
DATA STRUCTURE D I A G R A M S
i

By Charles W. Bachman

Successful communication of ideas has been and will con-
tinue to be a limiting factor in man's endeavors to survive
and to better his life. The invention of algebra, essentially
a graphic technique for communicating truths with respect
to classes of arithmetic statements, broke the bond that
slowed the development of mathematics.

Whereas "12+ 13=25 '' and "3+7= 10" and "14+(-2) = 12"
are arithmetic statements, "a+b=c '' is an algebraic state-
ment. In particular, it is an algebraic statement controlling
an entire class of arithmetic statements such as those listed.

Data Structure Diagrams
The Data Structure Diagram is also a graphic technique.

It is based on a type of notation dealing with classes--spe-
cifically, with classes of entities and the classes of sets that
relate them. For example, individual people and automo-
biles are entities. When they are taken collectively, they
make two quite different classes of entities. On the other
hand, all the automobiles belonging to a particular person
constitute a set of entities that are subordinate to the
owner entity.

The Data Structure Diagram has been used frui t ful ly
over a period of five years by a limited but rapidly growing
audience. This audience (where the technique originated)
consists of the users of General Electric's Integrated
Data Store (I-D-S) data management system. I-D-S employs
language statements that directly support the relationships
implied by the Data Structure Diagrams. The technique
is now being used to study, document, and communicate
information structures, even in those cases where no mech-
anized implementation is intended. The purpose of this
paper is to document the technique of data structure dia-
gramming so that i t may be studied, evaluated, and put to
work where i t appears useful.
Definitions

Four terms: entity, enti ty class, enti ty set, and set class
are central to the understanding of Data Structure Diagrams.
This text will use the term entity to mean a particular
object being considered; the term entity class will mean
an entire group of entities which are sufficiently similar, in
terms of the attributes that describe them, to be considered
collectively. Many different entity classes may exist. The
text will use the term enti ty set to mean a different kind of

CHARLES W. BACHMAN is Manager, Applications Tech-
nology, for Genera/ Electric, Phoenix, Arizona. He is the
creator of G.E.'s Integrated Data Store (I-D-S), a gen-
eralized data storage and retrieval system. He is also a
member of the COBOL Data Base Task Force.

entity grouping--one that associates a group of entities
of one entity class with one entity of a different entity class
in a subordinate relationship. The concepts of entity class
and entity set are independent of each other and can be
thought of as being at right angles or orthogonal. Figure 1
illustrates ~his point.

entity set entity class

entity

Figure 1

The term set class will be used in the text to mean an
entire group of entity sets which are sufficiently similar, in
terms of the attributes that describe them, to be considered
collectively. Specifically, it is limited to those groups of sets
in which the same ent i ty-to-ent i ty subordinate relationship
exists. Figure 2 expands on Figure 1 to put all four of these
terms into a spatial relationship.

set class

entity set entity class

entity
Figure 2

Many different set classes may exist. For example, the
entities that we might consider in a management informa-
tion system are the employees and the departments. All
the employees in the company, when considered together,
would make one entity class, while all the departments
would make another entity class. Although the departments
and employees may be considered independently of each
other for some purposes, the relationship between the
group of employees who work for the same department
and that department may also be very important. Insofar
as a department has a set of employees currently assigned
to it, these employees can legitimately be considered as
subordinate entities or sub-entities of that department.
Each department is considered to be the owner of the set
in which .its employees are the members. When all of these

4

sets of employees are considered collectively they consti-
tute a set class.

In a like manner, i f employees, as an entity class, were
considered in conjunction with their spouses and children,
which comprise yet another entity class, then a set class
could be established on the basis of the sets with employee
entities as owners and their spouse and children as mem-
bers. The concept of owner and member, the one owner
to many member ratio, and the fact that these may be
treated on a class basis, are central to the purpose and
graphics of the Data Structure Diagram.

Graphic Symbols
The Data Structure Diagram technique uses two basic

graphic symbols: the block, to represent an entity class;
and the arrow, to represent a set class and to designate the
roles of owner/member established by that set class. The
arrow points from the entity class that owns the sets to the
entity class that makes up the membership of the sets.

The diagram in Figure 3 states that an entity class exists
and that an entity class name is to be assigned.

No information is implied as to how many entities make
up the entity class. The only implication is that the entity
class has been declared and is subject to such operations
as may be defined.

C L A S S OF E N T I T I E S

entity-class-name J

Figure 3

The diagram in Figure 4 states that two entity classes
have been defined and that their entity class names are:
"department" and "employee." If a particular company

TWO C L A S S E S OF E N T I T I E S

were being studied, there would be as many department
entities and employee entities as that company had de-
partments and people.

The diagram in Figure 5 states not only that two entity
classes exist, but also that they are related by a set class
named "assignment." The direction of the arrow is read
to mean that each employee is a member of a set of em-
ployees that belong to a particular department, and further,
that each department has such a set of employees.

SET ASSOCIATION OF ENTITIES

department owner ~assignment

employee
member

Figure 5

The Data Structure Diagram is topological in nature.
Only the blocks, arrows, and names have meaning. The
~ize, position, and proportion are selected for readability.
Figure 6 is exactly equivalent to Figure 5, even if some-
what contorted.

TOPOLOGICAL GRAPHICS

department

i

Figure 4

employee]
r l g u r u o

A Data Structure Diagram may contain as many blocks
and arrows as necessary to establish the particular informa-
tion structures under study. Any two entity classes may be
associated as entity class/sub-entity class by zero, one, two,
or more different set classes with the same or opposite
ownership.

Hierarchies
The term hierarchy has been used rather ambiguously in

the field of information technology. Data Structure Dia-
grams provide one possibility for non-ambiguous definition,
i.e., an information hierarchy can be said to exist wherever
there is a set-class relationship. Therefore, an information
hierarchy exists whenever there are two or more levels of
associated entity classes. Figure 7 integrates the depart-
ment/employee association of Figure 5 with the employee/
dependent association mentioned earlier to provide an ex-

The Data Structure Diagram that defines a network is
seen in Figure 9.

SIMPLE NETWORK STRUCTURE

node

ample of a three-level hierarchy, dominant dependent

H I E R A R C H Y !

i ' I [r e l a t i o n s h i p

department Figure 9

i

~ assignment The two entity classes labeled "node" and "relationship"
relate to the nodes and lines between nodes in Figure 8.

I employee !

~ fami ly

I dependent I

Figure 7

Many actual structures can be modeled either as a hier-
archy, network or tree. When the elements in a real world
hierarchy are like entities (i.e.,all people, all organizations)
and their reporting level is subject to change, then a net-
work or tree structure may prove to be more satisfactory
in modeling the situation than a hierarchical structure.

Networks
Many information models involve networks of informa-

tion, PERT or CPM diagrams are examples of such networks.
Another example is the "T" account double-entry account-
ing system in which every entry affects the debit side of one
account and the credit side of another account. Figure 8
is a generalized picture of a network with nodes connected
to each other in a directed sense, or as a directed graph.

NETWORK
Figure 8

By setting up a table of equivalences (Table 1), several
different models which are network-oriented can be quickly
defined. Please do not confuse the arrow direction in the
network (Figure 8)--meaning the dominance of one node
over another with the arrow direction in the network Data
Structure Diagram (Figure 9) meaning an owner/member
role.

ENTITY CLASS NAME SET CLASS NAME
APPLICATION

NODE I RELATIONSHIP DOMINANT DEPENDENT

PERT/CPM Event

GENERAL ACCOUNTING Account

PARTS LISTS Material Iterr

GENEALOGICAL CHARTS Subject

SUBROUTINE STRUCTURE Subroutine

ORGANIZATION CHARTS Organization

Activity Prior Succeeding

Transaction Debit Credit

Component Call-Out Where Used

Relationship Parent Chitd

Call Enter Return

Component Sub-Unit Report-To

Table 1

The similarity of the PERT/CPM diagrams to a network
is obvious. That of the general accounting model may be
less obvious. But what are the transactions, except directed
quantitative relationships between accounts (nodes); the
trail balance should always be zero. Manufacturing parts
lists consists of material items, which are made out of
material items. Genealogical charts are similar to manufac-
turing parts lists except that each item is made from only
two other things, its parents.

The interrelationship of a set of subroutines that call
on each other is also a network because each subroutine
may call many subroutines or be called by many sub-
routines.

Tree Structures
Organization charts usually are special cases of a net-

work, the tree structure, in which each node has one

6

dependent relationship and many dominant relationships.
I say usually, because military organizations are rife with
situations where units are assigned one place for command
purposes and another for rations and quarters. Figure 10
illustrates a tree structure.

T R E E

Figure 10

The Data Structure Diagram in Figure 9 is equally good
for modeling a network or a tree. The Data Structure
Diagram in Figure 11 is more specialized in that it supports
a tree model but does not support a network.

TREE S T R U C T U R E

node

dom inan t

i
~ L

dependent

re la t ionsh ip

Figure 11

In the Tree Structure Diagram the owner/member re-
lationship (arrow) of the "dependent" set class has been
reversed. The freedom to make the reversal is based upon
the fact that the tree allows only one or no relationships on
the dependent side of the node. Modelling the tree with a
Data Structure Diagram permits two options: (1) one rela-
tionship entity owning a one-member set of node entities
(Figure 11), or (2)one node entity owning a one-member
set of relationship entities (Figure 9). Therefore, the di-
rection of the entity/sub-entity relationship is somewhat
arbitrary. From the Data Structure Diagram in Figure 11,
i t is a short step in structure simplification to reach the
diagram in Figure 12, which still represents the tree.

TREE S T R U C T U R E D I A G R A M

node

U
d o m i n a n t
Figure 12

The "dependent" set had been limited by definition of
a tree to a 1:1 relationship between the "node" and
"relationship" entities. This was the fact which permitted
reversing the dependent entity/sub-entity association in
Figure 11 and still further supported merging the "node"
entity class with the "relationship" entity class. The diagram
simply illustrates that each "node" has a "dominant"
relationship with other nodes that, in turn, are limited to
one relationship on what is considered their "dependent"
side.

The Data Structure Diagrams in Figures 11 and 12 create
a chicken and egg situation. A member entity cannot exist
until there is a set in which to insert it. In Figures 11 and 12
the "node" entity is both owner and member. Therefore,
one such entity cannot exist alone unless it is its own
owner. Two different structure solutions are available for
this dilemma. These are the sometime member entity
classes, described in the next section, and the alternate
owner set classes, which will be discussed later in the text.

Sometime Member Entity Classes
When it is necessary to document a set class in which

the member relationship may or may not exist, a dashed
arrow is used. Figure 13 illustrates the graphic convention.
Entities of the owner entity class always own a set of the
set class specified. Entities of the class at the head of the
arrow in Figure 13 individually may (or may not) be
members.

S O M E T I M E M E M B E R S H I P

owner I I
1
T

I I
Figure 13

An example of a sometime member can be drawn from
the banking industry, where demand deposit accounts
entities have a sometime relationship with an overdrawn
account entity. Whenever an account's balance is less than
zero, the relationship is invoked until paid up. Otherwise,
the relationship doesn't exist.

Compound Networks
We have just used some examples of simple networks to

illustrate the usage of Data Structure Diagrams. By simple
network, I mean networks of like entities, i.e., all events,
or all " T " accounts. Compound networks are the result of
the association of unlike entities within a network. One
example of a compound network is developed by the
author association between books and the people who
wrote them. If you were to examine the books in any
library, you would find that some books had one author
while other books, especially in the technical and educa-
tional fields, had two and maybe three or four authors. If
you considered the people who were authors of these
books, you would find that some were authors of more
than one book. Certain prolific authors would have many
books to their credit. Therefore, the network created by the
book/people/author relationship would consist of nodes for
books (book entities), nodes for people (people entities),
and a relationship between a book entity and a person
entity that records authorship. Figure 14 is the Data
Structure Diagram which represents this compound net-
work.

C O M P O U N D N E T W O R K S T R U C T U R E

i ers°n I
•person - a u t h o r

au thorsh ip !

Figure 14

Information models of any complexity usually are com-
pound networks in one or more ways. If our original
department/employee model had represented a university,
then the "employee" entity might have been the same
entity class name as the "person" entity with a new
association. Figure 15 combines the Data Structure Dia-
grams of Figure 14 and one similar to Figure 7 to create
a more comprehensive information model.

i school

1
I department

I . . - " I

Figure 15

This model includes a school/department/person
organization-oriented hierarchy, the person/dependent per-
sonnel-oriented hierarchy and the person/authorship/book
compound (publish-or-perish) network. Given the necessary
computer hardware and software, and access to any one
entity in a specific data base created according to this Data
Structure Diagram, then all other associated entities could
be determined by moving through the sets. Both General
Electric's Integrated Data Store (I-D-S) and General Motors'
Associative Programming Language (APL) are software
systems specifically designed and implemented to encourage
and support the construction, maintenance, and use of data
bases organized around such complex structures.

Multimember Set Classes
When it is necessary to document a set class with more

than one class of entities in the role of member, a mult i-
headed arrow is used. Figure 16 illustrates the graphic
convention.

M U L T I M E M B E R SET C L A S S E S

Figure 16

An example of multimember set classes can be drawn
from the banking industry, where each customer may have
several different types of business with the bank. Different
entity classes are established for demand deposit accounts,
savings accounts, loan accounts, and trust accounts. Figure
17 illustrates this data structure. With this structure, each
customer can have multiple numbers of accounts of the
same or different types.

A L T E R N A T E O W N E R SET C L A S S E S

J CUSTOMER 1
I

ACCOUNTS

Figure 17

The need to provide for multicustomer associations with
specific accounts, i.e., joint accounts, usually leads banks
to work with a stl:ucture that includes joint account
entities. Figure 18 shows this extension. With this data
structure, each customer can have multiple numbers of
accounts, and each account has one prime customer. In
addition, each account may have any number of additional
joint account customers. Thus, again a compound network
is described.

I CUSTOMER I

Figure 19

A particular set has only one owner. Each owner entity
has its own set, but the set class name and the member
entity classes of its set are the same regardless of which
entity is the owner.

An example of alternate owner set classes can be drawn
from the manufacturing industry, where a manufacturing
order may be placed on the shop by an internal organi-
zation, a distributing organization, or a customer. For
accounting and reporting purposes, different entity classes
are established for each type of organization because di f -
ferent information must be maintained or because they may
be involved in other and different set classes. However,
from the shop's point of view, they are the "customer" for
an order regardless of their other nature.

Another example relates back to the Tree Structure
Diagram in which init iation of the tree posed a problem.
Figure 20 is an alternate solution. If the "dominant" set
class had alternate owners (either a primary node entity
that is owner but not member or a secondary node entry
that is both owner and member), then the problem is
trunk of the tree. The corollary of this structure, i f imposed
on a data management system, is as follows, " I f the primary
node were removed, then all of the secondary nodes and
thus the entire tree goes with i t . "

JOINT ACCOUNTS
Figure 18

Alternate Owner Set Classes
When it is necessary to document a set class with poten-

t ial ly more than one class of entities in the role of owner,
a multitai l arrow is used. Figure 19 illustrates the graphic
convention.

T R E E W I T H T R U N K

Figure 20 " ~

9

Complex Structures
Very large Data Structures Diagrams have been designed

and used in the last five years in the design and implemen-
tation of various information systems. "Large" in this case
is measured in terms of the number of entity classes and
set classes. Figure 21 illustrates the Data Structure Diagram
underlying one manufacturing information and control
system,

M A N U F A C T U R I N G S T R U C T U R E

Figure 21

It has 39 entity classes and 38 set classes. Can you, in
examining the diagram, find a five-level hierarchy? Two
simple networks? Five compound networks? A simple net-
work with an extra hierarchical level in one leg? Note that
there are no tree structures. Without any rigorous defi-
nition, a complex structure is one composed of many entity
classes and many set classes. Within a complex structure,
we typically find multilevel hierarchies, simple networks,
compound networks and trees.

Large Data Structure Diagrams, in terms of the number
of elements, should be clearly distinguished from large
data bases with many entities (records), which have been
built in response to a Data Structure Diagram. Although
each entity in a data base needs an entity class to define
and control it, that one entity class may represent zero,
one, ten thousand, or a mill ion records in storage. The
largest system in operation today contains 60 entity classes
controlling over half a mill ion data records. Larger systems
are being installed.

Summary of Structure Types
Simple and compound networks are differentiated by

the fact that one, the simple network, is constructed of
node entities of a single entity class, while the other is
constructed of node entities of several different entity
classes. Trees and networks are differentiated by the fact
that one, the tree, is constructed under the rule that each
node has only one "dominant" node while the other is
constructed with unlimited association between nodes. The
two concepts: tree vs. networks, and simple vs. compound,
are independent of each other and can be thought of as
being at right angles or orthogonal. Figure 22 illustrates this
point and brings the hierarchial structure into perspective.
It is a compound tree, i.e. with more than one entity class
as node and each node with only one dependent association.

C O M P O U N D N E T W O R K
tree

~ simple
hierarchy network

o n l y one ~ J ~ o n l y one
dependent ~ J J entity class
association ~ ~ J as node
per node entity

Figure 22

Summary
The Data Structure Diagrams, consisting of two kinds of

elements (blocks representing entity classes and arrows
representing set classes), have been defined. Examples have
illustrated their application. Their practical usage in the
design and study of mechanized information systems has
been described. Two data management languages, I-D-S
and APL, provide for the description and manipulation of
data bases with the characteristics that are describable
through the Data Structure Diagrams. In addition, there
is a new Data Description Language and Data Manipulation
Language currently being specified by the Data Base Task
Group of the COBOL Programming Languages Committee.
This offers promise for an industry standard data manage-
ment language that would operate in conjunction with
FORTRAN, ALGOL, PL/I, as well as COBOL allowing a
DATA BASE to be built in one language while being
accessed in yet another.

Bibliography

(1) Bachman, C. W., Williams, S. B., "A General Purpose Program-
ming System For Random Access Memories," Proceedings of
the Fall Joint Computer Conference, San Francisco, California.
October 1964.

(2) Bachman, C. W., "Software For Random Access Processing"
Datamation, April 1965.

(3) "Integrated Data Store, A New Concept in Data Management,"
AS-CPB-483A General Electric Information Systems Group,
Phoenix, Arizona.

(4) Bachman, C. W., "Integrated Data Store Data Base Study"
Second Symposium on Computer-Centered Data Base Systems,
also available as CPB-481A General Electric Information System
Group, Phoenix, Arizona.

(5) Dodd, G. G., "APL--A Language for Associative Data Handling
in PL/I," Fall Joint Computer Conference, 1966.

(6) "Report to the CODASYL COBOL Committee, January 1968.
COBOL Extensions to Handle Data Base" prepared by Data
Base Task Group.

(7) "Data Description Language and Data Manipulation Language
Report," April 1969; Prepared as a report to the CODASYL
COBOL Programming Language Committee by the Data Base
Task Group.

10

