  To help visualize the curves, 
these plots are displaced to the right as t goes from 0 to 1 to 
eliminate the overlap. 
 
 

       
Sm = 2  Sm = 1  Sm = 0  Sm = -3 
     & 
     linear 
 
  1 segment with 32 new points per segment. 
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Simple Cubic with Independent End Slope Control 
 
Produces interpolated points that are on a straight line 
between adjacent control points.  The spacing of the 
interpolated points (the velocity / first derivative) goes to 
the value of S0 at the segment start and S1 at the segment 
finish.  The curve passes through both control points.  This is 
not a spline. 
  Basis Matrix   No inverse matrix exists 
 
      P0   P1       P2    P3 
  t3 | 0  2-S0-S1  S0+S1-2 0  | 
  t2 | 0 2S0+S1-3  3-2S0-S1 0  | 
  t | 0   -S0       S0 0  | 
  1 | 0    1        0 0  | 
 
As t goes from 0 to 1 the curve goes from P1 to P2 
 
Piecewise loop parameters: 
 Start at the first control point P1. 
 Step one at a time. 
 End at next to last. 
 
This type only needs two control points to interpolate a 
segment.  One segment spans those two control points. 
The join points will connect, and the first derivative/velocity 
at the start of the segment is specified by S0 and the first 
derivative/velocity at the finish of the segment is specified 
by S1.   

Simple Cubic with Independent End Slope Control 
 
 
Note: Because this type interpolates in a straight line between 
control points, the interpolated points can double back on 
themselves.  The weighting function plots give a good 
indication of the curve path.  To help visualize the curves, 
these plots are displaced to the right as t goes from 0 to 1 to 
eliminate the overlap. 
 
 

     
S0 = 1 S0 = 0 S0 = 1 S0 = 3 S0 = 1 
S1 =-1 S1 = 1 S1 = 0 S1 = 0 S1 = 3 
 

  
S0 = 6 S0 = 6 
S1 = 0 S1 = 3 
 
  1 segment with 32 new points per segment. 
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Quadratic Bézier Family With End Velocity Control 
 

Produces interpolated points that are on a curve starting on P1 
and ending on P3.  At P1 the curve is tangent to the line P1P2.  
At P3 the curve is tangent to the line P2P3.  The parameter V 
changes the end tangent vector magnitude.  To get this control, 
the polynomial is cubic yet it still spans three control 
points. 
   Basis Matrix 
 
     P0  P1     P2   P3 
 t3 |  0   -V     0    V   | 
 t2 |  0  1+2V  -2-V  1-V  | 
 t |  0  -2-V   2+V   0   | 
 1 |  0   1      0    0   | 
 
As t goes from 0 to 1 the curve goes from P1 passing near P2 to 
P3.  When V is 0, the curve is the quadratic Bézier.  When V is 
-2 this is a simple cubic between P1 & P3.  When V is 2 the 
curve intercepts the center control point. 
 
Piecewise loop parameters: 
 Start at the first control point P1. 
 Step two at a time 
 End two from the last 
 
This type needs three control points to interpolate a segment.  
The segment spans the three control points.   

    
 Quadratic Velocity Bézier -2 ≤ V ≤ 3  steps of 1 
                     or     0 ≤ S ≤ 5 

    
 Quadratic Velocity Bézier -4 ≤ V ≤ -2  steps of 1 
                       or  -2 ≤ S ≤ 0 

Quadratic Bézier with End Velocity Control 
 

    
 Quadratic Velocity Bézier +2 ≤ V ≤ +4  steps of 1 
                       or   4 ≤ S ≤ +6 
 
 
 
 
 
A simple substitution of the variable gives a curve referenced 
to zero end velocity. 
 
  Basis Matrix (zero end Speed referenced) 
 
     P0   P1   P2  P3 
 t3 |  0   2-S   0  S-2  | 
 t2 |  0  2S-3  -S  3-S  | 
 t |  0   -S    S   0   | 
 1 |  0    1    0   0   | 
 
As t goes from 0 to 1 the curve goes from P1 passing near P2 to 
P3.  When S is 0 this is a simple cubic between P1 & P3.  When 
S is 2, the curve is the quadratic Bézier.  When S is 4 the 
curve intercepts the center control point. 
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Quadratic Lagrange 
 
Produces interpolated points that are on a curve through P1, P2 
and P3.  The value of t2 determines at what value of t the 
curve passes through P2.  This is not a spline, it only has G0 
continuity at the joints. 
 
 
 
  Basis Matrix    Inverse Matrix 
        not attempted. 
      P0    P1    P2    P3 
   t3 | 0     0     0     0   | 
   t2 | 0    n1    n2    n3   | 
   t | 0  -n1-1  -n2  -n3*t2 | 
   1 | 0     1     0     0   | 
 
Where t2 is the value of t at P2.   0 < t2 < 1 
 
   1      1     1 
 n1 = ---   n2 = --------  n3 = ---- 
  t2   t2(t2-1)   1-t2 
 
As t goes from 0 to 1 the curve goes from P1 through P2 to P3. 
 
Piecewise loop parameters: 
 Start at the first control point P1. 
 Step two at a time 
 End two from the last 
 
This type needs 3 control points to interpolate a segment.  The 
segment spans the three control points.  When t2 = 0.5, this is 
the quadratic three point (Golden).  Bias causes the curve to 
pass through the center control point P2 at different values of 
"t".  The result is that the curve "peaks" before (preshoot) or 
after (post shoot) the center control point P2.  The peak, 
however, is always at t = 0.5. 
 
 
 
 
 
 
 
 
 
 
 

Quadratic Lagrange 
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         High Post shoot. 
   1 segment with 16 new points per segment.  End  
   points are covered by the control points. 

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

1
.0

<-P1

<-P2

t

<-P3

0.333t2 =

  

 

      Moderate Post shoot 



 A13  Variable Types Variable Types A13 

Interpolation and Curves for Graphics © August 14, 2010 Stephen H. Noskowicz Interpolation Reference 163 
 163 

Quadratic Lagrange 
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Quadratic Lagrange 
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Cubic Lagrange 
 
Produces interpolated points that are on a curve passing 
through P0, P1, P2 and P3.  The value of t1 determines at what 
value of t the curve passes through P1.  The value of t2 
determines at what value of t the curve passes through P2.  
This is not a spline, it only has G0 continuity at the joints. 
 
    Basis Matrix   Inverse Matrix 
         not attempted 
 
        P0            P1         P2            P3 
 t3 |     -n0            n1         n2          n3 | 
 t2 | +n0(t1+t2+1)     n1(t2+1)   n2(t1+1)  -n3(t1+t2)| 
 t1 |-n0(t1+t2+t1t2)   -n1t2      -n2t1       n3t1t2 | 
 t0 |      1             0          0           0  | 
 
As t goes from 0 to 1 the curve goes from P0 through P1 & P2 to 
P3.  Where t1 is the value of t at P1 and t2 is the value of t 
at P2. 
 
  0 < t1 < t2 < 1 
  
   1               1 
 n0 = ----     n1 = --------------- 
  t1t2      t1(t1-t2)(1-t1) 
 
         1          1 
 n2 = ---------------  n3 = ------------ 
  t2(t2-t1)(1-t2)   (1-t1)(1-t2) 
 
Piecewise loop parameters: 
 Start at the first control point P0. 
 Step three at a time 
 End three from the last 
 
This type needs four control points to interpolate a segment.  
The segment spans the four control points.  When t1 = 1/3 and 
t2 = 2/3, this is the cubic four point.  Bias causes the curve 
to pass through P1 when t = t1 and P2 when t = t2.  The result 
is that the curve "peaks" before (preshoot) or after (post 
shoot) the center control points P2 and P3. 
 
 
 
 
 
 

Cubic Lagrange  
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Both biases early. 
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Cubic Lagrange 
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Beta Spline 
 
This is the cubic B-Spline with tension and bias control. 
As tension goes from 0 to infinity, attraction is toward 
control point P1.  As tension goes to about -6, curve "repels" 
from control point P1.  As Bias goes from 1 to infinity 
attraction moves the joint from point P1 earlier toward P0.  As 
bias goes from 1 to 0, attraction moves the joint later toward 
P2. 
 

  Basis Matrix 
 

   P0         P1           P2       P3  
t3 | -2B3   2(T+B3+B2+B)  -2(T+B2+B+1)  2 | 
t2 | +6B3  -3(T+2B3+2B2)    3(T+2B2)    0 |        1 
t | -6B3     6(B3-B)          6B       0 |  -------------- 
1 |  2B3     T+4(B2+B)         2       0 |  T+2B3+4B2+4B+2 
 

As t goes from 0 to 1 the curve goes from near P1 to near P2.  
For B=1 & T=0  this traces the B-Spline.   
 

Piecewise loop parameters: 
 Start at the second control point P1. 
 Step one at a time 
 End two from the last 
 

This type needs four control points to interpolate a segment.  
The segment spans the two inner control points although it does 
not pass through them.  Tension pulls the curve toward the 
control points.  Bias moves the joints backward toward the 
previous control point or forward toward the next control 
point. 
   These curves have 5 segments with 10 points  
   per segment.  This includes the two points  
   at t = 0 and t = 1.  Since the end points  
   of each segment coincide, there are 46  
   total points.  The knot points are marked. 
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     Negative Tension. 
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Beta Spline 
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

1
.0

t

P0

P1 P2

P3

T= B=50 1

  
      High Tension 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

1
.0

t

P0

P1

P2

P3

T= B=0 2
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     Moderate Tension, Early Bias. 
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Beta Spline 
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Kochanek-Bartels 
 
Produces interpolated points that are on a smooth curve through 
all control points.  There is control of the tension, bias and 
continuity at the control points.  The tension parameter 
controls the magnitude of the tangent vector (speed) at the 
control points.  The Bias parameter controls the direction of 
the tangent vector at the control points by changing the 
relative effect of the two adjacent control points. The 
continuity parameter causes the incoming tangent vector to 
differ in direction from the out going tangent vector in a 
symmetrical manner.  
 
    Basis Matrix 
 
     P0      P1         P2       P3  
   t3 |  -A    4+A-B-C   -4+B+C-D    D | 
   t2 | +2A  -6-2A+2B+C  6-2B-C+D   -D |  1 
   t |  -A     A-B         B        0 | --- 
   1 |   0      2          0        0 |  2 
 
Where A, B, C and D are defined as: 
A=(1-Te)*(1+Co)*(1+Bi) 
B=(1-Te)*(1-Co)*(1-Bi) 
C=(1-Te)*(1-Co)*(1+Bi) 
D=(1-Te)*(1+Co)*(1-Bi) 
 
As t goes from 0 to 1 the curve goes from P1 to P2  
Tension       Te=+1-->Tight             Te=-1--> Round 
Bias          Bi=+1-->Post Shoot        Bi=-1--> Pre shoot 
Continuity    Co=+1-->Inverted corners  Co=-1--> Box corners 
 
When Te = Bi = Co = 0 this is the Catmul-Rom. 
When Te = 1 this is the Simple Cubic (Bi & Co are don't care)  
When Te = Bi = 0 & Co = -1 this is the linear interp. 
 
Piecewise loop parameters: 
 Start at the second control point P1. 
 Step one at a time 
 End two from the last 
 
This type needs four control points to interpolate a segment.  
The segment spans the two inner control points.  Additional  
controls are required for Tension Bias and Continuity.  This 
can be done globally as shown here, requiring three additional 
controls or locally requiring three controls for each segment. 
 
To obtain independent local control of the segment start and 
end for tension, bias and continuity, make two T, C & Bs.  One 
for A & B (segment beginning) and one for C & D (segment end). 

Kochanek-Bartels 
 
There are two ways to do local control of tension, bias and 
continuity. 
For local control of each point as shown on the video or in the 
paper, you'll need an array of T, C & Bs for each individual 
point.  You use the  "A" & "B" for the current segment and the 
"C" & "D" for the previous segment. 
For local control of both ends of each segment together, use 
"A", "B", "C" & "D" from the same segment.  This can be 
considered a generalization of the Catmul-Rom.  The end control 
points are not intercepted unless they are repeated. 
 
 
These are shown with 5 segments of 16 new points per segment.  
Some of these points are covered by the control point dots. 
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Kochanek-Bartels 
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    High tension, equivalent to Simple Cubic 
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Kochanek-Bartels 
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       Equivalent to Linear 

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

1
.0

t

P 0

P 1 P2

P3

T= B= C=1 0 -1

 
     Equivalent to Simple Cubic. 
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Kochanek-Bartels 
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      Zero velocity at mid points. 
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Kochanek-Bartels 
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Cubic Bézier Family With End Velocity Control 
 
Produces interpolated points that are on a curve starting on P0 
and ending on P3.  At P0 the curve remains tangent to the line 
P0P1.  At P3 the curve remains tangent to the line P2P3.   
 
      Basis Matrix 
 
      P0      P1    P2   P3 
   t3 | -1-V   3+V  -3-V  1+V | 
   t2 |  3+2V -6-2V  3+V   -V | 
   t | -3-V   3+V    0    0  | 
   1 |   1     0     0    0  | 
 
As t goes from 0 to 1 the curve goes from P0 to P3.  The 
parameter V controls the end tangent magnitude. 
 
Piecewise loop parameters: 
 Start at the first control point P0. 
 Step three at a time 
 End three from the last 
 
This type needs four control points to interpolate a segment.  
The segment spans the four control points.   
 

     
  Cubic Velocity Bézier -2 ≤ V ≤ +2  steps of 1 
 
Now a non-bitmapped PICTure which should show dots? 
 
 
 

Palmer 
 
Produces interpolated points that are on a curve from P1, near 
P2 to P3.  This is a generalized form of the Golden with bias 
control and a crude form of tension control.  The curve 
intercepts P2 at a parameter value of t1 if T = 0.0 .  This is 
not a spline.  Derived by Sean Palmer and obtained in private 
e-mails. 
 
 
      Basis Matrix 
 
       P0    P1     P2     P3 
   t3 |  0    -2T      0    2T    | 
   t2 |  0   n0+3T   -n1   n2-3T  | 
   t |  0  -1-n0-T   n1  T-n2/n0 | 
   1 |  0     1       0     0    | 
 
n0 = 1/t1 
n1 = 1/(t1*(1-t1)) 
n2 = 1/(1-t1) 
 
As t goes from 0 to 1 the curve goes from P1 passing 
near/through P2 to P3.  
T is a tension-like parameter.  The curve becomes sharper at t 
= 0.5 when T is positive and less sharp when T is negative.   
The curve only intercepts P2 when T = 0.0.   
t1 is Bias.  The curve passes near / through P2 when t = t1. 
 
 
Piecewise loop parameters: 
 Start at the first control point P1. 
 Step two at a time 
 End two from the last 
 
This type needs three control points to interpolate a segment.  
The segment spans the three control points.  When t2 = 0.5 and 
T = 0.0 this is the Golden.  When T = 0.0 this is the quadratic 
Lagrange.  

 
 
Needs sample curves
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Appendix  A14  Basis Matrices, Morph Types 
 
This appendix contains basis matrices for morph interpolation 
types.  Included with each is information on the curve 
behavior, the effect of the morph parameter and samples of the 
interpolated curve.   The inverse matrix and weighting function 
plots are not shown. 
Sometimes the first point required for a particular curve is 
called P0 and sometimes it is called P1.  Types that do not 
have a 4x4 basis matrix usually start on the point called P1.  
For these types P0 may or may not exist.  The rows, columns and 
entries of any specific type that are zero can be omitted from 
the calculation.    
 
The example curves are drawn as lines to better show the range 
of curve behavior.  Since they are based on other types of 
curves, the parametric speed (dot spacing) can be deduced from 
the foundation curves or the reader can calculatr thr 
derivative or code them up and observe them.  
  Morph Interpolation Types 

B-Simp 
B-Cat 
Quadratic W/Attraction / Pressure control 
Cubic W / Attraction Control #1 
Cubic W / Attraction Control #2 
Linear W/Phase Control 
Parabolic W/Phase Control 
Parabolic W/ Attraction Control 
Quadratic Bézier  W/Phase Control 
Catmul-Rom W/Phase Control 
B-spline W/Phase Control 
Quadratic to Cubic Bézier Morph 
Cubic to Quartic Bézier morph (soft degree  
         elevation) 
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B-Simp 
(B-Spline --> Simple Cubic) 
 
Produces interpolated points that pass near the control points.  
The parameter A, called attraction, causes the curve to be 
attracted toward the control points.   
 
   Linear Morph Basis Matrix 
 
    P0     P1     P2     P3  
t3 | A-1   3+9A  -3-9A   1-A | 
t2 | 3-3A -6-12A  3+15A   0  |  1 
t | 3A-3   0     3-3A    0  | --- 
1 | 1-A   4+2A    -A     0  |  6 
 
As t goes from 0 to 1, the curve goes from near P1 to near P2.  
As A goes from 0 to 1 the curve goes from the B-spline to the 
Simple Cubic. 
 
Piecewise loop parameters: 
 Start at the second control point P1. 
 Step one at a time 
 End two from the last 
 
This type needs four control points to interpolate a segment.  
The segment spans two control points although it does not 
necessarily pass through them.  
 

    
B-Spline --> Simple Cubic, Linear 0 ≤ A ≤ 1  steps of 0.5 
 

    
B-Spline --> Simple Cubic, linear -2 ≤ A ≤ 0  steps of 0.5 
 

B-Spline --> Simple Cubic 
 

    
B-Spline --> Simple Cubic, linear 1 ≤ A ≤ 2  steps of 0.5 
 
 
An interesting variation is obtained when the divisor is also 
morphed. 
 
 Non-Linear Morph Basis Matrix 
 
    P0     P1     P2   P3  
t3 | A-1   3-A    A-3  1-A | 
t2 | 3-3A  3A-6    3    0  |  1 
t | 3A-3   0     3-3A  0  | ---- 
1 | 1-A   4-3A   1-A   0  | 6-5A 
 
As t goes from 0 to 1 the curve goes from near P1 to near P2.  
As A goes from 0 to 1 the curve goes from the B-spline to the 
simple cubic.  The practical range of A is -60 to 1.19.  The 
function is undefined at A = 1.2 due to the 6-5A in the 
divisor. 
 

    
B-Spline -> Simple cubic, non-linear A = -60, 0, .75, 1, 1.1 
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B-Cat 
B-Spline --> Catmul-Rom 
 
Produces interpolated points that pass near the control points.  
The parameter A, called attraction, causes the curve to be 
attracted toward the control points.     
 

   Linear Morph Basis Matrix 
 

      P0    P1     P2    P3  
 t3 | -1-2A  3+6A  -3-6A  1+2A | 
 t2 |  3+3A -6-9A   3+9A  -3A  |  1 
 t |  -3     0      3     0   | --- 
 1 |  1-A   4+2A   1-A    0   |  6 
 

As t goes from 0 to 1, the curve goes from near P1 to near P2   
As A goes from 0 to 1 the curve goes from the B-spline to the 
Catmul-Rom. 
 
Piecewise loop parameters: 
 Start at the second control point P1. 
 Step one at a time 
 End two from the last 
 

This type needs four control points to interpolate a segment.  
The segment spans two control points although it does not pass 
through them except when A = 1.  Note that since the endpoints 
of the B-spline and Catmul-Rom do not coincide, they will drift 
as Attraction varies unless end control points are duplicated 
 

    
 B-Spline --> Catmul, linear 0 ≤ A ≤ 1  steps of 0.5 
 

    
 B-Spline --> Catmul, linear -2 ≤ A ≤ 0  steps of 0.5 

B-Spline --> Catmul-Rom 
 

    
  B-Spline --> Catmul, linear 1 ≤ A ≤ 2  steps of 0.5 
 
 
 
An interesting variation is obtained when the divisor is also 
morphed. 
 
 Non-Linear Morph Basis Matrix 
 
    P0     P1     P2   P3  
t3 | -1     3     -3    1  | 
t2 | 3-A   A-6    3+A  -A  |  1 
t |2A-3    0     3-2A  0  | ---- 
1 | 1-A  4-2A    1-A   0  | 6-4A 
 
As t goes from 0 to 1, the curve goes from near P1 to near P2   
As A goes from 0 to 1 the curve goes from the B-spline to the 
Catmul-Rom.  The practical range of A is -60 to 1.49.  The 
function is undefined at A = 1.5 due to the 6-4A in the 
divisor.   

   

1.1

1.2

 A= 0

A= -60

 1

 .75

 
B-Spline --> Catmul, non-linear A = -60, 0, .75, 1, 1.1, 1.2 
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Quadratic Bézier based w/Attraction Control 
 
Produces interpolated points that are on a curve starting on P1 
and ending on P3.  The parameter A, called attraction, causes 
the curve to be attracted toward the center control point.    
   Basis Matrix 
 
     P0  P1    P2    P3 
 t3 |  0   0     0     0   | 
 t2 |  0  1+A  -2-2A  1+A  | 
 t |  0 -2-A   2+2A  -A   | 
 1 |  0   1     0     0   | 
 

As t goes from 0 to 1 the curve goes from P1 passing near P2 to 
P3.  When A is 0, the curve is the quadratic Bézier.  When A is 
1, this passes through P2 (quadratic Golden).  When A is -1, 
this is linear between P1 and P3.   
 

For both variations: 
Piecewise loop parameters: 
 Start at the first control point P1. 
 Step two at a time 
 End two from the last 
 

This type needs three control points to interpolate a segment.  
The segment spans the three control points.   
 

    

2

-2

 A=0

1

 -1

 
 Quadratic with Attraction  -2 ≤ A ≤ 2  steps of 1 
                         or -1 ≤ P ≤ 3 
 

Quadratic Bézier based w/Attraction Control 
 
Defining a variable "P" that is zero when A=-1 (straight line) 
gives behavior roughly analogous to pressure. P = A+1 
  Basis Matrix (zero pressure referenced) 
 
     P0   P1   P2   P3 
 t3 |  0    0    0    0   | 
 t2 |  0    P   -2P   P   | 
 t |  0  -1-P   2P  1-P  | 
 1 |  0    1    0    0   | 
 
As t goes from 0 to 1 the curve goes from P1 passing near P2 to 
P3.  When P is 0 this is linear between P1 & P3.  When P is 1, 
this is the quadratic Bézier.  When P is 2, this passes through 
P2 (quadratic Golden).  
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Cubic w/ Attraction Control #1 
 
Produces interpolated points that are on a curve starting on P0 
and ending on P3.  The curve goes "near" or is attracted to P1 
and P2.    
 
   Basis Matrix 
 
      P0     P1    P2   P3 

   t3 | A-1   3+A  -3-A  1-A | 
   t2 | 3-A  -6-2A  3+A   2A | 
   t | -3    3+A    0   -A  | 
   1 |  1     0     0    0  | 
 
As t goes from 0 to 1 the curve goes from P0 to P3   When A is 
0, this is the cubic Bézier. 
 
Piecewise loop parameters: 
 Start at the first control point P0. 
 Step three at a time 
 End three from the last 
 
This type needs four control points to interpolate a segment.  
The segment spans the four control points.  
 

  

A = -2

 0

 2

 -2

 2

 
 
 
 Cubic Attraction #1  -2 ≤ A ≤ 2  steps of 1 
 
 
Note that this curve has irregular behavior.  The behavior 
around the inner control points is not consistent as the 
control points move. 

Cubic With Attraction Control #1  
 

   

A = -2

 0

 2

 -2

 0

 2

 
 
  Cubic Attraction #1  -2 ≤ A ≤ 2  steps of 1 
  The behavior near the inner control points  
  is not consistent. 
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Cubic w/ Attraction Control #2 
 
Produces interpolated points that are on a curve starting on P0 
and ending on P3.  The curve goes near P1 and P2.    
 
      Basis Matrix 
 
       P0      P1     P2    P3 
   t3 | -2-7A  6+21A -6-21A 2+7A | 
   t2 | 6+12A -12-33A 6+30A -9A  |  1 
   t | -6-5A  6+12A   9A    2A  | --- 
   1 |   2      0      0    0   |  2 
 
As t goes from 0 to 1, the curve goes from P0 to P3.  When A is 
zero, this is the Cubic Bézier.  When A is 1, this is the Cubic 
Four Point and the curve passes through the inner control 
points. 
 
Piecewise loop parameters: 
 Start at the first control point P0. 
 Step three at a time 
 End three from the last 
 
This type needs four control points to interpolate a segment.  
The segment spans the four control points.   
 

  

A = -1

 1 

 0 

 1 

 0 

 -1 

 
   Cubic with Attraction  #2 -1 ≤ A ≤ 1  steps of 0.5 
 
Note that this curve has irregular behavior.  The behavior 
around the inner control points is not consistent as the 
control points move. 
 
Show the other set of control points like type #1 

Cubic w/ Attraction Control #2 
 
 

  

 1  0

 -1
A = -1

 1

 0

 
 
   Cubic with Attraction  #2 -1 ≤ A ≤ 1  steps of 0.5 
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Linear w/ Phase Control 
 
Produces linear interpolated points that are in a straight 
line.  The Phase parameter shifts from one set of control 
points to the next that is shifted by one in the sequence.  It 
is a morph of the line from the P0P1 line to the P1P2 line. 
 
    Basis Matrix 
 
     P0    P1   P2 
   t | -1+P  1-2P  P | 
   1 |  1-P   P    0 | 
 
 

   P1

P2 P3

P=.4

P=.6

P=.8

 
  Linear with Phase in steps of 0.2 
 

   

P = 0

.9

.5

 
 

      
  Phase at 0.1.   Phase at 0.2. 
 
These show quite clearly the apparent motion of control points 
to the right in the sequence.  The joints move on a straight 
line to the next control point. 

Parabolic (quadratic B-spline) w/ Phase Control 
 
Produces a parabolic curve.  The Phase parameter shifts from 
one set of control points to the next that is shifted by one in 
the sequence.  It is a morph from the curve with control points 
P0P1P2 to the curve with control points P1P2P3. 
 
 
       P0     P1     P2    P3  
   t2 |  1-P  -2+3P  1-3P    P  |  1 
   t | -2+2P  2-4P   2P     0  | --- 
   1 |  1-P    1      P     0  |  2 
 
 

 P0

P1 P2

P3

P=0
.2
.4 .6

.8
1

   P0

P1

P2

P3

P=0

1

0.5

 
       Steps of 0.2        Steps of 0.1 
 

   

P = 0

.2
.4

.6

.8

1

 
        Steps of 0.2 
 
The small difference between the phase-shifted curves makes 
this a rather un-interesting variation.  The start of the P=1 
curve is at the arrow and most of it is hidden by the P=0 
curve until it emerges as a dotted line at the upper right. 
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Quadratic Bézier w/ Phase Control 
 
 
      Basis Matrix 
 
       P0     P1   P2    P3 
   t2 |  1-P -2+3P  1-3P   P  | 
   t | -2-P  2-4P   2P   2P  | 
   1 |  1-P    P    0    0   | 
 
 

 

P = 0P= 1

P0 P3

P1 P2

  P0

P1

P2

P3

P=.4

.2

.6

.8

 
     Steps of 0.1   Steps of 0.2 
 
 
 

   

P = 0

.9

.5

 
     Steps of 0.1 

Catmul-Rom w/ Phase Control 
 
 
      Basis Matrix 
 
       P0    P1     P2    P3   P4 
   t3 | 1-P   3-4P -3+6P  1+4P   P | 
   t2 | 2-2P -5+7P  4-9P -1+5P  -P |  1 
   t |-1+P    -P   1-P    -P    0 | --- 
   1 |  0    2-2P   2P     0    0 |  2 
 

 

P=0

.2 .4

.8

.6

1

P0

P1

P2

P3

P4  P0

P1

P2

P3

P4

.2 .4

.8

.6

1

P=0

 
 

   

P = 0

.4

.8

.2

.6

 1

 
 

    
    Phase at 0.5 
Arrows indicate the location half way to the next control 
point.  This is where the effective control points are located 
due to the phase shift of 0.5.  With control points at these 
locations, the standard Catmul-Rom technique would draw this 
same curve.   
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Catmul-Rom w/ Phase Control 
 
 

   

P = .1

.9

1.3

.5

 
With phase values greater than 1, the location of the 
interpolated control points can be seen to extend past the 
next in line.  

Cubic B-Spline w/ Phase Control 
 
 
      Basis Matrix 
 
       P0    P1     P2    P3   P4 

   t3 |-1+P   3-4P -3+6P  1+4P   P | 
   t2 | 3-3P -6+9P  3-9P  -3P    0 |  1 
   t |-3+3P  -3P   3-3P  -3P    0 | --- 
   1 | 1-P   4-3P  1+3P   -P    0 |  6 
 

  

P = 0

P = 1  
 
The start of the P=1 curve is at the arrow and most of it 
coincides with the P=0 curve.  The small difference between 
the phase-shifted curves makes this a rather un-interesting 
variation. 
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Quadratic to Cubic Bézier Morph 
 
Produces points on a curve that changes from a quadratic Bézier 
to cubic Bézier.   
 
 
 
   Basis Matrix 
 
      P0    P1    P2    P3    P4  
  t3 |  -M    3M    0    -3M    M  | 
  t2 | 1+2M  -6M   2+2M   3M   1-M | 
  t | -2-M   3M   2-2M    0    0  | 
  1 |   1     0    0      0    0  | 
 
As t goes from 0 to 1 the curve goes from P0 to P4.  As the 
Morph parameter "M" goes from 0 to 1, the curve goes from 
quadratic Bézier to cubic Bézier.  For the quadratic curve 
(m=0), P2 is the inner control point.  For the cubic, P1 and P3 
are the inner control points.  This may be considered to be 
like a "soft" degree elevation, though the curve is quadratic 
only when M = 0.   
 

 

P0

P1

P2

P3

P4

   

P2

P4

P3

P0

P1  

Cubic to Quartic Bézier Morph 
 
Produces points on a curve that changes from a cubic Bézier to 
quartic Bézier.   
 
 
 
   Basis Matrix 
 
       P0    P1     P2   P3    P4  
  t4 |   M    -4M    6M   -4M    M  | 
  t3 | -1-3M  3+9M  -2M  -3+7M  1-M | 
  t2 |  3+3M -6-M    6M   3-3M   0  | 
  t | -3-M   3+M    0     0     0  | 
  1 |   1     0     0     0     0  | 
 
As t goes from 0 to 1 the curve goes from P0 to P4.  As the 
Morph parameter "M" goes from 0 to 1, the curve goes from cubic 
Bézier to quartic Bézier.  For the cubic curve, P1 and P3 are 
the inner control points.  For the quartic, P1, P2 and P3 are 
the inner control points.  This may be considered to be like a 
"soft" degree elevation, though the curve is cubic only when M 
= 0.   
 
 
 
Needs sample curves 
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Appendix  A15  Trigonometric Weighting Functions 
 
This appendix contains trigonometric basis matrices.  Though not covered in the 
text, these are derived using trig functions.  The parameter is the angle used in 
the trig functions and instead of the parameter vector (matrix) containing powers 
of the parameter "t", it contains the trig functions as shown in Noskowicz 
Notation, to the left of the basis matrix. 
 
Included with each is information on the curve behavior and samples of the 
interpolated curve.   
The rows, columns and entries of any specific type that are zero can be omitted 
from the calculation.    
 
For the sample curves, the number of points per segment, the number of 
segments shown and the arrangement of control points were selected to best 
show the characteristics of each type.    Note that some of the interpolated points 
can be obscured by the larger control points. 
 
The example curves are drawn as dots to better show the range of curve 
behavior.   
 
NOTE:  The basis matrix for trigonometric curves contains only ones. The 
methods for finding start/end points and tangents differ from the polynomial 
curves.  The full weighting function for each point must be evaluated as follows. 
Each trig function value (evaluated at the appropriate parameter value of t=0 or 
t=1) is multiplied by the basis matrix entry to its right to obtain the "true" entry 
value.  Then the "true" values are always summed by columns.  To take the 
derivative in order to find the end tangents, the derivative of the trig functions in 
the parameter vector (to the left of the basis matrix) must be used.   
The derivative of Cos(πt) = - πSin(πt).   
The derivative of Sin(πt) = πCos(πt). 
The derivative of Sin(πt)*Cos(πt) = πCos(2πt) 
 
  Trig. Interpolation Types 

Simple 
Cubic Bézier like 
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Simple Trig 
 
This type is very similar to the Simple Cubic. 
Produces interpolated points that are on a straight line 
between adjacent control points.  The spacing of the 
interpolated points (the velocity / first derivative) decreases 
to zero at the control points.    The "curve" passes through 
both control points.  This is not a spline.  The weighting 
functions are a portion of the cosine function. 
   Basis Matrix 
 

     P0    P1  1 
 COS(πt) |  1   -1  |  --- 
   1  |  1    1  | 2 
 

As t goes from 0 to 1 the curve goes from P0 to P1 
 

Piecewise loop parameters: 
 Start at the first control point P0. 
 Step one at a time. 
 End at next to last. 
 

This type needs two control points to interpolate a segment.  
One segment spans those two control points.  The first 
derivative and therefore the velocity is always zero at control 
points.  

   
0.0
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P1P0

 
 

Position basis matrix showing sum of columns for determining 
the start and end point of the curve. 
 

     P0    P1 1 
 COS(πt) |  1   -1  |  --- 
   1  |  1    1  | 2 
 

Sum of collumns. 
t=0,COS(0)=1  ->  2    0  start is P0 
t=1,COS(1)=-1 ->  0    2  finish is P1 

Simple Trig 
 
Derivative of basis matrix showing sum of columns for 
determining the start and end tangents. 
 
     P0     P1 π 
  -Sin |  1   -1  |  --- 
    0 |  1    1  |   2 
 
t=0,-SIN(0)=0 ->  0    0  start slope is zero. 
t=1,-SIN(1)=0 ->  0    0  finish slope is zero. 
 
 
 
 
 
 
 
 
Needs sample curves. 
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Imitation of Cubic Bézier 
 
This type is very similar to the Cubic Bézier. 
Produces interpolated points that are on a curve starting on P0 
and ending on P3.  At P0 the curve is tangent to the line P0P1.  
At P3 the curve is tangent to the line P2P3.  The result of 
this is that it appears that the curve goes near or is drawn 
toward P1 and P2.  This is not a spline.  Whereas the Cubic 
Bézier end tangents are equal to three times the distance 
between the end and adjacent control point, this tangent is π 
times the distance. 
     Basis Matrix 
 

      P0     P1    P2   P3 
  SIN(πt)*COS(πt) | -1     1    -1    1 |  1 
 SIN(πt)  | -1     1     1   -1 | --- 
 COS(πt)  |  1     0     0   -1 |  2 
  1   |  1     0     0    1 | 
 
As t goes from 0 to 1 the curve goes from P0, passes near P1 
and P2 to P3. 
 

Piecewise loop parameters: 
 Start at the first control point P0. 
 Step three at a time 
 End three from the last 
 

This type needs four control points to interpolate a segment.  
The segment spans the four control points. 
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Slope of 1 radian

 
    Horizontal axis is t, not π * t. 
 

Imitation of Cubic Bézier 
 
Derivative of basis matrix showing sum of columns for 
determining the start and end tangents. 
 
     P0     P1    P2   P3 
  COS(2πt) | -1     1    -1    1 |  π 
   COS(πt) | -1     1     1   -1 | --- 
  -SIN(πt) |  1     0     0   -1 |  2 
  0  |  1     0     0    1 | 
 
Sum of collumns. 
t=0, COS(2πt)=1 
 COS(πt)=1 
 -SIN(πt)=0  -2     2     0    0 start tangent = π*(P1-P0) 
 
t=1, COS(2πt)=1 
 COS(πt)=-1 
 -SIN(πt)=0   0     0    -2    2 start tangent = π*(P3-P2) 
 
 
Needs sample curves.

 


