
o 

iH 

Q 

TECHNICAL REPORT 

63 - 6 

MARCH    1963 

RIAS 

HARD COPY 

MICROFICHE 

LINEAR FUNCTIONAL 

EQUATIONS WITH CONSTANT 

COEFFICIENTS 

By 

Jack   K    Hale 

IAL 

n r» 

*m« m  | 

.*>**   | 

flhfr/ '!? @WBtit      »^ 



LUEAR FWCTIORAI^DIFreREHTIAL ECRJATIOHS 

WITH corerAMT CCEFFECIHrrS 

1 
Jack K. Hale* 

March 1963 

Research Institute far Advanced Studies (HIAS) 
7212 Bellona Avenue 

Baltimore 12, Maryland 

This research vas supported in part by the United States Air Force through the Air 
Force Office of Scientific Research, Office of Aerospace Research, under Contract 
lo. AF 49(638)-382/in part by the National Aeronautics and Space Administration under 
Contract »0. HASr-103, and in part by the Office of Haval Research under Contract 
Ho. Honr-3®3(00).^ 



Linear functional-differential equations >;ith constant coefficients, 

Jack K. Hale 

I.    Introduction,    Until recently, most of the results concerning 

differential-difference equations have been obtained by treating the 

dependent variable as a point in Euclidean space and employing arguments 

which are standard in the theory of ordinary differential equations. 

To the author's knowledge, Krasovskii [ 9 ] was the first to exploit 

the idea that the proper setting for these problems is in a function 

space.    In doing so, the arguments used for ordinary differential equa- 

tions become more natural for differential-difference equations.    The 

present paper is an attempt to obtain some analogies between linear 

differential-difference equations with constant coefficients and 

ordinary linear differential equations with constant coefficients. 

Moro specifically, we discuss in detail the eigenspaces of the 

linear equation and then make use of the adjoint equation to introduce 

new coordinates in the function space which exhibit in a natural manner 

the behavior of the solutions on an eigenspace and the behavior of the 

solutions on a complementary space.    In this manner,   it is shown in 

section IV how many of the usual perturbation theorems in ordinary 

differential equations can be easily extended to differential-difference 

equations.    The basic idea for discussing the problems In this manner is 

contained in the papers of Shimanov (see the bibliography) and the present 

paper originated from an attempt to understand the geometric significance 

of Shimanov's results.    This approach should lead to a better understanding 

of much of the geometric theory of differential-difference equations.    The 
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author is indebted to John Steulpnagel and Arnold Stokes for many 

fruitful discussions. 

The following notation will be used throughout this paper. Rn 

is the linear space of n-vectors and for x € Rn,  |j;| is any vector 

norm. For any given numbers a, ß, a £ ß, c( [a, ßl, R ) will denote 

the space of continuous functions mapping the interval [a, ß] into R 

and for <p e C( [a, ß], Rn), Ihpll «= sup       l?(ö)|. For any riO, 
a 5 e * ß 

any continuous function x(u) defined on -r * u £ A, A > 0, and any 

fixed t, 0 £ t £ A, we shall let the symbol x. denote the function 

xt(e) ■ x(t + e), -r^8^ 0; that is, xt € C( [a, ß], Rn) and is 

that "segment" of the function   x(u)    defined by letting   u   range in 

the interval   t - r £ u £ t. 

Let   X(9, t) € Rn   be a function defined for all   $ € C([-r,Q], Rn), 

iJ9l| U,    H > 0,    t €   t0,»).    Let   i(t)    denote the right hand derivative 

of a function   x(u)    at    u = t,    and consider the functional-differential 

equation 

(1.1) ±(t) =X(xt, t). 

Definition 1.1. I*t t  be any given number 2 0 and let 

o € C([-r, 0], Rn),  H9II * H, be any given function. A function x.(t , q>) 
w      O 

is said to be a solution of (l.l) with initial function   tp   at    t      if there 

is a number   A > 0    such that 

i)    for each   t,    t    HU    + A,    x.(t , <p)    is defined, / '      o oxo 

belongs to    C([-r,  0], Rn)    and    ||x.(t , 9)11 * H; u    o 



- 5 - 

ii)    xt (tQ, <p) » 9; 
o 

ill)   x(t , 9)    satisfies (1.1) for   t   aa   ♦ A, 

If   t      1B equal to zero, we shall abbreviate   x(t - 9)    by 

x(9).    If   X(cp,  t)    is continuous in   9,  t   and Lipschitzian in   9,    it 

is easy to prove that (1.1) always has a solution and for each   9   there 

is only one solution.    Furthermore,  it is also easy to prove that 

x(t , 9)    depends continuously on   9. 

Sy a linear functional-differential equation with constant coeffi- 

cients, we mean a system (1-1) where   X(9, t) = f(9)    is homogeneous and 

additive in   9.    It is well known [15, p. 110] that    f(9)    continuous on 

C([-r, 0], Rn)    Implies there is a matrix    I\(G)    whose elements are of 

bounded variation such that 

0 
f(9) » /    [dTi(0))9(0), 

-r 

for all   9 € C([~r, 0], Rn),    where the integral is in the sense of Stieltjes, 

This observation makes it obvious that the concept of linear functional- 

differential equation with constant coefficients includes all linear 

differential-difference equations with constant coefficients of the form 

P 
i(t) «    EA^ x(t - Tk),    Tk * 0. 

kml 
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II«    Basic properties of linear systems with constant coefficients.    A 

linear functional-differential equation with constant coefficients is 

any equation of the form 

(2.1) i(t) = f(xt) 

where f is a continuous linear function mapping C([-r, o], R ) into 

Rn. For any such function f(qp), it is well known (see [15, p. 110]) 

that there exists an n x n matrix T)(0), - r £ 6 $ 0?    whose elements 

have bounded variation such that 

0 
(2.2) f(q>) = / [dT)(e)]<p(0). 

-r 

If 9 is any given function in C( [-r, o], R ) and x(qp) is the 

solution of (2.1) with the initial function 9 at zero, we define the 

operator jf(t) mapping C([-r, 0], Rn) into C([-r, 0], Rn) by the 

relation 

(2.3) x. (<p) =  7(t)9, 

nN where, for each fixed t £ 0, x.(9) is the function in C([-r, 0], R ) 

determined by the relation xt(q>)(e) * x(q>)(t + 0),  - r H ^ 0, 

Lemma II. 1. The operator ,j(t), t * 0, defined on C([-r, 0], R ) 

by (2.3) satisfies the following properties. 
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1)       Jfa)    is a "bounded linear operator for each   t 2 Oj 

ii)      Sf (t)    is strongly continuous on    [0, *);    that is 

J(0) =1   and 

ii\ -J y^h -J(t)»ll = 0> 

for all   t fc 0,    <p € C([-r,  0], Rn); 

iii)      The family of transformations    { J (t), t * 0}    is a semigroup, 

that is, 

^7(t + T) =J(t)J(i),    for all   ti0,Ti 0; 

iv)      U (t)    is completely continuous (compact) for   t £ r;    that 

is,  v/(t), t & r   maps closed bounded sets into compact sets. 

Proof:    i)    It is obvious that   v/(t)    is linear.    Since   f(9)    is con- 

tinuous and linear,  it follows that there is a constant    L   such that 

jf(9) I  £ LII9II    for all   9.    From the definition of   C/(t), ye have,  for 

any fixed    t 

%7(t)<p(e) - »(t + e),   t + e * o, 

(2.10 . t+a   „ 
J (t)9(e) = 9(0) + J     f ( J (T)9)dT, t + 0 > 0,  -r M < 0. 

0 

Since     |f(9) | * LJI9II,    it follovB that 

|| 7(t)9» * eLt||9||,    tlO,    9 c C([-r, O), Rn), 

and   J (t)    is bounded. 
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ii)   Prom i),  it follows that    ,/(t)    Is continuous for all 

t 2 0   and, from the definition of   %7(t),    U(0) « I.    This proves ii). 

iii)   This is immediate from the definition. 

IT)    TO prove iv), we observe that if   S « {9 € C([-r, 0], Rn) |  Ml * *) 

then 

>7 (t)sC 81 - (t t C([-r, 0], Rn)|i e C([-r,0],Bn),  Ml * eLtR, 

11*11 S IeLtH} 

for t * r. Since S, is compact and J(t) is continuous, the result 

follows. This completes the proof of Lemma II.1. 

For any semigroup of transformations v7(t), t * 0, of a Banach 

space AJ  into itself, the infinitesimal generator Ü  of J (t) is de- 

fined by the relation 

^q> = lim   +i[y(t)<p -<p] 
t -> 0 

for every value of   <p   for which this limit exists.    The limit of course 

signifies convergence in the norm of   10 . 

For any operator   J  of a Banach space    JÖ into itself, the resolvent 

set    p{J)    of   v7 is the set of values    \    in the complex plane for which 

the operator   XI - 0   has an inverse which is defined for all    9    in   lQ . 

The complement of    p( {/)    in the complex plane is called the spectrum of   &* 

and is denoted by   v{\/)*    The spectrum   v(\J)    of an opemtor consists 

of three different types of points,  namely the residual spectrum   h&(\/), 

the continuous spectrum   Ca(«7),    and the point spectrum   Va{£[).    The 

residual spectrum consist* of those values of   X   in   a(\/)    for which 
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XI - J   exists but the domain   £j(\I -tf)"1   of    (XI -J^)"1   is not 

dense in    V •    üfoe continuous spectrum consists of those    X   in   cr{ {/) 

for which   duiy.1 -\J)~     is dense in   "JDand the point spectrum consists 

of those values of   X   for   XI - *J   does not hare an inverse.    The points 

X   in   Rr(*y )    are sometimes called the eigenvalues of \/   and any non- 

zero   $   such that    (XI -%/ )q> ■ 0   is called an eigenvector. 

One of our first objectives is to try to determine the nature of 

QW (*))    **&   <*($)    for tbe family of operators *hieh arise in our 

particular problem and to analyze in what sense the operator %J (t)    is 

approximated by the operator   e^      provided this latter object makes 

sense.    For the simple case in which system (l) is an ordinary differential 

equation; that is,    f(9) * Aqp(O)    for some constant matrix   A,    the 

operator  J (t)    is   e       and the infinitesimal generator   &{ of     J (t) 

is equal to the matrix   A.    The following results show that analogous 

results are valid for the more general system (2.1). 

The following lemma is a restatement of Theorem 10.3.1 and 10.3.3 of 

HiUe and Phillips [ 8 ] for our particular case. 

Lemma II.2.    If   C/(t), t i 0,    is a strongly continuous semigroup of 

operators mapping   C([-r, 0], R )    into   C([-r, 0], R ),    then the domain 

Ju ißt)    °^ the infinitesimal generator  t\ of     %/(t)    is dense in 

C([-r, 0], Rn)    and the range   6\{tf)    of   fi is in   C([-r, 0], Rn).    For 

all   9    in   cdidL), 

(2.5) 5£ J(t)f « J(t)fa « #7(t)f. 



We nov derlTe a specific formula for the infiniteslaal generator   ^ 

in ten» of the system (2.1).    Since   xfo)    satisfies (2.1),  it follows 

from the definition of     Cf(*)   that     «7(t)$   satisfies relation (2.1*). 

Consequently, for any    0,    -r * e < 0, 

u*      +|t(of(t)9(e) +9(0)] = !£M. 
t -> 0 

If   8 = 0,    then 

11«        , r[(^t)9)(0) - <p(0)J «   lim . k J   ffrjdx] 
t-»0   * t-»0   *     0     ^ 

0 
*f(xo) * f(9) = /    tdn(0)](p(e). 

-r 

But, to say that 

^<p = lim r[^(t)<p -q>] 
t -> 0+ t 

implies convergence in the norm in   C([-r, 0], R ),    which implies uniform 

convergence and thus     6\<p    must be a continuous function which implies 

C\y(Q) ■ f(9) « d<p(O)/d0.    Summarizing these remarks, we have the follow- 

ing lemma. 

Lsmaaa II.3.    If   \J(t),    t 2 0    is the family of transformations on 

c([-r, 0], Rn)    defined by (2.3), then the infinitesimal generator of 

tJ(t)J    ia given by 

-h 3 0 * 0 

0 
/  [Ai|(«)Ip(e) - f(9). 
-r 
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tfe now take some results from Hille and Phillipe and Reiez-B&gy 

and apply them to our family of operators     0(t)    satisfying properties 

1) - IT) of Lemma II.1 to obtain the following results* 

Lemma II.k.    For   t i r,    a(^7(t))    19 a countable set and is a compact 

set of the complex plane.    The only possible point of accumulation of 

a(J(t)),    is    {0}    and if   u /£ 0,    u   in   o(J(t)),    then   u   is in 

Po(Cf(t)).    (Hille and Phillips [8, pp. l80-lß2], Theorems 5.7*1, 5.7.3]). 

Given any operator   J ,    we denote by ut (£f)    the null space of 

yj ;    that is,  the set of all   9   such that    ^© = 0. 

Lemma II.5.    For   tir,    If   ji = u(t)    is in   ¥G{V (t)),    u / 0,    then for 

each positive integer   k,   ÖT (ul - v/(t)      is of finite dimension for 

every   k,    and there exists a least integer   n     such that 

Jt(Ml - 7(t))* =  Jf^I - Jit))1   for all   k,  I * no. 

If   W(J(t))    is equal to    <?f (ul - vT(t)) °,    then 

J(t)WM(^(t))C^(J(t))- 

(Hille and Phillips  [8, p.  182, Theorem 5.7-3]) 

Lemma II.6.    For   t 2 r,    Pa( y/ (t)) = exp[tPo((^)]    plus possibly    (0). 

More specifically,    if    u = u(t)    is in    Pa(iT(t)) for some flaed   t    and 

u / 0,    then there is a point   X    in   Po(^L)   such that    e      * u.    Further- 

more,    if    (X }    consists of all   distinct points in   Ptf^Q    flucn tna<t 
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X t 
e   =» n# then $c  (|il - i7(t))  iß the linear extension of the linear 

independent manifolds ( ^(X^I - #)*}. (Hille and Phillips [8, pr k6j, 

Theorem 16.7.2 and pp. 321 -32^, Theorem 10.6.5]). 

In the following, Jff  (B) for any operator B on a Banach space 

and X in Pü(B) will denote the maximal subspace of Z2 annihilated by 

powers of B - XI. 

Lemma II.7.    If   £\ is the infinitesimal generator of the family of operators 

defined by (2.3) and   X   is in   Ptr(^),    then the set $f {$)    in 

C([-r, 0], R )    is finite dimensional.    Furthermore, there is a real number 

ß   such that   Re(X) £ ß   for all   X    in    Pcr(^),    and there are a finite 

number of   X    in   Ba(^()    such that    y £ Re X   for any given real number 

r. 
This lemma is an immediate consequence of Lstrtnas II. k - II.6. 

I/smma II. 6 abore gives a very distinctive relationship between the 

point spectrum of   J (t)    and the point spectrum of   u[ .    In fact, except 

for the point    y, = 0,    Btj(v7(t))    is completely determined by   Pa(^).    We 

now derive an explicit expression for   ¥o{C[)*    If   X   is in   ¥a(C(),    then 

there must exist a nonzero   9   in   C( [-r, 0], R )    such that 

This last relation is satisfied if and only if 

-r 
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which in turn implies 9(0) = e %,     -r £ a i 0, and the vector b 

satisfies 

A(X)b * 0 
(2.6) 

A(X) = (XI - / [dTj(0)]eX9). 
-r 

As a result of this fact and Lemma II.7, we have 

Lemma II.8. Pa(//) » {x| det A(x) =0}. The roots of the characteristic 
———————» ^ I. 

equation of (2.1),    det A(x) = 0,    have real parts bounded above and there 

are only a finite number with real parts greater than a given constant. 

The characteristic equation of (2.1) can be obtained in a very 

straightforward manner as in ordinary differential equations by determining 

necessary and sufficient conditions that the equation (2.1) has a solution 

of the form   x(t) » e    b    for some    X, b.    Jfeny procedures have been given 

to analyze the nature of the roots of the characteristic equation (see, 

for example,  Langer [11],  Pontrjagin [Ik],  Pinney [13]).    The property 

of the roots mentioned in Lemma II.3 is also in these papers« 

Before proceeding to an analysis of the specific structure of the 

solutions of (2.1), we wish to derive a result concerning the maximum 

rate of growth of the solutions of (2.1).    For later reference,  we state 

the result independently of solutions of (2.1).    If   J   is a bounded linear 

transformation of a Banach space into itself,  the spectral radius    p ~     of 

j    is the smallest closed disk with center at the origin in the complex 

plane which contains    o(J).    The following lemma is taken from Reisz-Nagy 

[15, P. te5l. 
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rf 
Lemma 11*2,* ■& -?'     *•* a bounded linear transformation of a Banach space 

into itself, then the spectral radius p~ of J   is given by 

P  = ii»    ijJY/n. 
J n -»» 

Theorem II. 1« If if (t), t iO, is a strongly continuous semigroup of 

operator» of a Banach space %5 into itself, if for some r > 0, the 

spectral radius P m PrfT)    is finite and /^ 0 and ßr * log p, then, for 

any y  > 0, there is a constant K(r) * 1 such that 

^(t)9|| * K(r)e(ß+T)t|l<pii for all t * 0, q> in *# 

Proof:    This proof is essentially the same one as contained in Stokes 

[19].    Since    p    is finite, the number   ß    is veil defined.    Prom Lemma II.9, 

& = lim i|^(r)!!1/11,    and thus, for any   r > 0, 
n -»» 

e"^ - lim e-fe+r>r||,7n(r)||1/n. 
n -♦» 

Therefore, there exists a number   N   such that 

e.O*r)or)|Crn(r)|| = {e-rr +     }n 
n' 

where    e-rr + €    £ K < 1    for all   n * N.    Consequently,    e"^0pfr'nr|[^'n(r)|| -♦ 0 

as    n -#».    Since   %J(t)    is continuous for all   t 2 0,    there is a con- 

stant    B   such that    ||JT(t)|| * B   for   0 £ t * r.    Define    K(r)    for any 

T > 0   to be 
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K(r) - ««(  aax  Be"^5*, mx        BB^^^^M Jn(r)||J. 
0 s t 5 r n * 0 

If 0 ^ t s r, then, for any <p in £;, 

li^(t)9ll * llJ(t)HI?il * B||q)|j * K(r)e(^r)tI|q>||. 

If   t lr,    then there is an Integer   n   such that    nr 5 t < (n+lr), 

and, for all   9    in "ju, 

l|C/(t)<pli = |#(t - nr)^(nrM| 5 Bl|//n(r)||.IHI * 

^-(WrXt-nr^-CpfrJnr^n^jn^O^rJt^n 

§ K(r)e(ptr)t||<p||. 

This completes the proof of the theorem. 

flo^nary TT.i.    if   A(x)    is defined as in (2.7) and all the roots of 

the characteristic equation   det A(x) * 0    satisfy   Re X § ß,    then for 

any   r * 0,    there exists a constant    K(r) * i   such that if   x(qp)    is the 

solution of (2.1) with initial function   <p    in    C( [-r, 0], Ru)    at zero, 

then 

x. .(9)1 * «r)*(Wr)tIMI#   tio. 

In particular, if ß < 0, then all solutions of (2.1) approach zero 

exponentially as t -*». 

Proofs If K7 (t) is defined as in (2.3), then p = p ~,  v is finite and m  exp ßr 

from Lemmas II.6 and II.8 if p / 0. This case follows from Theorem II. 1. 

If p ■ 0, the corollary is obviously true. 
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Corollary II. 1 is well known in the literature (see for example, 

Krasovskii  [ 9],  Bellman and Cooke   [ 1], Stokes  [19]). 

In the following, we shall always assume that    \J(t)    is the family 

of operators associated with system (2.1) and   C\   is the infinitesimal 

generator of   ^J(t). 

From Lemma II. 7,  if   X    is in   P<x#),    then #^(XI -</)k    is of 

finite dimension for every integer   k   and there is an integer   n     such 
n 

that }f£ (XI -<#)k « äffe -ä) °   for a11   k * n
0-    since 

Ofl \(({) =V{{L{ - M) °    a&s finite dimension,  say   d,    there exists a 

basis   <fv  ..., 9d   of  Wx(4)-    Furtheraore, since^^f^) C &\C#), 

there exists a   d x d   constant matrix    B   (whose only eigenvalue is    X) 

such that 

C(* = *B,      $ = row(<px,   ..., <pd). 

Now,  let us investigate the nature of the solutions of (2.1) given by 

<$(t)*.    From Lemma II.2, 

%: tJ(t)*U &t)4*m J(t)W dt 

and,  thus, 

%7(t)« - «e*. 

Consequently,  we have the following result. 

Theorem II.2.    Let   *v/(t),    t 2 0,    he the strongly continuous semigroup 

of operators defined by (2.3) and let C{   he the infinitesimal generator 
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of   v7(t).    Suppose   X    la in   Po(^)    and Ißt   ft « row(© ,  ..., © ) 

be a basis for   WtAfi)f    the maximal subspace of    C([-r,0], Rn)    anni- 

hilated by powers of   XI - u*    If   a    is an arbitrary constant column 

vector of dimension   d,    then   >J(t)fta & fte   a   for some constant matrix 

B   with all of its eigenvalues equal to    X.      If    n * ^(t) ^ 0    is in 

Pcr(*w7(t)    for some    t,    and    [\-9  ..., X }    is the set of distinct ele- 

ments in   Pa(^|)    such that    e      = \i,    and   ft = (ft.,   ..., ft ),    where 

ft      is a basis for   $1*   U()>    °* dimension   d     then, for any 

rn € W((sJ(t)),    there exists a vector   a    of dimension   dad-* ... + d 

such that   m = fta   and 

(2.7) J(t)9 = • eK» 

where B is a d x d matrix given by B = diag (B.,, ..., B ) where 

each B. is defined by t\$    = ft.B,. 

The first part of this theorem has been proved above and the second 

part follows by using the same argument together with Lemma II.6. 

Theorem II.2 shows that on the subspace off (7(t)), the functional- 

differential equation (2.1) has the same structure as an ordinary linear 

differential with constant coefficients. Of course, the dimension of 

the matrix B in (2.7) may have nothing to do with the dimension of 

syBtem (2.1) since the dimension of B is determined by the multiplicity 

of the eigenvalue n(t) of <j(t). Notice also that the multiplicity of 

this eigenvalue may change with t. In fact, this is easily illustrated 

by an ordinary equation 

2fl  0 
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Then v7(t) - eAt and P*(J(t)) * (e21"* e"^rlt). For t « n an 

Integer, Bff(J^(n) » {1} and, otherwise, consists of two distinct points. 

On the other hand, the multiplicity of the points In Tü(c{)    do not 

change and one can always define the set ^K(H)    to generate solutions 

of (2.1). 
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HI.    The adjoint equation and a change of coordinates.    In this section, 

we wish to show how one can Introduce a change of coordinates in the 

space    C( [-r, 0], R )    In such a way as to exhibit In a natural manner 

any particular elgenspace   wlAüL)   associated with system (2.1).    More 

specifically, ve show that It is possible to transform system (2.1) to 

an equivalent system which consists of a set of ordinary differential 

equations (whose solutions describe the behavior of    SI(t)    on the elgen- 

space   IfffAUO)    together with an operator equation (whose solutions 

describe the behavior of   %j(t) on a space complementary to   ffi[Au[)). 
A» 

To do this, we make use of the equation "adjoint" to (2.1).    This concept 

has been used in functional-differential equations by many authors (see, 

for example, de Bruljn [ k],  Bellman and Cooke  [2 ], Hahn [ 5 ]> 

Halanay [ 6 ] and Shlmanov [17,18])    The author has been influenced by all 

of these authors, but especially by Shlmanov. 

Consider the equation 

0 
(3.1) x(t) = /    [dTj(e)]x(t + 0),    t*0 

-r 

and its formal "adjoint" 

0 T 
(3.2) y(B) - - /    [dri    (0)]y(s - 0),    s S 0 

where    x,  y   are n-vectors and the symbol    B     always denotes the transpose 

of a matrix    B.    The term adjoint  is Justified by the following observa- 
0 

tion.    If we let      I*(t) = x(t) - /    [dt)(e)]x(t + e), 
0 T, -r 

L*y(s) = y(&) ♦ /    [dTj    (d) ]y(s - Q)    be operators defined on dlfferentiable 
«r 

functions,  then 
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yT(t)(l*)(t) * [(L*y)(t)fx(t) 

fetyT (t)x(t) - /     / yT (t + | - *)[dn(e)]x(t + i)d{]. 
-r   0 

The expression on the right hand side of this equation vlll play an Im- 

portant role In the following discussion and,  thus, we give it a special 

designation.    For any   9 € C( [-r, 0], Rn),    * € C( [0, r]. Rn),    we define 

the symbol    (+, 9)    by the relation 

T °    e T 
(3.3) (t, 9) = t    (0)9(0) -Sir (l-a)[di|(e)*p(ft)d8. 

-r 0 

For the solution x(9) of (3.1) with initial value 9 in 

C([-r, 0], R11) at zero, we have already defined the operator %J  (t), 

t i 0, by the relation x.fo) ■ >,/(t)9 and the infinitesimal generator 

fl    of <J(t)    was 

(3.M 9(«)-('♦(e),   -rse^o 

(♦(0) - J° [di|(e)]9(e). 
»r 

If   t    1B In    C([0,  rj, Rn),    then syBtem (3.2) has a solution   y(+) 

with initial function    t   at zero and defined for all    sir.    If we 

let    yB(*)(e)^y(*)(fl + 0),    Ö ^ 0 i r,    sSO,    then the operator 

W *(*)#    s s 0,    defined by   y (t) *j7 *(ß)t   *»s all of the same pro- 

perties as    J (t).    The infinitesimal generator^*    of  %/*(s)    is de- 

fined by 

^Jt »   11m _ i [J*(B)1 - *]. 
s -*0 
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For later purposes,  it is convenient to define an operator   C\ *    on 

C( [0,  r], Rn)    in such a way that     c(* ■ - t(t*    A direct calculation 

shows that 

'- Ho),      0 £ 0 £ r 

(3.5) d*KB) -   1      . 0        T 
-+(0) -/    [dn

r<e)llr<-e). 
-r 

It is also easy to verify that  v/*(s) and C\*   satisfy the 

following relationship: 

(5.6) ä^Cal =. fcfa) .. y*(*)4*> B * °- 

It is obvious that x(t), y(t) continuously differentiable 

n-vector functions and x., y.  defined by x,(0) ■ x(t + 9), 

yt(0) = y(t - 6),  - h % 9  S 0,     Implies 

5t^t' Xt) **t' xt]  * (yt' V' 

where    y^e) *= dy(t - e)/dt = y(t - 0), *t(e) * dx(t ♦ e)/de - i(t + 9), 

- h £ e *0. 

Igmna HI.l.    «r, ^ ) = (<^*t, 9)    ?or all   9    in  ?U($),    *    in 
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o    e 
fiSg:      (*, 4? ) » +T (OWO) - /     /   tT (I - ö)[dr,(0) 

vv -r   0 
Wt)*t 

= +T «Wo) - /   [*T (e - e)(di,(e)»(l)]J 
-r 

0      ö        T 
♦/    /    d*  ig "flWe)ft(i)*S 

-r   0 5 

0 0    ö      T 
-/  *T (-*)(*»(*) to(o) + /  / d* il "8Wfl)Mt)*t 

-r -r 0 5 

0      ö T 
= - +T (0)9(0) - /    /   [ - a   |.£"9)]dTi(e)<p(i)dS 

-r   0 5 

-    (<t%, 9) 

as was to be shown. 

Lemma III.2,    If   T * 0    is any given constant and    9 € C( [-r, 0], RR), 

* € C([T, T + r], Rn),    then 

$   (t - *)+, ^(t)©) = constant for    0 £ t 5 T. 

Proof: From the properties of \7     and    vj,    it follows from Lemma III.l 

that 

y#*(*«)*, ^(t)?) * -(^#(t.T)t, ^(t)9) ♦ (tfVot, ^j(t)f) * 0. 

Lemma III. 3.    If   X ^ u    then for any nonnegative Integere    k,  |, 

* e ?f( (TC* " Ml)k+1>    and   V* #TU(- XI),+1    implies 

((#* - Ml)k_P+,    (^ - Xl)i_q9) =0,      OSpik,    0MM. 
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Proof: We always suppose X ^ u. Suppose k = 0. We wish to show that 

that for any nonnegative integer 1 and any q, 0 £ q % gf 

(3.7) (♦, (^-XI)'%) =0. 

We prove this by induction on I. If 1 = 0,    then q ■ 0 and C{   ♦ = \tf, 

t(v = ^9 which implies 

(t, <^<P) = X(t, <p) = ({{%, 9)  = u(+, 9) 

and thus    (+, 9) = 0.    If we suppose (5.7) has been proven for   0 £ j § -jr - 1, 

then for    f cjf(#* -   |il),     (^ - Xl)r~S> € ^( (f- x)q+1,    the induction 

hypothesis implies 

(3.8) ft,   (^ - Xl)r"Sp) =0     for   0 Ä q S T - 1. 

Furthermore,  for    q = f - 1, 

0 - (*,   {(( - U)9) « -X(*, 9) ♦ (#**, <P) = (-X + n)(t, <p) 

vhich implies    (f, 9) = 0.    But this is  (3.8) for    q « r»    Consequently, 

relation (3-7) is true. 

Now let us suppose the conditions of the lemma are satisfied for 

all    k % x - 1   and all integers    /.    We wish to show this is true for 

k = r-    Since for    k = r   and any    i,    * *Vf{$* - ul)k+\    9 * <^(<f-Xl)i+1 

implies   fcf - Mr-** c Jf (#* - .i)*»1,   (/?- xi^ € 7?( 4 -u>q+1> 

for   0 S p s f,    0 M M,    the Induction hypothesis  implies that 

(3.9) (ifl* - Hl)r"P*,   (^-XI)1^))  =0,     0 * p * T - 1,  0 s q s l. 
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It reu»Ins to shew these relations are true for   p * r>    that i3, 

(3.10) (♦,   (^-Xl)f"Sp) =0,      OSqM, 

Let us first show that    (+,  (({ -Xl)1^) = 0.    We know from (3*9) that 

0* ((^* -nl)t,   (tf-Xl)1*) - (♦,   (^^I)(^-U)V-   (M0(*,   (tf-W)1») 
since   ^ (^-Xl)1? = X( ^ -Xl)V    This is the desired relation.    Con- 

sequently,  (3.10) is true for   q = 0.    Suppose (3.10) has been shown to 

he true for all   q £ i\ - 1.    From (3-9), 

«U-nXt, (^-u)'-\) 

by the induction hypothesis.    Consequently,     (i|r,   (6^-XI)  "\) = 0   and 

(3-10) is valid for all    q.    This completes the proof of the lemma. 

Corollary m.l.    If   * € Iftf^Cf*),    ¥«#)£(#),    then    ftr, <p) = 0 

if    X /|i. 

Proof:    Take    p » k,    q m f    in the above lemma. 

Lemma III.k.    If   *€H(^*-Xl),    then for all   <p € JU{$) 

(+,   (^-XI)9)  - 0; 
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that is,     H iiC - **)    is o^00«00*1 t0 tne range,   ^(_( ^ -XI),    of 

^£  -XI,    the orthogonality being with respect to the symbol    (+, ©). 

If   <P €   3f( 6(-XL),    then for all   * € fj(d*), 

(id* -XI)*, 9) = 0. 

Proof: This is an immediate consequence of Lemma III.l. 

Lemma III. 5» X is in Mt[)    if a  only if X is in Ptr(^*). 

Proof; X is in Vo(f()    if and only if det A(x) * 0 where A(x) is 

defined in (2,6). X is in Pa(^*) if and only if 

t(e) = e"*^ 

and   b    is a nonzero solution of the equation, 

[XI - /    [dTjT (s)]eXs]b=AT (x)b = 0, 
-r 

or if and only if    det AT (x) = 0.    But    det AT (x) = det A(x)    and the 

lemma is proved. 

Lemma IH.l, Corollary III.l, Lemma III,k   and Lemma HI.5 indicate 

that the operators   c{ and   6C      are in some sense adjoint to each other; 

namely,       (if, C{<P) * (£v *> $)>   (X      and   &t n&ve ti3e same point specti-um, 

^f/  (rf*)    is orthogonal to $£($)    if   X / u   and    ^(#* - XI)    iß 

orthogonal to   t\(C{~ XI).    If we could show that   ÖH Ail)    and 

(fit\{C[  )    have the same dimension and the matrix formed by    (+., ©,), 

where the    if y q^   are bases for ^SQ/() 1fjfx0)> respectively, is/ then there is 
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almost a complete similarity with the usual concept of adjoint.    The 

next results are a precise statement of these remarks. 

leara III.6,    If    X    is in    Pc(^),    then the dimensions of   $K(tL) 

and  $rfx{d*)    a« equal,    Vf^) =   $ttf? - Xl)k     ^{d) =  #( <£-Xl)k, 

for some    k   with    .flf(Ä* - Xl)k ji *>f(/f - Xl)k"\ 

jf (#-U)k/^f(^-Xl)k.    If   cp€^x(^),    then a necessary and 

sufficient coalition that   m € 2\($- xi)k    is that 

(», q>) = 0   for all   * € <*/(<{* - Xl)k. 

Proof;    First,  we introduce some notation.    With the matrix   A(x)    defined 

in (2.6), we define matrices    P,(x)    as 

PWW ^Sr^1 ,   A(J)(X) = -V (A(X)),    j = 0,1,2,   ... j+1 J.' dX* 

and the matrix A.  of dimension (kn)x(kn) as 

\    = 0 

0 

p, 0 • • 

0 

rk-l 

•      •      • 

tet    Q^ = col (Q^,   ..., a^),    ^ = col [ß^,   ...,  ß^),    where 

each   Q^ ,    ß^      is an    n x p    matrix,  be bas~d for    Tt (A^),   ^ (\)> 

respectively. 
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Suppose 9 e /[ ( C{ - XI) . Then it 1B easy to show that 

<p(e) -   £  rH1 V « 

where   JLr «0,    r - col (y^,   ..., rk);    that 1B,  the vector   r   must 

belong to the null space of   A. .    Consequently,  a basis    *.     for 

yf ( (( - U)k   can be written as 

In the same way,  one shovB that a basis    Y,     for vC{({    - XI)      ^an be 

written as 

V») - £ *,*-/=£ e"xe- 

These remarks prove that the dimensions of   ut (u - XI)      and   ÖX (CC - XI) 

are the same for every value of    k   and the first part of Lemma III,6 

follows immediately. 

Now,  suppose that   9 € }f ( ^7- XI)1    and    t €   %t(&* - Xl)k. 

Then    *(ö) = \(e)b,   <?(e) - ö/ö)*,    for seme constant rectors 

b,a, and 

0    0 
(♦, v) = bT tk

T(o)* (0)a - /   / bT Y.T(i-e)dn(e)* (S)a dj 
K ' -r   0       K ' 
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Consequently, 

(3.11) (*, ,) - bT ^ £ ^MP1+J^>j+1K   * = V * = V* 

For any 9 e Jc ( ^ - XI) , we wish to derive necessary and suffi- 

cient conditions that 9 € \(it- XI) ; that is, there exists a q># such 

that 

(3-12) (#-XI) 
k 
9* * 9« 

If 9 € D( ( H - XI) ,    there exists an a such that 

(3.13) 

,(•) - .f(e)a - £ «lfJtl. fr •" = £ rj+1 fr e*e, 

rj+l 
= ai,j+la' J = 0'1' —'i_1- 

If (5-12)  is to have a solution, then necessarily 

(55 ■ x)k<?>*(9) - *w 

or 

k-1 J    ,ö      1-1 Mi        xe 

(3.14) ♦.<•>•£ 1*1 jr-" + £Vifoie' 

where the    y*       are n-vectors satisfying some additional conditions 

which we proceed to derive. 

If we define    <p;;(e)    to be equal to    (d/dö - X)m<p#(e)    with 

9#   given in (3.1k),  then 
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m = 0,1,2,   ...,  k - 1. 

If   <p#    is to satisfy (3-12),  then   q>^    must be ln.Jj( C{- XI) 

for    m = 0,1,2,   ..., k - l;    that is, 

*im)(o) = / dTl(9)4ia)(e) 
-r 

or, 

0   Xfl k-m-1 flJ     i_1 a*^-" 

m = 0,1,2,   ...,  k - 1. 

Uteing the definition of the matrices    P     above,  these test equations can 
J 

be written as 

1=1 
Plrm+1 * P2rm+2 + —  + PkVk =    *   Pk+J-QH-lrj+l# 

Letting 

r* * coi (rj, ..., rj) 

d = col (d1,  ..., dk) 

1-1 1-1 
ds = ^ VjWj+l =    ZQ ^j-s+^j+i*' 

we have the following result:    a necessary and sufficient condition that 

<P € ^ftids VI)1    implies    9 €   "a(^- Xl)k    is that the set of equations 
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V* = d 

have a solution; that is,    e    d = 0    for all elements    e € ^(JL   ).    But, 

far any   e €   ht< (A.   ),    there exists a   b   such that   e » ab,    so that 

T      T 
the desired property holdB if and only if   b    &   d » 0    for all   p-vectors 

b, or, if and only if, 

m      m 
0 = b1 f£d 

" "T (sfl Ä^ k-iPi+J^,J+l)a 

for all    b.    But, from (5.11), this latter relation is true if and only 

if    (y, <p) - 0   for all   t €   //*(/?* - Xl)k. 

This completes the proof of the lemma, 

lemma III. 7*    If    T    is a basis for »Vf    (#   )    and    *    is a basis for 
Ai 

^(   ((^),    then    (f,  *)    is nonsingular and may be taken as the identity, 

Furthermore,   if    (f,  *) = I    and the square matrices    B*,  B   are defined 

by   ^*f = ?B*,    # * = 4>B,     then    B* = B T. 

Proof:    Suppose   .^(tf*) » #(#* - M>k,     »£<#) « 37(tf- XI)* 

where    k    is the least integer for which this is true and    J,   *   are bases 

for    ~${A((   ),   jjf Al{)>     respectively.     If there exists a constant vector 

a    such that    (f,  $)a * (f,  <Ja) ■ 0,    then,  for    <p = <&a,    we have 

(y, ©)  = 0    for all    Jr € «?C (£T   - XI)  •    Consequently,  from lemma III.6, 

<p €    $ ( /#- XI)  .    Thas, there  is a    <p#    such that    <p = (^ - XI) qp#. 

Obviously,    <p# c )J/X(fi)    and   ^(/t) «^(tf-Xl)k      implies 
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<p « ( $ - XI) ©# 
Ä 0-    Finally,    0 - © « «a    implies   a « 0    since    * 

is a basis for $f (#)   and the matrix    (Y, ♦)    is nonsingular.    By a 

change of basis one can obviously take    (f, $) = I.    From Lemma III.l 

and the definition of    (\|r, ©),    we have 

(Y, 4*) = (*> *B) Ä (*> *)B«B 

- (U   *,  •) = (IB ,   •) = B      (Y,  ♦) « B    % 

which completes the proof of the lemma. 

If one does not choose (f, *) ■ I, then the matrices B* and 

B are related by B» (Y, «0"1B*T (*, *). 

Lemma 111,8, If X is in ?o(//)   and * is a basis for ^(x(c(),    then 

the solution x(q>) of (J.l) with initial function 9 in W(A4)    at zero* 

is defined for all values of t in (-»,») and 

x(<p)(t) = «(Oje^,   - m < t < •, 

where    B   is the matrix defined by   C[* ■ *B.    If   f    is a basis for 

^fx(6(*),   (Y, *) ■ I,    then the solution    y(f)    of (3.2) with initial 

function   if   in ^JAÜ*)    iß defined for all    t    in    (-•, •)    and 

y(t)(t) *f(o)e-B   t,   -~<t <• 

where    B       is the matrix defined by   C{ *Y * YB    . 

The proof of this is obvious, 

Let    '  (\(c()t   '    y(-<*)    ** defined as before,  have dimension 

p,    and let    *, !   be bases of  $K(f?},  jJ/A/f*)>    respectively.    From 

Lemma III.7,  we can choose    (Y,  *) * I,    the  identity.    For any 
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9 € C([-r, 0], R ), we define a rector b e R* and a function 9 *  C([-r,0],] 
by the relation 

(3.15) 9 = *b + 9,   b « (l, 9). 

It follows that (▼, 9) « 0 and, also, this decomposition is unique. 

If we define ±t   by it(e)  - *(t + 0), - r * Ö * 0, then the 

equation (3*1) can be written as 

(3.16) i^ » C(x%$       tiO, 

For any solution   x.  ■ x+fa),    9   i**   C([-r, 0], R ),    consider the change 

of variables 

(3.17) xt - «y(t) + mv    ti 0,    y(t) = (f, xt). 

Since    (?, z.) ■ 0   for all   t,    this implies 

Kt) = ff (f, xt) = (f, $x%) * B(f, xt) * ?y(t) 

*t 
ä *t - ^(t) * ^\ - •*<*> * ^xt - *y(t)) s #V 

(*,  *t) Ä 0. 

Consequently, we have the following 

Theorem IDM.    Suppose the operators   w(, ^(*   are defined by (3.4), 

(3.5),  respectively, and let   %fx(4),   Xt\tä*)>    Xe **(&.)>    te the 

nftxinal subspaces of   C([-r, 0], Rn),    C([0,  r], Rn)    annihilated by powers 

of    (j( - XI),     (^* - XI),    respectively.    If    *    is a basis for 

?'Tx^'  f u a ba8iB for ^T\S$*}*   ^fi #^"I#   the ldentlt*' where 
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(if,  <p) iß defined in (30)> then the change of variables (3.17) applied 

to (3.16) yields the equivalent system 

y(t) - B y(t) 

(3.18) 
i(t) * /(\,    (*, \)  - 0 

where    B   is a matrix defined by   (I<2> » $B,    has all of its eigenvalues 

equal to   X,    and the point spectrum of the operator L(   restricted to 

the set of   q>    such that    (f, q>) ■ 0    does no t contain    X. 

Now let us consider the perturbed equation 

±(t) * f(xt) ♦ G(t, xt), 

(3.19) 0 
*(») - /   Un(e)]<p(e), 

-r 

where   G     is some function defined for   0 * t * »,    9 € C([-r, 0], Rn). 

If ye define the operator L{   as in ($A) and the operator Jj     by the 

relation 

$»<«) 0      ,     *J8<0, 

(5.20) ' G(t, <p),    fl - 0, 

then syBtem (3.19) is equivalent to 

(3.21) it-tfxt+#tV 

With ♦, f defined as before,  (f; ♦) ■ I, tue transformation 

(3.17) applied to (3.21) yields 
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*(t) - (f, ±t) • (», ftxj + (!,,^t) 

- (4 \ xt) + (wjtft) 

- 9y(t) + (f,^xt), 

- ^K-*y(t))+4xt-#(f'4xt) 

But, a simple calculation shovB that 

(T,4*t) 
+ *T«>)G(t, *t) 

and we have the following t eorem. 

Theorem HI»2.    Suppose the operators  C(, C\*   are defined by (3.^),   (3«5)j 

respectively, aid let   Mf^fl), tiffed*),    X € Por(cf),    ^ *** maximal 

subspaces of   C([0,  r], Rn)    annihilated by powers of    ( rf - XI),   (<^* - XI), 

respectively.    If   *    is a basis for   Wx(tf),    f    is a basis for    ^A^*), 
A» ^ 

(\|r, 9)   defined In (3-3)> then the change of variables (3>17) applied to 

syBtem (3.20),   (3-21) yields the equivalent syBtem 

y(t) = By(t) + fT (O)G(t,  *y(t)  + zj, 

(3-22) / i T 



- 33 - 

where    B   is the matrix defined by  (( % * *B,    has til of its eigenvalues 

equal to   X,    and the point spectrum of the operator   C{   restricted to the 

set of   q>    such that    {¥, 9) ■ 0   does not contain   X. 

Remark IU»1.    By & repeated application of the above process,  it follows 

from Corollary rn,l that one make a further decomposition of the space 

C([-r, 0], Rn)    which will yield a syBtem of the form (3.22) where the 

real parts of the point spectrum of the operator C(^  restricted to the 

set of   $    such that    (f, a) - 0   are less than any preassigned value, 

ß.    The matrix   B   will then have its eigenvalues equal to the elements 

°^   ¥o(0)    which have a real part    £ ß. 
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IV. Perturbation of linear systems. In this section, ws indicate some 

applications of the results of the previous section to the system 

0 
CM)       i(t) * / [dT)(e)Jx(t + e) +g(t) 

-r 

where x is an n-rector, i\(e)    is an n x n matrix whose elements are 

of bounded variation on [-r, 0] and g(t) is continuous on (-»,»). 

Together with system (k.l),  we consider the adjoint equation 

0   T 

-a: 

IVV1. If \J(t), t 2 Q,   .^J (o) « I,  is a strongly continuous semi- 

group of operators of a Banach space into itself and if for some r > 0, 

the spectral radius p = 07/ x  is  < 1 and ft 0,  then 

for any function h mapping (-», ») into Aj  such that h(t) is almost 

periodic, the function 

t „ 
(k.3) af = /  C/(t -T)h(T)dT 

is almost periodic in   t   with the same frequencies as   h(t), 

||zt(| £ KR/ß,  - 2ßr * log p,    K   constant,    R = supt||h(t)||,    and is a uni- 

formly asymptotically stable solution of 

(k.k) it «  C{zt + h(t) 

where   C{ is the infinitesimal generator of   */(t). 

Proof:    If    -2ßr « log p,    and   r * ß,    then Theorem II. 1 implies 

|| tf(t - t)<pj| * MB"^*"1^)!    for all   t 2 T,    and some constant    K.    There- 

fore, the integral in (4.3) exists    and    ||z*|| * KR/ß.    Furthermore, 
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J*(0) =1 and d<7(t)/dt « ^J(t) Implies z| satisfies (^.U). The 

uniform asymptotic stability of z* follows from Theorem II. 1. To show 

that z* is almost periodic with the same frequencies as h(t), it is 

sufficient to show that for every sequence of real numbers (t } for m 

which 

h(t + T  )  - h(t) ->0   as    m -*»,    uniformly for   t    in    (^», *)> 

we have 

z*   - z. ->0 as m -♦«, uniformly for t in (-», *). 

This is easily verified using Theorem II. 1 and the lemma is proved. 

The proof of the next two lemmas are standard and may be found in 

[7,12]. 

lemma IV.2.    If    C    is a constant    n x n   matrix whose eigenvalues have 

real parts    £ 2ß > 0,    and   h(t)    is an almost periodic n-vector, then 

there Is a unique almost periodic solution of the equation 

w = Bw + h(t) 

which is bounded by   KR/ß   for some constant    K   and   R = sup. |h(t)|. 

Lemma IV. 3«,    If    B    is a constant    n x n   matrix whose eigenvalues may have 

zero real parts,        b(t)    is an almost periodic n-vector with a finite 

Fourier series, then a necessary and sufficient condition that the system 

f = E(y + h(t) 
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hare an almost periodic solution is that 

T 
r 1  T 

lia i / * (t)h(t)dt = 0, J = 1,2, ..., r, 

where (t-, ...,**) IB a basis for the almost periodic solutions of 

the adjoint equation 

} « - yB 

One could also state a result similar to Lemma IV-3 for the case 

when   h(t)    does not have a finite Fourier series, hut it is necessary to 

have an hypothesis which guarantees that the integrals of certain almost 

periodic functions are almost periodic.    We do not discuss this question 

here. 

Lenaaas IV. 1 - IV.3 together with Theorem IH.1 and Remark III.l 

yield in a very natural way extensions to functional-differential equations 

of the standard results concerning the existence of periodic and almost 

periodic solutions of ordinary differential equations which are perturba- 

tions of a linear syBtem with constant coefficients.    We do not state all 

of these results for functional-differential equations but merely give some 

indications of the manner in which they are obtained.    After Inspection of 

the proofs,  one will see that the arguments are essentially the same as 

for ordinary differential equations. 

Theorem i».l.    If   g(t)    is    2?r-periodic and    (y.,   ..., y.)    represents a 

basis for the    2?r-periodic solutions of the adjoint equation (4.2), then 

a necessary and sufficient condition that syBtem (k.l) has a   2r-periodic 

solution is that 
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/   *u (t)g(t)dt « 0. 
0   * 

If there are no   2ir-periodic Bolutions of the adjoint equation, then 

system (k.l) has a unique    2r-periodic solution bounded by   KR/ß   for 

some constant    K, R » sup  |g(t)|    and   2ß   being defined as the largest 

number such that    |x - in|  £ 2ß,    n » 0, + 1,  + 2,   ...,    for all roots 

X    of the characteristic equation (2.6). 

Prooft    Let     tf, C(*   be the operators defined by (l*k),  (3.5).    I*t 

*l> *1   ^ *Äßes fQr the linear extensions of the manifolds   *H*(u), 

?${x(d*)>    respectively, for all   X   in   P<r($)    with   X jt 0 (nod i), ReX * 0, 

and let    *2, fp   be bases for the linear extensions of the manifolds 

ytfyiCt), yfx(d*)>    respectively, for all   X   in Pa(^)    with   X s 0 (mod i). 

Furthermore, we can choose    (f ,  4^) = I,   (fg,  $2) = I,    where    (t, 9) 

is defined in (3.3)  (see Lemma m,7).    Consequently, by Theorem III.2 

and Remark HI.l the transformaticc of variables 

xt = V(t) + V(t) + V 

&V xt} = v(t)'    (V V Ä y(t)' 

applied to (k.l) yields the equivalent system 

W(t)   =   B^t)   4   fi
r(0)g(t) 

(V.6) Kt) - &>y(t) +f2
T(0)g(t) 

i(t) = ^zt T.^t - •1f1
T(0)g(t) - ^ (0)g(t), 

((▼1^2),zt) =0, 
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where ,^>t($) = 0   for    - r * Q < 0, = g(t)    for    B « 0,    B^,  B     are 

the matrices defined by   ^(*    = $ B,    # *2 ■ *2B2,    respectively, all 

eigenvalues of    B,    are   j£ 0 (mod i),    all eigenvalues of    B2 are 

s 0 (mod i)    and all elements in the point spectrum, of the restriction 

of   {( to the set of all   9   *** that    ((f     f )^ 9) a 0   hare negative 

real parts.    System (k.l) will have a    2r-periodic solution if and only 

if there is a    2r-periodic solution   w(t), y(t), z,    of (^.6).    After 

obeervliig that the basis    ti,  •••, tk    of the    £r-periodic solutions of 

the adjoint equation (^.2) are of the form   f v.(t)    where the   v.(t) 

T are    2jr-periodic solutions of the equation   ^ = - B   v,    one can apply 

Lemmas IV.1-IV.3 to complete the proof of Theorem IV. 1. 

In the same manner, one proves 

Theorem IV. 2.    If   g(t)    is almost periodic In   t    with a finite Fourier 

series    and    (f.,   ..,,  y )    represents a basis for the almost periodic 

solutions of the adjoint equation (k.2), then a necessary and sufficient 

condition that system (k.l) has an almost periodic solution is that 

1    T 
lim /   *j  (t)g(t)dt =0,    J * 1,2,...,k. 

T ->« T    Q 

If there is no almost periodic solution of the adjoint equation, then there 

is a unique almost periodic solution of (^.1) and it is bounded by KR/ß 

for some constant K, R * sup |g(t) |, and 2ß defined as the largest number 

such that JRe x| i 2ß for all roots of X of the characteristic equation 

(2.6). 

Io    consider the nonlinear eqiÄtion 

0 
(k.l) ±(t) = /      [dt)(0)]x(t ♦ 0) + G(t, J^, c) 

-r 
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where    TJ($)    is the same matrix as before,    e    is a parameter,    q(t, cp, *;) 

is continuous in   t, ©, €    for    - • < t < «,    9 € C([-r, 0], Rn), 

lhp|j £ H,    H > 0,    0 £ € £ €Q,    and is Lipschitzian in   9.    Furthermore, 

there exists a function    t](e, p),    continuous for   0 $ €  £ €  , 0 s p H, 

such that    TJ(0,  0)  = 0   and 

|G(t,  9, €)  - G(t,  *, €)|  i i](€,  p)||(p - ti|,    q(t,  0, 0) * 0, 

for all   9, t € C([-r, 0], Rn),   M,  M * P, 0 * < tf c^  ~ < t < ». 

0 
If the characteristic equation (2.6) of x(t) = / [d^(e)]x(t + $) 

-r 
has no roots s 0 (mod i) and G is 2ir-periodic in t, then one can 

prove that there is a unique 27r-periodic solution of (k.7) in a neighbor- 

hood of the origin and this solution approaches zero as e -+Q. If the 

roots of this characteristic equation bare nonzero real parts and 

G(t, 9, €) is almost periodic in t uniformly with respect to 9 for 

each fixed €, then there is a unique almost periodic solution of (k.*f) 

in a neighborhood of the origin and this solution approaches zsro as 

€ ->0. The proofs may be supplied exactly as in [ 7; Chapters 5, 12] hy 

making use of the change of variables as in Theorem 17.1. Thase results 

hare been obtained previously in a slightly less general foim (see, for 

example, Krasorskii [10], Shimanov t1^]). 

What happens in the case when some of the roots of the characteristic 

equation (2.6) are m 0 (mod i) and G is ^-periodic in t? In this 

case, one can extend the method of casting out secular terms to derive 

the determining equations (bifurcation equations) associated with (*t.7). 
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Ikis procedure has already been indicated by Shimanor [    ], but Tie 

repeat it here for completeness.    For simplicity in notation, we restrict 

ourselves to the following case:    if 

A(X) «XI - /    [dn(e)]eXe 

-r 

and X is the root of multiplicity u of det A(x) - 0 which la 

s 0 (mod l), then there are u linearly independent solutions of 

A(X)D = 0.    Furthermore, for simplicity only, suppose    G = €H. 

9y the change of variables (k.'5)# syBtem (k.J) can be written as 

w(t) = B^t) + € l^(0)Qr 

(*.8) Ht) -^y(t) +€ f2
T(0)G1# 

*t s #zt + €At -€ ViT(0)Gi -€ *2
Y2T(0)Gr 

((Ti' W Ä °' 

where 

01 » 01(t,  w(t), y(t),  zt) = €H(t,  ^(t) + fgy(t) + «t), 

^•9) At(9) Ä   {    °      '     ' r * 0 < °' 
G1    , e - 0, 

BUt 
no eigenvalue of    ^    is    a 0 (mod i),    e c      is    2r-periodic and all 

elements in the point spectrum of the restriction of  (J^  to the set of 

all   q>   such that    ((!<., fp), ©) « 0   hare negative real parts. 
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If we let   y(t) * e     v(t),    system (4.8) can be written as 

*(t) * B^t) + €f1
T(0)G1, 

(4.10) *(t) = ce ^ f2
T(0)Gr 

z(t) «  rtz% -»- €^t - ••1f1
T(0)01 - €*2f2

T(0)G1, 

((fx, t2), zt) = 0, 

where    G,  = G,(t,  w(t), e    *" v(t),  z.).    One can now use Lemma IV.1 to 

repeat all of the argument» in [ 7, Chapter 6] to obtain a periodic func. 

tlon    (w*(t), v*(t), z*)    with a vector   a,    the mean value of   v*, arbi- 

trary, and a set of equations (the determining equations) involving the 

arbitrary vector   a   which hare the property that    (w*(t), v*(t), z») 

will be a periodic solution of (4.10) is and only if the vector   a 

satisfies tbe determining equations.    We do not discuss this question 

further since all details are easily supplied.    This procedure extends 

the method of Ce sari-Hale-Gambill to functional-differential equations 

of the above type. 

In some problems,  it is more convenient to introduce polar coor- 

dinates for the vector   y    in (4.8).    In the following, we may allow   G 

in (4.2) to be almost periodic in   t   and need only assume that the 

matrix   BL   has the form 

Bg » dlag (A^  ..., k^) 

(4.11) /o       l\ 

/ 
,     J = 1,2,   ...,  k 
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where (Mich    a.    is positive.    If   y » (y.,  ..., y«^),    the transforoa- 

tion 

(*.12) y2J « pj cos By    i « 1,2,  ..., k, 

pl " (pl>   **v  ^k^    ö a (Bl>  *••'  V 

applied to (^.8) yields a set of equations of the form 

0(t)  * d + € 6(t, 0(t), p(t), w(t), zt,€) 

fr(t) « € R(t, 9(t), p(t), w(t), zt, €) 

(4.13)     *(t) - BjVtt) ♦ € V(t, 0(t), p(t), w(t), zt, €) 

it  « ^zt + € Z(t, e(t), p(t), w(t), zt, €) 

where zt is required to satisfy ({f^, fg), zt) ■ 0, and d = (e^, «.., ak) 

Equations (if.15) are of the saoe type ttat hare been considered in [3,7 ] 

for ordinary differential equations. It is a simple natter to extend the 

method of averaging in [ 3,7 ] to systems of the form (*f.l3) and to prove 

the existence of integral manifolds which are generated by equilibrium 

points of the averaged equations« We do not go in detail on these general 

questions, since these extensions will be clear to the reader who is 

familiar with the results for ordinary differential equations. 
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