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Introduction

Sorting data is one of the most fundamental problems in Computer Science, 
especially if the arranging objects are primitive ones, such as integers, bytes, floats, etc. 
Since sorting methods play an important role in the operation of computers and other data 
processing systems, there has been an interest in seeking new algorithms better than the 
existing  ones.  We compare  sorting  methods  by the  number  of  the  most  "expensive" 
operations, which influence on effectiveness of the sorting techniques, — comparisons 
and swaps. Quicksort algorithm is an effective and wide-spread sorting procedure with 
C*n *ln(n) operations, where n is the size of the arranged array. The problem is to find an 
algorithm with the least coefficient C. There were many attempts to improve the classical 
variant of the Quicksort algorithm:
1. Pick an element, called a pivot, from the array.
2. Reorder the array so that all elements, which are less than the pivot, come before the 

pivot  and  all  elements  greater  than  the  pivot  come  after  it  (equal  values  can  go 
either way). After this partitioning, the pivot element is in its final position.

3. Recursively sort the sub-array of lesser elements and the sub-array of greater elements.
Hoare,  Helman,  Knuth,  Sedgewick,  Bentley  and  other  scientists  worked 

mostly  on  the  effectiveness  of  the  concrete  "divide  and  conquer"  algorithm 
implementations, or tried to increase performance due to the specific choice of the pivot 
element, but all of them used the classical partitioning scheme with two parts. 

We can show that using two pivot elements (or partitioning to three parts) is 
more effective,  especially on large  arrays.  We suggest  the  new  Dual-Pivot  Quicksort 
scheme,  faster  than  the  known  implementations,  which  improves  this  situation.  The 
implementation of the Dual-Pivot Quicksort algorithm has been investigated on different 
inputs  and  primitive data  types.  Its  advantages  in  comparison  with  one  of  the  most 
effective  known  implementations  of  the  classical  Quicksort  algorithm  [1],  [2],  and 
implementation of Quicksort in JDK™ 6.0 platform [3] have been shown.

New Dual-Pivot Quicksort algorithm

The  new  Quicksort  algorithm  uses  partitioning  a  source  array  T [ ] a, 
where T is primitive type (such as int, float, byte, char, double, long and short), to three 
parts defined by two pivot elements P1 and P2 (and therefore, there are three pointers L, 
K,  G, and left and right — indices of the first and last elements respectively) shown in 
Figure 1:

1

mailto:iaroslavski@mail.ru


Figure 1.

P1 < P1 P1 <=  & <= P2 ? > P2 P2

left L K G right
part I part II part IV part III

The algorithm provides the following steps:

1. For small arrays (length < 17), use the Insertion sort algorithm.
2. Choose two pivot elements  P1 and  P2.  We can get, for example, the first element 

a[left] as P1 and the last element a[right] as P2.
3. P1 must be less than P2, otherwise they are swapped. So, there are the following parts:
• part I with indices from left+1 to L–1 with elements, which are less than P1,
• part II with indices from L to K–1 with elements, which are greater or equal to P1 

and less or equal to P2,
• part III with indices from G+1 to right–1 with elements greater than P2,
• part IV contains the rest of the elements to be examined with indices from K to G.

4. The next element a[K] from the part IV is compared with two pivots P1 and P2,
and placed to the corresponding part I, II, or III.

5. The pointers L, K, and G are changed in the corresponding directions.
6. The steps 4 - 5 are repeated while K ≤ G.
7. The pivot element P1 is swapped with the last element from part I,

 the pivot element P2 is swapped with the first element from part III.
8. The steps 1 - 7 are repeated recursively for every part I, part II, and part III.

Mathematical proof

It  is  proved that  for  the  Dual-Pivot  Quicksort  the  average number of  comparisons is 
2*n*ln(n),  the  average  number  of  swaps  is  0.8*n*ln(n),  whereas  classical  Quicksort 
algorithm has 2*n*ln(n) and 1*n*ln(n) respectively.

At  first  consider  the  classic  Quicksort  scheme  and  find  the  average  number  of 
comparisons and swaps for it.  We assume that input data is random permutation of n 
numbers from the range [1..n].

Classic Quicksort
=============
1. Choose a pivot element (take random),
2. Compare each (n-1) elements with the pivot and swap it,  if  necessary, to have the 
partitions: [ <= pivot | >= pivot ]
4. Sort recursively left and right parts.

From the algorithm above, the average number of comparisons C_n as a function of the 
number of elements may be represented by the equation:
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(1)  C_n = (n-1) + 1/n * sum_{k=0}^{n-1} {C_k + C_{n-k-1}}

and last sum can be rewritten:

(2)  C_n = (n-1) + 2/n * sum_{k=0}^{n-1} C_k

Write formula (2) for n+1:

(3)  C_{n+1} = n + 2/(n+1) * sum_{k=0}^{n} C_k

Multiply (2) by n and (3) by (n+1) and subtract one from other, we have:

(4)  (n+1)*C_{n+1} - n*C_n = 2*n + 2*C_n

Sorting an array of n elements may be considered as selecting one permutation of the n 
elements among all  possible permutations.  The number of  possible permutations of  n 
elements is n!, so the task for any sorting algorithm is to determine the one permutation 
out of n! possibilities. The minimum number of operations (swap and comparisons) for 
sorting n elements is const*ln(n!). From the Stirling's formula the approximation of the 
number  of  operations  is  A*n*ln(n)  +  B*n  +  C,  where  A,  B  and  C  are  constant 
coefficients.  The  coefficients  B  and  C  are  not  important  for  large  n.  Therefore,  the 
function C_n may be approximated by the equation:

(5)  C_n = A*n*ln(n)

The function C_n is substituted from equation (5) into equation (4), which yields the 
following equation:

(6)  (n+1)*A*(n+1)*ln(n+1) - n*A*n*ln(n) = 2*n + 2*A*n*ln(n)

Using the properties of logarithms, equation (6) can then be reduced to:

(7)  n*ln(1+1/n) + 2*ln(1+1/n) + (1/n) * ln(n+1) = 2/A

Using a property of logarithm: ln(1 + x) -> x, if x -> 0, and other property: ln(n) / n -> 0, 
when n -> +oo, equation (7) will be approximated by:

(8)  1 + 0 + 0 = 2/A

So, the coefficient A is equal to 2 and the average number of comparisons in sorting of n 
size arrays is

(9)  C_n = 2*n*ln(n).
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To find the approximation of the average number of swaps, we use the similar approach 
as in the case of comparisons. The average number of swaps S_n as a function of the 
number of elements may be represented by the equation:

(10)  S_n = 1/2*(n-1) + 2/n * sum_{k=0}^{n-1} S_k

We assume that average number of swaps during one iteration is 1/2*(n-1). It means that 
in average one half of elements is swapped only. Using the same approach, we find that 
the coefficient A equals to 1. Therefore, the function S_n may be approximated by the 
equation:

(11)  S_n = n*ln(n)

Now  consider  the  Dual-Pivot  Quicksort  scheme  and  find  the  average  number  of 
comparisons and swaps for it.  We assume that input data is random permutation of n 
numbers from the range [1..n].

Dual-Pivot Quicksort
================
1. Choose 2 pivot elements pivot1 and pivot2 (take random),
2. pivot1 must be less or equal than pivot2, otherwise they are swapped
3. Compare each (n-2) elements with the pivots and swap it, if necessary, to have the 
partitions: [ <= p1 | p1 <= & <= p2 | >= p2 ]
5. Sort recursively left, center and right parts.

From the algorithm above, the average number of comparisons C_n as a function of the 
number of elements may be represented by the equation:

(1)  C_n = 1 + 2/(n*(n-1)) * sum_{i=0}^{n-2} sum_{j=i+1}^{n-1} {C_i + 1*i + C_{j-i-
1} + 2*(j-i-1) + C_{n-j-1} + 2*(n-j-1)}

Equation (1) means that total number is the sum of the comparison numbers of all cases 
of partitions into 3 parts plus number of comparisons for elements from left part (one 
comparison), center and right parts (2 comparisons).

We will show that 2/(n*(n-1)) * sum_{i=0}^{n-2} sum_{j=i+1}^{n-1} {i + 2*(j-i- 1) + 
2*(n-j-1)} equals to 5/3 * (n-2). Let's consider the double sum:

sum_{i=0}^{n-2} sum_{j=i+1}^{n-1} {i + 2*(j-i- 1) + 2*(n-j-1)} = sum_{i=0}^{n-2} 
sum_{j=i+1}^{n-1}  {2*n  -  4}  -  sum_{i=0}^{n-2}  sum_{j=i+1}^{n-1}  {i}  =  2*(n-
2)*sum_{i=0}^{n-2} {n-1-i} - sum_{i=0}^{n-2} sum_{j=i+1}^{n-1} {i} = 2*(n-2)*((n-
1)^2 - (n-1)*(n-2)/2) - (n-1)*sum_{i=0}^{n-2} {i} + sum_{i=0}^{n-2} {i*i} =
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------------------------------------------------------------------------------------
here we use the property: sum_{k=1}{n} {k^2} = n^3/3 + n^2/2 + n/6
------------------------------------------------------------------------------------

= 2*(n-2)*((n-1)^2 - (n-1)*(n-2)/2) - (n-1)*(n-1)*(n-2)/2 + (n-2)^3/3 + (n-2)^2/2 + (n-
2)/6 = 1/6 * (12*(n-1)^2*(n-2) - 6*(n-1)*(n-2)^2 - 3*(n-1)^2*(n-2) + 2*(n-2)^3 + 3*(n-
2)^2 + (n-2)) = 1/6 * (3*(n-1)*(n-2)*(3*(n-1) - 2*(n-2)) + (n-2)*(2*(n-2)^2 + 3*(n-2) + 
1))) = 1/6 * (3*(n-1)*(n-2)*(n+1) + (n-2)*(2*n^2 - 5*n + 3)) =1/6 * (n-2)*(5*n^2 - 5*n) 
= 5/6 * n*(n-1)*(n-2)

Substitute the result into equation (1):

C_n  =  1  +  2/(n*(n-1))  *  5/6  *  n*(n-1)*(n-2)  +  2/(n*(n-1))  *  sum_{i=0}^{n-2} 
sum_{j=i+1}^{n-1} {C_i + C_{j-i-1} + C_{n-j-1}}

or

(2)  C_n = 1 + 5/3*(n-2) + 2/(n*(n-1)) * sum_{i=0}^{n-2} sum_{j=i+1}^{n-1} {C_i + 
C_{j-i-1} + C_{n-j-1}}

The double sum in equation (2) can be reduced:

(3)  C_n = 1 + 5/3*(n-2) + 2/(n*(n-1)) * sum_{k=0}^{n-2} {3 * (n-k-1) * C_k}

Denote 1 + 5/3*(n-2) by f_n and multiply to n*(n-1):

(4)  n*(n-1)*C_n = n*(n-1)*f_n + 6 * sum_{k=0}^{n-2} {(n-k-1) * C_k}

Write formula (4) for n+1:

(5)  n*(n+1)*C_{n+1} = n*(n+1)*f_n + 6 * sum_{k=0}^{n-1} {(n-k) * C_k}

Subtract (4) from (5), we have:

(6)  n*(n+1)*C_{n+1} - n*(n-1)*C_n = n*(n+1)*f_n - n*(n-1)*f_n + 6 * sum_{k=0}^{n-
2} C_k + 6*C_{n-1}

Denote n*(n+1)*C_{n+1} - n*(n-1)*C_n by X_n and n*(n+1)*f_n - n*(n-1)*f_n by F_n:

(7)  X_n = F_n + 6 * sum_{k=0}^{n-2} C_k + 6*C_{n-1}

Write formula (7) for n+1:

(8)  X_{n+1} = F_{n+1} + 6 * sum_{k=0}^{n-1} C_k + 6*C_n
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Subtract (7) from (8), we have:

(9)  X_{n+1} - X_n = F_{n+1} - F_n + 6*C_n

Resolving of F_{n+1} - F_n gives:

(10)  X_{n+1} - X_n = 2 + 10*n + 6*C_n

The function X_n is substituted into equation (10), which yields the following equation:

(11)  (n+1)*(n+2)C_{n+2} -2*n(n+1)*C_{n+1} + (n*(n-1) - 6)*C_n = 2 + 10*n

We will find the function C_n approximated by the equation:

(12)  C_n = A*n*ln(n)

The function C_n is substituted from equation (12) into equation (11), which yields the 
following equation:

(13)  (n^3+5*n^2+8*n+4)*ln(n+2) - (2*n^3+4*n^2+2*n)*ln(n+1) + (n^3-n^2-6*n)*ln(n) 
= (10*n+2) / A

Using the properties of logarithms, equation (13) can then be reduced to:

(14)  n^3*(ln(n+2)-2*ln(n+1)+ln(n)) + n^2*(5*ln(n+2)-4*ln(n+1)-ln(n)) + n*(8*ln(n+2)-
2*ln(n+1)-6*ln(n)) + 4*ln(n+2) = (10*n+2) / A

Using a property of logarithm: ln(1 + x) -> x, if x -> 0, and other property: ln(n) / n -> 0, 
when n -> +oo, equation (15) will be approximated by:

(15)  -1 + 4 + 2 + 0 + 0 = 10 / A

So, the coefficient A is equal to 2 and the average number of comparisons in sorting of n 
size arrays is

(9)  C_n = 2*n*ln(n).

To find the approximation of the average number of swaps, we use the similar approach 
as in the case of comparisons. The average number of swaps S_n as a function of the 
number of elements may be represented by the equation:

(10)  S_n = 4 + 2/3*(n-2) + 2/(n*(n-1)) * sum_{k=0}^{n-2} {(n-k-1)*S_k}

We assume that average number of swaps during one iteration is 2/3*(n-2). It means that 
in average one third of elements is swapped only. Using the same approach, we find that 
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the coefficient A equals to 0.8. Therefore, the function S_n may be approximated by the 
equation:

(11)  S_n = 0.8*n*ln(n)

And as summary: the value of the coefficient A:

            dual-pivot   classic
comparison:    2.0         2.0
          swap:    0.8         1.0 

Comparison and summary

The new Dual-Pivot Quicksort algorithm provides the following advantages:
• While sorting  primitive  objects,  it  is more efficient  to use partitioning of  unsorted 

array to 3 parts instead of the usage of the classical approach. The more the size of the 
array to be sorted, the more efficiently the new algorithm works in comparison with 
the classical Quicksort [2] and the Quicksort implemented in JDK 6.0 platform [3]. 
For  example,  we provided the following numerical  experiment:  2 000 000 random 
integer elements were sorted 50 times using the new Dual-Pivot Quicksort, algorithms 
[2] and [3], and analyzed the calculation time. It took 16.5, 18.9, and 20.3 seconds 
respectively.  The  implementation  of  the  new  Dual-Pivot Quicksort  algorithm  for 
integers can be easy adjusted for another numeric, string and comparable types.

• The suggested Dual-Pivot Quicksort algorithm also works quicker than the classical 
schemes on the arranged arrays or the arrays with repeated elements. In these cases of 
nonrandom inputs the time metric for the Dual-Pivot Quicksort algorithm is 55 against 
100 for Quicksort implemented in JDK 6.0 platform, where all tests have been run on.

• The supposed algorithm has additional improvement of the special choice procedure 
for pivot elements P1 and P2. We take not the first a[left] and last a[right] elements 
of the array, but choose two middle elements from 5 middle elements. The described 
modification  does  not  make  worse  the  properties  of  the  Dual-Pivot Quicksort 
algorithm in the case of random source data.

We can summarize the features of the suggested algorithm as follows:
• Time savings.
• The "divide and conquer" strategy.
• Usage of two pivot elements instead of one.
• More effective sorting procedure that can be used in numerical analysis.
• The Dual-Pivot Quicksort algorithm could be recommended in the next JDK releases.
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Implementation in Java  ™ programming language  

/**
 * @author Vladimir Yaroslavskiy
 * @version 2009.09.17 m765.817
 */
public class DualPivotQuicksort817 {
    public static void sort(int[] a) {
        sort(a, 0, a.length);
    }
    public static void sort(int[] a, int fromIndex, int toIndex) {
        rangeCheck(a.length, fromIndex, toIndex);
        dualPivotQuicksort(a, fromIndex, toIndex - 1);
    }
    private static void rangeCheck(int length, int fromIndex, int toIndex) {
        if (fromIndex > toIndex) {
            throw new IllegalArgumentException("fromIndex(" + fromIndex + ") 
> toIndex(" + toIndex + ")");
        }
        if (fromIndex < 0) {
            throw new ArrayIndexOutOfBoundsException(fromIndex);
        }
        if (toIndex > length) {
            throw new ArrayIndexOutOfBoundsException(toIndex);
        }
    }
    private static void dualPivotQuicksort(int[] a, int left, int right) {
        int len = right - left;
        int x;
        if (len < TINY_SIZE) { // insertion sort on tiny array
            for (int i = left + 1; i <= right; i++) {
                for (int j = i; j > left && a[j] < a[j - 1]; j--) {
                    x = a[j - 1];
                    a[j - 1] = a[j];
                    a[j] = x;
                }
            }
            return;
        }
        // median indexes
        int sixth = len / 6;
        int m1 = left + sixth;
        int m2 = m1 + sixth;
        int m3 = m2 + sixth;
        int m4 = m3 + sixth;
        int m5 = m4 + sixth;
        // 5-element sorting network
        if (a[m1] > a[m2]) { x = a[m1]; a[m1] = a[m2]; a[m2] = x; }
        if (a[m4] > a[m5]) { x = a[m4]; a[m4] = a[m5]; a[m5] = x; }
        if (a[m1] > a[m3]) { x = a[m1]; a[m1] = a[m3]; a[m3] = x; }
        if (a[m2] > a[m3]) { x = a[m2]; a[m2] = a[m3]; a[m3] = x; }
        if (a[m1] > a[m4]) { x = a[m1]; a[m1] = a[m4]; a[m4] = x; }
        if (a[m3] > a[m4]) { x = a[m3]; a[m3] = a[m4]; a[m4] = x; }
        if (a[m2] > a[m5]) { x = a[m2]; a[m2] = a[m5]; a[m5] = x; }
        if (a[m2] > a[m3]) { x = a[m2]; a[m2] = a[m3]; a[m3] = x; }
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        if (a[m4] > a[m5]) { x = a[m4]; a[m4] = a[m5]; a[m5] = x; }
        // pivots: [ < pivot1 | pivot1 <= && <= pivot2 | > pivot2 ]
        int pivot1 = a[m2];
        int pivot2 = a[m4];
        boolean diffPivots = pivot1 != pivot2;
        a[m2] = a[left];
        a[m4] = a[right];
        // center part pointers
        int less  = left  + 1;
        int great = right - 1;
        // sorting
        if (diffPivots) {
            for (int k = less; k <= great; k++) {
                x = a[k];
                if (x < pivot1) {
                    a[k] = a[less];
                    a[less++] = x;
                } 
                else if (x > pivot2) {
                    while (a[great] > pivot2 && k < great) {
                        great--;
                    }
                    a[k] = a[great];
                    a[great--] = x;
                    x = a[k];
                    if (x < pivot1) {
                        a[k] = a[less];
                        a[less++] = x;
                    }
                }
            }
        }
        else {
            for (int k = less; k <= great; k++) {
                x = a[k];
                if (x == pivot1) {
                  continue;
                } 
                if (x < pivot1) {
                    a[k] = a[less];
                    a[less++] = x;
                }
                else {
                    while (a[great] > pivot2 && k < great) {
                        great--;
                    }
                    a[k] = a[great];
                    a[great--] = x;
                    x = a[k];
                    if (x < pivot1) {
                        a[k] = a[less];
                        a[less++] = x;
                    }
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                }
            }
        }
        // swap
        a[left] = a[less - 1];
        a[less - 1] = pivot1;
        a[right] = a[great + 1];
        a[great + 1] = pivot2;
        // left and right parts
        dualPivotQuicksort(a, left,   less - 2);
        dualPivotQuicksort(a, great + 2, right);
        // equal elements
        if (great - less > len - DIST_SIZE && diffPivots) {
            for (int k = less; k <= great; k++) {
                x = a[k];
                if (x == pivot1) {
                    a[k] = a[less];
                    a[less++] = x;
                }
                else if (x == pivot2) {
                    a[k] = a[great];
                    a[great--] = x;
                    x = a[k];
    
                    if (x == pivot1) {
                        a[k] = a[less];
                        a[less++] = x;
                    }
                }
            }
        }
        // center part
        if (diffPivots) {
            dualPivotQuicksort(a, less, great);
        }
    }
    private static final int DIST_SIZE = 13;
    private static final int TINY_SIZE = 17;
}

Experimental results

The a lot of tests have been run, here is the time of executions:

Server VM:
http://spreadsheets.google.com/pub?key=t_EAWUkQ4mD3BIbOv8Fa-AQ&output=html

Client VM:
http://spreadsheets.google.com/pub?key=tdiMo8xleTxd23nKUObcz0Q&single=true&gid=
0&output=html 
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