
MATLAB array manipulation tips and tricks

Peter J. Acklam

E-mail: pjacklam@online.no
URL: http://home.online.no/~pjacklam

18th October 2003

mailto:pjacklam@online.no
http://home.online.no/~pjacklam

Copyright © 2000–2003 Peter J. Acklam. All rights reserved.
Any material in this document may be reproduced or duplicated for personal or educational use.

MATLAB is a trademark of The MathWorks, Inc.
TEX is a trademark of the American Mathematical Society.
Adobe, Acrobat, Acrobat Reader, and PostScript are trademarks of Adobe Systems Incorporated.

Contents

Preface . v

1 High-level vs low-level code 1
1.1 Introduction . 1
1.2 Advantages and disadvantages . 1

1.2.1 Portability . 1
1.2.2 Verbosity . 2
1.2.3 Speed . 2
1.2.4 Obscurity . 2
1.2.5 Difficulty . 2

1.3 Words of warning . 2

2 Operators, functions and special characters 3
2.1 Operators . 3
2.2 Built-in functions . 4
2.3 M-file functions . 5

3 Basic array properties 6
3.1 Size . 6

3.1.1 Size along a specific dimension . 6
3.1.2 Size along multiple dimensions . 6

3.2 Dimensions . 7
3.2.1 Number of dimensions . 7
3.2.2 Singleton dimensions . 7

3.3 Number of elements . 7
3.3.1 Empty arrays . 8

4 Array indices and subscripts 9

5 Creating basic vectors, matrices and arrays 10
5.1 Creating a constant array . 10

5.1.1 When the class is determined by the scalar to replicate 10
5.1.2 When the class is stored in a string variable 11

5.2 Special vectors . 11
5.2.1 Uniformly spaced elements . 11

6 Shifting 12
6.1 Vectors . 12
6.2 Matrices and arrays . 12

ii

CONTENTS iii

7 Replicating elements and arrays 13
7.1 Creating a constant array . 13
7.2 Replicating elements in vectors . 13

7.2.1 Replicate each element a constant number of times 13
7.2.2 Replicate each element a variable number of times 13

7.3 Using KRON for replicating elements . 14
7.3.1 KRON with an matrix of ones . 14
7.3.2 KRON with an identity matrix . 14

8 Reshaping arrays 16
8.1 Subdividing 2D matrix . 16

8.1.1 Create 4D array . 16
8.1.2 Create 3D array (columns first) . 16
8.1.3 Create 3D array (rows first) . 17
8.1.4 Create 2D matrix (columns first, column output) 17
8.1.5 Create 2D matrix (columns first, row output) 18
8.1.6 Create 2D matrix (rows first, column output) 18
8.1.7 Create 2D matrix (rows first, row output) 19

8.2 Stacking and unstacking pages . 19

9 Rotating matrices and arrays 20
9.1 Rotating 2D matrices . 20
9.2 Rotating ND arrays . 20
9.3 Rotating ND arrays around an arbitrary axis . 21
9.4 Block-rotating 2D matrices . 22

9.4.1 “Inner” vs “outer” block rotation . 22
9.4.2 “Inner” block rotation 90 degrees counterclockwise 23
9.4.3 “Inner” block rotation 180 degrees . 24
9.4.4 “Inner” block rotation 90 degrees clockwise 25
9.4.5 “Outer” block rotation 90 degrees counterclockwise 26
9.4.6 “Outer” block rotation 180 degrees . 27
9.4.7 “Outer” block rotation 90 degrees clockwise 28

9.5 Blocktransposing a 2D matrix . 28
9.5.1 “Inner” blocktransposing . 28
9.5.2 “Outer” blocktransposing . 29

10 Basic arithmetic operations 30
10.1 Multiply arrays . 30

10.1.1 Multiply each 2D slice with the same matrix (element-by-element) 30
10.1.2 Multiply each 2D slice with the same matrix (left) 30
10.1.3 Multiply each 2D slice with the same matrix (right) 30
10.1.4 Multiply matrix with every element of a vector 31
10.1.5 Multiply each 2D slice with corresponding element of a vector 32
10.1.6 Outer product of all rows in a matrix . 32
10.1.7 Keeping only diagonal elements of multiplication 32
10.1.8 Products involving the Kronecker product 33

10.2 Divide arrays . 33
10.2.1 Divide each 2D slice with the same matrix (element-by-element) 33
10.2.2 Divide each 2D slice with the same matrix (left) 33
10.2.3 Divide each 2D slice with the same matrix (right) 34

CONTENTS iv

11 More complicated arithmetic operations 35
11.1 Calculating distances . 35

11.1.1 Euclidean distance . 35
11.1.2 Distance between two points . 35
11.1.3 Euclidean distance vector . 35
11.1.4 Euclidean distance matrix . 35
11.1.5 Special case when both matrices are identical 36
11.1.6 Mahalanobis distance . 36

12 Statistics, probability and combinatorics 38
12.1 Discrete uniform sampling with replacement . 38
12.2 Discrete weighted sampling with replacement . 38
12.3 Discrete uniform sampling without replacement . 38
12.4 Combinations . 39

12.4.1 Counting combinations . 39
12.4.2 Generating combinations . 39

12.5 Permutations . 39
12.5.1 Counting permutations . 39
12.5.2 Generating permutations . 40

13 Identifying types of arrays 41
13.1 Numeric array . 41
13.2 Real array . 41
13.3 Identify real or purely imaginary elements . 42
13.4 Array of negative, non-negative or positive values 42
13.5 Array of integers . 42
13.6 Scalar . 42
13.7 Vector . 43
13.8 Matrix . 43
13.9 Array slice . 43

14 Logical operators and comparisons 44
14.1 List of logical operators . 44
14.2 Rules for logical operators . 44
14.3 Quick tests before slow ones . 44

15 Miscellaneous 46
15.1 Accessing elements on the diagonal . 46
15.2 Creating index vector from index limits . 47
15.3 Matrix with different incremental runs . 48
15.4 Finding indices . 48

15.4.1 First non-zero element in each column . 48
15.4.2 First non-zero element in each row . 49
15.4.3 Last non-zero element in each row . 50

15.5 Run-length encoding and decoding . 50
15.5.1 Run-length encoding . 50
15.5.2 Run-length decoding . 51

15.6 Counting bits . 51
Glossary . 52
Index . 53

CONTENTS v

Appendix . 55

A MATLAB resources 55

Preface

The essence

This document is intended to be a compilation of tips and tricks mainly related to efficient ways
of manipulating arrays in MATLAB. Here, “manipulating arrays” includes replicating and rotating
arrays or parts of arrays, inserting, extracting, replacing, permuting and shifting arrays or parts of
arrays, generating combinations and permutations of elements, run-length encoding and decoding,
arithmetic operations like multiplying and dividing arrays, calculating distance matrices and more.
A few other issues related to writing fast MATLAB code are also covered.

I want to thank Ken Doniger, Dr. Denis Gilbert for their contributions, suggestions, and cor-
rections.

Why I wrote this

Since the early 1990’s I have been following the discussions in the main MATLAB newsgroup on
Usenet, comp.soft-sys.matlab. I realized that many of the postings in the group were about how
to manipulate arrays efficiently, which was something I had a great interest in. Since many of the
same questions appeared again and again, I decided to start collecting what I thought were the most
interestings problems and solutions and see if I could compile them into one document. That was
the beginning of what you are now reading.

Intended audience

This document is mainly intended for those of you who already know the basics of MATLAB and
would like to dig further into the material regarding manipulating arrays efficiently.

How to read this

This document is more of a reference than a tutorial. Although it might be read from beginning to
end, the best way to use it is probably to get familiar with what is covered and then look it up here
when you bump into a problem which is covered here.

The language is rather technical although many of the terms used are explained. The index at the
back should be an aid in finding the explanation for a term unfamiliar to you.

vi

CONTENTS vii

Organization

Instead of just providing a compilation of questions and answers, I have organized the material into
sections and attempted to give general answers, where possible. That way, a solution for a particular
problem doesn’t just answer that one problem, but rather, that problem and all similar problems.

Many of the sections start off with a general description of what the section is about and what
kind of problems that are solved there. Following that are implementations which may be used to
solve the given problem.

Typographical convensions

All MATLAB code is set in a monospaced font, like this, and the rest is set in a proportional
font. En ellipsis (...) is sometimes used to indicated omitted code. It should be apparent from the
context whether the ellipsis is used to indicate omitted code or if the ellipsis is the line continuation
symbol used in MATLAB.

MATLAB functions are, like other MATLAB code, set in a proportional font, but in addition, the
text is hyperlinked to the documentation pages at The MathWorks’ web site. Thus, depending on
the PDF document reader, clicking the function name will open a web browser window showing the
appropriate documentation page.

Credits

To the extent possible, I have given credit to what I believe is the author of a particular solution. In
many cases there is no single author, since several people have been tweaking and trimming each
other’s solutions. If I have given credit to the wrong person, please let me know.

In particular, I do not claim to be the sole author of a solution even when there is no other name
mentioned.

Errors and feedback

If you find errors, or have suggestions for improvements, or if there is anything you think should be
here but is not, please mail me and I will see what I can do. My address is on the front page of this
document.

Chapter 1

High-level vs low-level code

1.1 Introduction

Like other computer languages, MATLAB provides operators and functions for creating and mani-
pulating arrays. Arrays may be manipulated one element at a time, like one does in low-level lan-
guages. Since MATLAB is a high-level programming language it also provides high-level operators
and functions for manipulating arrays.

Any task which can be done in MATLAB with high-level constructs may also be done with low-
level constructs. Here is an example of a low-level way of squaring the elements of a vector

x = [1 2 3 4 5]; % vector of values to square
y = zeros(size(x)); % initialize new vector
for i = 1 : numel(x) % for each index

y(i) = x(i)^2; % square the value
end % end of loop

and here is the high-level, or “vectorized”, way of doing the same

x = [1 2 3 4 5]; % vector of values to square
y = x.^2; % square all the values

The use of the higher-level operator makes the code more compact and more easy to read, but this is
not always the case. Before you start using high-level functions extensively, you ought to consider
the advantages and disadvantages.

1.2 Advantages and disadvantages

It is not always easy to decide when to use low-level functions and when to use high-level functions.
There are advantages and disadvantages with both. Before you decide what to use, consider the
following advantages and disadvantages with low-level and high-level code.

1.2.1 Portability

Low-level code looks much the same in most programming languages. Thus, someone who is used
to writing low-level code in some other language will quite easily be able to do the same in MATLAB.
And vice versa, low-level MATLAB code is more easily ported to other languages than high-level
MATLAB code.

1

CHAPTER 1. HIGH-LEVEL VS LOW-LEVEL CODE 2

1.2.2 Verbosity

The whole purpose of a high-level function is to do more than the low-level equivalent. Thus,
using high-level functions results in more compact code. Compact code requires less coding, and
generally, the less you have to write the less likely it is that you make a mistake. Also, is is more
easy to get an overview of compact code; having to wade through vast amounts of code makes it
more easy to lose the big picture.

1.2.3 Speed

Traditionally, low-level MATLAB code ran more slowly than high-level code, so among MATLAB

users there has always been a great desire to speed up execution by replacing low-level code with
high-level code. This is clearly seen in the MATLAB newsgroup on Usenet, comp.soft-sys.matlab,
where many postings are about how to “translate” a low-level construction into the high-level equi-
valent.

In MATLAB 6.5 an accelerator was introduced. The accelerator makes low-level code run much
faster. At this time, not all code will be accelerated, but the accelerator is still under development
and it is likely that more code will be accelerated in future releases of MATLAB. The MATLAB

documentation contains specific information about what code is accelerated.

1.2.4 Obscurity

High-level code is more compact than low-level code, but sometimes the code is so compact that
is it has become quite obscure. Although it might impress someone that a lot can be done with a
minimum code, it is a nightmare to maintain undocumented high-level code. You should always
document your code, and this is even more important if your extensive use of high-level code makes
the code obscure.

1.2.5 Difficulty

Writing efficient high-level code requires a different way of thinking than writing low-level code. It
requires a higher level of abstraction which some people find difficult to master. As with everything
else in life, if you want to be good at it, you must practice.

1.3 Words of warning

Don’t waste your time. Don’t rewrite code which doesn’t need rewriting. Don’t optimize code before
you are certain that the code is a bottleneck. Even if the code is a bottleneck: Don’t spend two hours
reducing the execution time of your program by one minute unless you are going to run the program
so many times that you will save the two hours you spent optimizing it in the first place.

Chapter 2

Operators, functions and special
characters

Clearly, it is important to know the language you intend to use. The language is described in the
manuals so I won’t repeat what they say, but I encourage you to type

help ops
help relop
help arith
help slash

at the command prompt and take a look at the list of operators, functions and special characters, and
look at the associated help pages.

When manipulating arrays in MATLAB there are some operators and functions that are particu-
larely useful.

2.1 Operators

In addition to the arithmetic operators, MATLAB provides a couple of other useful operators

: The colon operator.
Type help colon for more information.

.’ Non-conjugate transpose.
Type help transpose for more information.

’ Complex conjugate transpose.
Type help ctranspose for more information.

3

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ops.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/relop.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/arith.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/slash.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/colon.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/colon.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/transpose.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/transpose.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ctranspose.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ctranspose.shtml

CHAPTER 2. OPERATORS, FUNCTIONS AND SPECIAL CHARACTERS 4

2.2 Built-in functions
all True if all elements of a vector are nonzero.
any True if any element of a vector is nonzero.
cumsum Cumulative sum of elements.
diag Diagonal matrices and diagonals of a matrix.
diff Difference and approximate derivative.
end Last index in an indexing expression.
eye Identity matrix.
find Find indices of nonzero elements.
isempty True for empty matrix.
isequal True if arrays are numerically equal.
isfinite True for finite elements.
isinf True for infinite elements.
islogical True for logical array.
isnan True for Not-a-Number.
isnumeric True for numeric arrays.
length Length of vector.
logical Convert numeric values to logical.
ndims Number of dimensions.
numel Number of elements in a matrix.
ones Ones array.
permute Permute array dimensions.
prod Product of elements.
reshape Change size.
size Size of matrix.
sort Sort in ascending order.
sum Sum of elements.
tril Extract lower triangular part.
triu Extract upper triangular part.
zeros Zeros array.

Some of these functions are shorthands for combinations of other built-in functions, lik

length(x) is max(size(x))
ndims(x) is length(size(x))
numel(x) is prod(size(x))

Others are shorthands for frequently used tests, like

isempty(x) is numel(x) == 0
isinf(x) is abs(x) == Inf
isfinite(x) is abs(x) ~= Inf

Others are shorthands for frequently used functions which could have been written with low-level
code, like diag, eye, find, sum, cumsum, cumprod, sort, tril, triu, etc.

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/all.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/any.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/cumsum.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/diag.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/diff.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/end.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/eye.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/find.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isempty.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isequal.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isfinite.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isinf.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/islogical.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isnan.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isnumeric.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/length.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/logical.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ndims.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/numel.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ones.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/permute.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/prod.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/reshape.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/size.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sort.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sum.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/tril.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/triu.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/zeros.shtml

CHAPTER 2. OPERATORS, FUNCTIONS AND SPECIAL CHARACTERS 5

2.3 M-file functions
flipdim Flip matrix along specified dimension.
fliplr Flip matrix in left/right direction.
flipud Flip matrix in up/down direction.
ind2sub Multiple subscripts from linear index.
ipermute Inverse permute array dimensions.
kron Kronecker tensor product.
linspace Linearly spaced vector.
ndgrid Generation of arrays for N-D functions and interpolation.
repmat Replicate and tile an array.
rot90 Rotate matrix 90 degrees.
shiftdim Shift dimensions.
squeeze Remove singleton dimensions.
sub2ind Linear index from multiple subscripts.

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/flipdim.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fliplr.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/flipud.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ind2sub.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ipermute.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/kron.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/linspace.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ndgrid.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/repmat.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/rot90.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/shiftdim.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/squeeze.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sub2ind.shtml

Chapter 3

Basic array properties

3.1 Size

The size of an array is a row vector with the length along all dimensions. The size of the array x can
be found with

sx = size(x); % size of x (along all dimensions)

The length of the size vector sx is the number of dimensions in x. That is, length(size(x))
is identical to ndims(x) (see section 3.2.1). No builtin array class in MATLAB has less than two
dimensions.

To change the size of an array without changing the number of elements, use reshape.

3.1.1 Size along a specific dimension

To get the length along a specific dimension dim, of the array x, use

size(x, dim) % size of x (along a specific dimension)

This will return one for all singleton dimensions (see section 3.2.2), and, in particular, it will return
one for all dim greater than ndims(x).

3.1.2 Size along multiple dimensions

Sometimes one needs to get the size along multiple dimensions. It would be nice if we could use
size(x, dims), where dims is a vector of dimension numbers, but alas, size only allows the
dimension argument to be a scalar. We may of course use a for-loop solution like

siz = zeros(size(dims)); % initialize size vector to return
for i = 1 : numel(dims) % loop over the elements in dims

siz(i) = size(x, dims(i)); % get the size along dimension
end % end loop

A vectorized version of the above is

siz = ones(size(dims)); % initialize size vector to return
sx = size(x); % get size along all dimensions
k = dims <= ndims(x); % dimensions known not to be trailing singleton
siz(k) = sx(dims(k)); % insert size along dimensions of interest

6

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/reshape.shtml

CHAPTER 3. BASIC ARRAY PROPERTIES 7

which is the essential part of the function mttsize in the MTT Toolbox.
Code like the following is sometimes seen, unfortunately. It might be more intuitive than the

above, but it is more fragile since it might use a lot of memory when dims contains a large value.

sx = size(x); % get size along all dimensions
n = max(dims(:)) - ndims(x); % number of dimensions to append
sx = [sx ones(1, n)]; % pad size vector
siz = sx(dims); % extract dimensions of interest

An unlikely scenario perhaps, but imagine what happens if x and dims both are scalars and that
dims is a billion. The above code would require more than 8 GB of memory. The suggested
solution further above requires a negligible amount of memory. There is no reason to write fragile
code when it can easily be avoided.

3.2 Dimensions

3.2.1 Number of dimensions

The number of dimensions of an array is the number of the highest non-singleton dimension (see
section 3.2.2) but never less than two since arrays in MATLAB always have at least two dimensions.
The function which returns the number of dimensions is ndims, so the number of dimensions of an
array x is

dx = ndims(x); % number of dimensions

One may also say that ndims(x) is the largest value of dim, no less than two, for whichsize(x,dim)
is different from one.

Here are a few examples

x = ones(2,1) % 2-dimensional
x = ones(2,1,1,1) % 2-dimensional
x = ones(1,0) % 2-dimensional
x = ones(1,2,3,0,0) % 5-dimensional
x = ones(2,3,0,0,1) % 4-dimensional
x = ones(3,0,0,1,2) % 5-dimensional

3.2.2 Singleton dimensions

A “singleton dimension” is a dimension along which the length is one. That is, if size(x,dim)
is one, then dim is a singleton dimension. If, in addition, dim is larger than ndims(x), then dim
is called a “trailing singleton dimension”. Trailing singleton dimensions are ignored by size and
ndims.

Singleton dimensions may be removed with squeeze. Removing singleton dimensions chan-
ges the size of an array, but it does not change the number of elements in an array

Flipping an array along a singleton dimension is a null-operation, that is, it has no effect, it
changes nothing.

3.3 Number of elements

The number of elements in an array may be obtained with numel, e.g., numel(x) is the number
of elements in x. The number of elements is simply the product of the length along all dimensions,
that is, prod(size(x)).

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ndims.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/size.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ndims.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/squeeze.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/numel.shtml

CHAPTER 3. BASIC ARRAY PROPERTIES 8

3.3.1 Empty arrays

If the length along at least one dimension is zero, then the array has zero elements, and hence it is
empty. We could test the arrayx for emptiness with any(size(x) == 0) or numel(x) == 0,
but there is a builtin function which explicitly tests for emptiness, isempty.

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isempty.shtml

Chapter 4

Array indices and subscripts

To be written.

9

Chapter 5

Creating basic vectors, matrices and
arrays

5.1 Creating a constant array

5.1.1 When the class is determined by the scalar to replicate

To create an array whose size is siz =[m n p q ...] and where each element has the value
val, use

X = repmat(val, siz);

Following are three other ways to achieve the same, all based on what repmat uses internally. Note
that for these to work, the array X should not already exist

X(prod(siz)) = val; % array of right class and num. of elements
X = reshape(X, siz); % reshape to specified size
X(:) = X(end); % fill ‘val’ into X (redundant if ‘val’ is zero)

If the size is given as a cell vector siz ={m n p q ...}, there is no need to reshape

X(siz{:}) = val; % array of right class and size
X(:) = X(end); % fill ‘val’ into ‘X’ (redundant if ‘val’ is zero)

If m, n, p, q, . . . are scalar variables, one may use

X(m,n,p,q) = val; % array of right class and size
X(:) = X(end); % fill ‘val’ into X (redundant if ‘val’ is zero)

The following way of creating a constant array is frequently used

X = val(ones(siz));

but this solution requires more memory since it creates an index array. Since an index array is used, it
only works if val is a variable, whereas the other solutions above also work when val is a function
returning a scalar value, e.g., if val is Inf or NaN:

X = NaN(ones(siz)); % this won’t work unless NaN is a variable
X = repmat(NaN, siz); % here NaN may be a function or a variable

Avoid using

10

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/repmat.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/reshape.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/inf.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/nan.shtml

CHAPTER 5. CREATING BASIC VECTORS, MATRICES AND ARRAYS 11

X = val * ones(siz);

since it does unnecessary multiplications and only works for classes for which the multiplication
operator is defined.

5.1.2 When the class is stored in a string variable

To create an array of an arbitrary class cls, where cls is a character array (i.e., string) containing
the class name, use any of the above which allows val to be a function call and let val be

feval(cls, val)

As a special case, to create an array of class cls with only zeros, you can use

X = repmat(feval(cls, 0), siz); % a nice one-liner

or

X(prod(siz)) = feval(cls, 0);
X = reshape(X, siz);

Avoid using

X = feval(cls, zeros(siz)); % might require a lot more memory

since it first creates an array of class double which might require many times more memory than X
if an array of class cls requires less memory pr element than a double array.

5.2 Special vectors

5.2.1 Uniformly spaced elements

To create a vector of uniformly spaced elements, use the linspace function or the : (colon)
operator:

X = linspace(lower, upper, n); % row vector
X = linspace(lower, upper, n).’; % column vector

X = lower : step : upper; % row vector
X = (lower : step : upper).’; % column vector

If the difference upper-lower is not a multiple of step, the last element of X, X(end), will be
less than upper. So the condition A(end) <= upper is always satisfied.

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/linspace.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/colon.shtml

Chapter 6

Shifting

6.1 Vectors

To shift and rotate the elements of a vector, use

X([end 1:end-1]); % shift right/down 1 element
X([end-k+1:end 1:end-k]); % shift right/down k elements
X([2:end 1]); % shift left/up 1 element
X([k+1:end 1:k]); % shift left/up k elements

Note that these only work if k is non-negative. If k is an arbitrary integer one may use something
like

X(mod((1:end)-k-1, end)+1); % shift right/down k elements
X(mod((1:end)+k-1, end)+1); % shift left/up k element

where a negative k will shift in the opposite direction of a positive k.

6.2 Matrices and arrays

To shift and rotate the elements of an array X along dimension dim, first initialize a subscript cell
array with

idx = repmat({’:’}, ndims(X), 1); % initialize subscripts
n = size(X, dim); % length along dimension dim

then manipulate the subscript cell array as appropriate by using one of

idx{dim} = [n 1:n-1]; % shift right/down/forwards 1 element
idx{dim} = [n-k+1:n 1:n-k]; % shift right/down/forwards k elements
idx{dim} = [2:n 1]; % shift left/up/backwards 1 element
idx{dim} = [k+1:n 1:k]; % shift left/up/backwards k elements

finally create the new array

Y = X(idx{:});

12

Chapter 7

Replicating elements and arrays

7.1 Creating a constant array

See section 5.1.

7.2 Replicating elements in vectors

7.2.1 Replicate each element a constant number of times

Example Given

N = 3; A = [4 5]

create N copies of each element in A, so

B = [4 4 4 5 5 5]

Use, for instance,

B = A(ones(1,N),:);
B = B(:).’;

If A is a column-vector, use

B = A(:,ones(1,N)).’;
B = B(:);

Some people use

B = A(ceil((1:N*length(A))/N));

but this requires unnecessary arithmetic. The only advantage is that it works regardless of whether
A is a row or column vector.

7.2.2 Replicate each element a variable number of times

See section 15.5.2 about run-length decoding.

13

CHAPTER 7. REPLICATING ELEMENTS AND ARRAYS 14

7.3 Using KRON for replicating elements

7.3.1 KRON with an matrix of ones

Using kron with one of the arguments being a matrix of ones, may be used to replicate elements.
Firstly, since the replication is done by multiplying with a matrix of ones, it only works for classes
for which the multiplication operator is defined. Secondly, it is never necessary to perform any
multiplication to replicate elements. Hence, using kron is not the best way.

Assume A is a p-by-q matrix and that n is a non-negative integer.

Using KRON with a matrix of ones as first argument The expression

B = kron(ones(m,n), A);

may be computed more efficiently with

i = (1:p).’; i = i(:,ones(1,m));
j = (1:q).’; j = j(:,ones(1,n));
B = A(i,j);

or simply

B = repmat(A, [m n]);

Using KRON with a matrix of ones as second argument The expression

B = kron(A, ones(m,n));

may be computed more efficiently with

i = 1:p; i = i(ones(1,m),:);
j = 1:q; j = j(ones(1,n),:);
B = A(i,j);

7.3.2 KRON with an identity matrix

Assume A is a p-by-q matrix and that n is a non-negative integer.

Using KRON with an identity matrix as second argument The expression

B = kron(A, eye(n));

may be computed more efficiently with

B = zeros(p, q, n, n);
B(:,:,1:n+1:n^2) = repmat(A, [1 1 n]);
B = permute(B, [3 1 4 2]);
B = reshape(B, [n*p n*q]);

or the following, which does not explicitly use either p or q

B = zeros([size(A) n n]);
B(:,:,1:n+1:n^2) = repmat(A, [1 1 n]);
B = permute(B, [3 1 4 2]);
B = reshape(B, n*size(A));

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/kron.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/kron.shtml

CHAPTER 7. REPLICATING ELEMENTS AND ARRAYS 15

Using KRON with an identity matrix as first argument The expression

B = kron(eye(n), A);

may be computed more efficiently with

B = zeros(p, q, n, n);
B(:,:,1:n+1:n^2) = repmat(A, [1 1 n]);
B = permute(B, [1 3 2 4]);
B = reshape(B, [n*p n*q]);

or the following, which does not explicitly use either p or q

B = zeros([size(A) n n]);
B(:,:,1:n+1:n^2) = repmat(A, [1 1 n]);
B = permute(B, [1 3 2 4]);
B = reshape(B, n*size(A));

Chapter 8

Reshaping arrays

8.1 Subdividing 2D matrix

Assume X is an m-by-n matrix.

8.1.1 Create 4D array

To create a p-by-q-by-m/p-by-n/q array Y where the i,j submatrix of X is Y(:,:,i,j), use

Y = reshape(X, [p m/p q n/q]);
Y = permute(Y, [1 3 2 4]);

Now,

X = [Y(:,:,1,1) Y(:,:,1,2) ... Y(:,:,1,n/q)
Y(:,:,2,1) Y(:,:,2,2) ... Y(:,:,2,n/q)
...
Y(:,:,m/p,1) Y(:,:,m/p,2) ... Y(:,:,m/p,n/q)];

To restore X from Y use

X = permute(Y, [1 3 2 4]);
X = reshape(X, [m n]);

8.1.2 Create 3D array (columns first)

Assume you want to create a p-by-q-by-m*n/(p*q) array Y where the i,j submatrix of X is
Y(:,:,i+(j-1)*m/p). E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B
C D];

into

Y = cat(3, A, C, B, D);

use

Y = reshape(X, [p m/p q n/q]);
Y = permute(Y, [1 3 2 4]);
Y = reshape(Y, [p q m*n/(p*q)])

16

CHAPTER 8. RESHAPING ARRAYS 17

Now,

X = [Y(:,:,1) Y(:,:,m/p+1) ... Y(:,:,(n/q-1)*m/p+1)
Y(:,:,2) Y(:,:,m/p+2) ... Y(:,:,(n/q-1)*m/p+2)
...
Y(:,:,m/p) Y(:,:,2*m/p) ... Y(:,:,n/q*m/p)];

To restore X from Y use

X = reshape(Y, [p q m/p n/q]);
X = permute(X, [1 3 2 4]);
X = reshape(X, [m n]);

8.1.3 Create 3D array (rows first)

Assume you want to create a p-by-q-by-m*n/(p*q) array Y where the i,j submatrix of X is
Y(:,:,j+(i-1)*n/q). E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B
C D];

into

Y = cat(3, A, B, C, D);

use

Y = reshape(X, [p m/p n]);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [p q m*n/(p*q)]);

Now,

X = [Y(:,:,1) Y(:,:,2) ... Y(:,:,n/q)
Y(:,:,n/q+1) Y(:,:,n/q+2) ... Y(:,:,2*n/q)

...
Y(:,:,(m/p-1)*n/q+1) Y(:,:,(m/p-1)*n/q+2) ... Y(:,:,m/p*n/q)];

To restore X from Y use

X = reshape(Y, [p n m/p]);
X = permute(X, [1 3 2]);
X = reshape(X, [m n]);

8.1.4 Create 2D matrix (columns first, column output)

Assume you want to create a m*n/q-by-q matrix Y where the submatrices of X are concatenated
(columns first) vertically. E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B
C D];

into

Y = [A
C
B
D];

CHAPTER 8. RESHAPING ARRAYS 18

use

Y = reshape(X, [m q n/q]);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [m*n/q q]);

To restore X from Y use

X = reshape(Y, [m n/q q]);
X = permute(X, [1 3 2]);
X = reshape(X, [m n]);

8.1.5 Create 2D matrix (columns first, row output)

Assume you want to create a p-by-m*n/p matrix Y where the submatrices of X are concatenated
(columns first) horizontally. E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B
C D];

into

Y = [A C B D];

use

Y = reshape(X, [p m/p q n/q])
Y = permute(Y, [1 3 2 4]);
Y = reshape(Y, [p m*n/p]);

To restore X from Y use

Z = reshape(Y, [p q m/p n/q]);
Z = permute(Z, [1 3 2 4]);
Z = reshape(Z, [m n]);

8.1.6 Create 2D matrix (rows first, column output)

Assume you want to create a m*n/q-by-q matrix Y where the submatrices of X are concatenated
(rows first) vertically. E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B
C D];

into

Y = [A
B
C
D];

use

Y = reshape(X, [p m/p q n/q]);
Y = permute(Y, [1 4 2 3]);
Y = reshape(Y, [m*n/q q]);

To restore X from Y use

X = reshape(Y, [p n/q m/p q]);
X = permute(X, [1 3 4 2]);
X = reshape(X, [m n]);

CHAPTER 8. RESHAPING ARRAYS 19

8.1.7 Create 2D matrix (rows first, row output)

Assume you want to create a p-by-m*n/p matrix Y where the submatrices of X are concatenated
(rows first) horizontally. E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B
C D];

into

Y = [A B C D];

use

Y = reshape(X, [p m/p n]);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [p m*n/p]);

To restore X from Y use

X = reshape(Y, [p n m/p]);
X = permute(X, [1 3 2]);
X = reshape(X, [m n]);

8.2 Stacking and unstacking pages

Assume X is a m-by-n-by-p array and you want to create an m*p-by-n matrix Y that contains the
pages of X stacked vertically. E.g., if A, B, C, etc. are m-by-n matrices, then, to convert

X = cat(3, A, B, C, ...);

into

Y = [A
B
C

...];

use

Y = permute(X, [1 3 2]);
Y = reshape(Y, [m*p n]);

To restore X from Y use

X = reshape(Y, [m p n]);
X = permute(X, [1 3 2]);

Chapter 9

Rotating matrices and arrays

9.1 Rotating 2D matrices

To rotate an m-by-n matrix X, k times 90° counterclockwise one may use

Y = rot90(X, k);

or one may do it like this

Y = X(:,n:-1:1).’; % rotate 90 degrees counterclockwise
Y = X(m:-1:1,:).’; % rotate 90 degrees clockwise
Y = X(m:-1:1,n:-1:1); % rotate 180 degrees

In the above, one may replace m and n with end.

9.2 Rotating ND arrays

Assume X is an ND array and one wants the rotation to be vectorized along higher dimensions. That
is, the same rotation should be performed on all 2D slices X(:,:,i,j,...).

Rotating 90 degrees counterclockwise

s = size(X); % size vector
v = [2 1 3:ndims(X)]; % dimension permutation vector
Y = permute(X(:,s(2):-1:1,:), v);
Y = reshape(Y, s(v));

Rotating 180 degrees

s = size(X);
Y = reshape(X(s(1):-1:1,s(2):-1:1,:), s);

or the one-liner

Y = reshape(X(end:-1:1,end:-1:1,:), size(X));

20

CHAPTER 9. ROTATING MATRICES AND ARRAYS 21

Rotating 90 clockwise

s = size(X); % size vector
v = [2 1 3:ndims(X)]; % dimension permutation vector
Y = reshape(X(s(1):-1:1,:), s);
Y = permute(Y, v);

or the one-liner

Y = permute(reshape(X(end:-1:1,:), size(X)), [2 1 3:ndims(X)]);

9.3 Rotating ND arrays around an arbitrary axis

When rotating an ND array X we need to specify the axis around which the rotation should be
performed. The general case is to rotate an array around an axis perpendicular to the plane spanned
by dim1 and dim2. In the cases above, the rotation was performed around an axis perpendicular to
a plane spanned by dimensions one (rows) and two (columns). Note that a rotation changes nothing
if both size(X,dim1) and size(X,dim2) is one.

% Largest dimension number we have to deal with.
nd = max([ndims(X) dim1 dim2]);

% Initialize subscript cell array.
v = repmat({’:’}, [nd 1]);

then, depending on how to rotate, use

Rotate 90 degrees counterclockwise

v{dim2} = size(X,dim2):-1:1;
Y = X(v{:});
d = 1:nd;
d([dim1 dim2]) = [dim2 dim1];
Y = permute(X, d);

Rotate 180 degrees

v{dim1} = size(X,dim1):-1:1;
v{dim2} = size(X,dim2):-1:1;
Y = X(v{:});

Rotate 90 degrees clockwise

v{dim1} = size(X,dim1):-1:1;
Y = X(v{:});
d = 1:nd;
d([dim1 dim2]) = [dim2 dim1];
Y = permute(X, d);

CHAPTER 9. ROTATING MATRICES AND ARRAYS 22

9.4 Block-rotating 2D matrices

9.4.1 “Inner” vs “outer” block rotation

When talking about block-rotation of arrays, we have to differentiate between two different kinds of
rotation. Lacking a better name I chose to call it “inner block rotation” and “outer block rotation”.
Inner block rotation is a rotation of the elements within each block, preserving the position of each
block within the array. Outer block rotation rotates the blocks but does not change the position of
the elements within each block.

An example will illustrate: An inner block rotation 90 degrees counterclockwise will have the
following effect

[A B C [rot90(A) rot90(B) rot90(C)
D E F => rot90(D) rot90(E) rot90(F)
G H I] rot90(G) rot90(H) rot90(I)]

However, an outer block rotation 90 degrees counterclockwise will have the following effect

[A B C [C F I
D E F => B E H
G H I] A D G]

In all the examples below, it is assumed that X is an m-by-n matrix of p-by-q blocks.

CHAPTER 9. ROTATING MATRICES AND ARRAYS 23

9.4.2 “Inner” block rotation 90 degrees counterclockwise

General case To perform the rotation

X = [A B ... [rot90(A) rot90(B) ...
C D ... => rot90(C) rot90(D) ...
... ...]]

use

Y = reshape(X, [p m/p q n/q]);
Y = Y(:,:,q:-1:1,:); % or Y = Y(:,:,end:-1:1,:);
Y = permute(Y, [3 2 1 4]);
Y = reshape(Y, [q*m/p p*n/q]);

Special case: m=p To perform the rotation

[A B ...] => [rot90(A) rot90(B) ...]

use

Y = reshape(X, [p q n/q]);
Y = Y(:,q:-1:1,:); % or Y = Y(:,end:-1:1,:);
Y = permute(Y, [2 1 3]);
Y = reshape(Y, [q m*n/q]); % or Y = Y(:,:);

Special case: n=q To perform the rotation

X = [A [rot90(A)
B => rot90(B)

...] ...]

use

Y = X(:,q:-1:1); % or Y = X(:,end:-1:1);
Y = reshape(Y, [p m/p q]);
Y = permute(Y, [3 2 1]);
Y = reshape(Y, [q*m/p p]);

CHAPTER 9. ROTATING MATRICES AND ARRAYS 24

9.4.3 “Inner” block rotation 180 degrees

General case To perform the rotation

X = [A B ... [rot90(A,2) rot90(B,2) ...
C D ... => rot90(C,2) rot90(D,2) ...
... ...]]

use

Y = reshape(X, [p m/p q n/q]);
Y = Y(p:-1:1,:,q:-1:1,:); % or Y = Y(end:-1:1,:,end:-1:1,:);
Y = reshape(Y, [m n]);

Special case: m=p To perform the rotation

[A B ...] => [rot90(A,2) rot90(B,2) ...]

use

Y = reshape(X, [p q n/q]);
Y = Y(p:-1:1,q:-1:1,:); % or Y = Y(end:-1:1,end:-1:1,:);
Y = reshape(Y, [m n]); % or Y = Y(:,:);

Special case: n=q To perform the rotation

X = [A [rot90(A,2)
B => rot90(B,2)

...] ...]

use

Y = reshape(X, [p m/p q]);
Y = Y(p:-1:1,:,q:-1:1); % or Y = Y(end:-1:1,:,end:-1:1);
Y = reshape(Y, [m n]);

CHAPTER 9. ROTATING MATRICES AND ARRAYS 25

9.4.4 “Inner” block rotation 90 degrees clockwise

General case To perform the rotation

X = [A B ... [rot90(A,3) rot90(B,3) ...
C D ... => rot90(C,3) rot90(D,3) ...
... ...]]

use

Y = reshape(X, [p m/p q n/q]);
Y = Y(p:-1:1,:,:,:); % or Y = Y(end:-1:1,:,:,:);
Y = permute(Y, [3 2 1 4]);
Y = reshape(Y, [q*m/p p*n/q]);

Special case: m=p To perform the rotation

[A B ...] => [rot90(A,3) rot90(B,3) ...]

use

Y = X(p:-1:1,:); % or Y = X(end:-1:1,:);
Y = reshape(Y, [p q n/q]);
Y = permute(Y, [2 1 3]);
Y = reshape(Y, [q m*n/q]); % or Y = Y(:,:);

Special case: n=q To perform the rotation

X = [A [rot90(A,3)
B => rot90(B,3)

...] ...]

use

Y = reshape(X, [p m/p q]);
Y = Y(p:-1:1,:,:); % or Y = Y(end:-1:1,:,:);
Y = permute(Y, [3 2 1]);
Y = reshape(Y, [q*m/p p]);

CHAPTER 9. ROTATING MATRICES AND ARRAYS 26

9.4.5 “Outer” block rotation 90 degrees counterclockwise

General case To perform the rotation

X = [A B ... [... ...
C D ... => B D ...
... ...] A C ...]

use

Y = reshape(X, [p m/p q n/q]);
Y = Y(:,:,:,n/q:-1:1); % or Y = Y(:,:,:,end:-1:1);
Y = permute(Y, [1 4 3 2]);
Y = reshape(Y, [p*n/q q*m/p]);

Special case: m=p To perform the rotation

[A B ...] => [...
B
A]

use

Y = reshape(X, [p q n/q]);
Y = Y(:,:,n/q:-1:1); % or Y = Y(:,:,end:-1:1);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [m*n/q q]);

Special case: n=q To perform the rotation

X = [A
B => [A B ...]

...]

use

Y = reshape(X, [p m/p q]);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [p n*m/p]); % or Y(:,:);

CHAPTER 9. ROTATING MATRICES AND ARRAYS 27

9.4.6 “Outer” block rotation 180 degrees

General case To perform the rotation

X = [A B ... [... ...
C D ... => ... D C
... ...] ... B A]

use

Y = reshape(X, [p m/p q n/q]);
Y = Y(:,m/p:-1:1,:,n/q:-1:1); % or Y = Y(:,end:-1:1,:,end:-1:1);
Y = reshape(Y, [m n]);

Special case: m=p To perform the rotation

[A B ...] => [... B A]

use

Y = reshape(X, [p q n/q]);
Y = Y(:,:,n/q:-1:1); % or Y = Y(:,:,end:-1:1);
Y = reshape(Y, [m n]); % or Y = Y(:,:);

Special case: n=q To perform the rotation

X = [A [...
B => B

...] A]

use

Y = reshape(X, [p m/p q]);
Y = Y(:,m/p:-1:1,:); % or Y = Y(:,end:-1:1,:);
Y = reshape(Y, [m n]);

CHAPTER 9. ROTATING MATRICES AND ARRAYS 28

9.4.7 “Outer” block rotation 90 degrees clockwise

General case To perform the rotation

X = [A B ... [... C A
C D ... => ... D B
... ...]]

use

Y = reshape(X, [p m/p q n/q]);
Y = Y(:,m/p:-1:1,:,:); % or Y = Y(:,end:-1:1,:,:);
Y = permute(Y, [1 4 3 2]);
Y = reshape(Y, [p*n/q q*m/p]);

Special case: m=p To perform the rotation

[A B ...] => [A
B

...]

use

Y = reshape(X, [p q n/q]);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [m*n/q q]);

Special case: n=q To perform the rotation

X = [A
B => [... B A]

...]

use

Y = reshape(X, [p m/p q]);
Y = Y(:,m/p:-1:1,:); % or Y = Y(:,end:-1:1,:);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [p n*m/p]);

9.5 Blocktransposing a 2D matrix

9.5.1 “Inner” blocktransposing

Assume X is an m-by-n matrix and you want to subdivide it into p-by-q submatrices and transpose
as if each block was an element. E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B ... [A.’ B.’ ...
C D ... => C.’ D.’ ...
... ...]]

use

Y = reshape(X, [p m/p q n/q]);
Y = permute(Y, [3 2 1 4]);
Y = reshape(Y, [q*m/p p*n/q]);

CHAPTER 9. ROTATING MATRICES AND ARRAYS 29

9.5.2 “Outer” blocktransposing

Assume X is an m-by-n matrix and you want to subdivide it into p-by-q submatrices and transpose
as if each block was an element. E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B ... [A C ...
C D ... => B D ...
... ...]]

use

Y = reshape(X, [p m/p q n/q]);
Y = permute(Y, [1 4 3 2]);
Y = reshape(Y, [p*n/q q*m/p]);

Chapter 10

Basic arithmetic operations

10.1 Multiply arrays

10.1.1 Multiply each 2D slice with the same matrix (element-by-element)

Assume X is an m-by-n-by-p-by-q-by-. . . array and Y is an m-by-nmatrix and you want to construct
a new m-by-n-by-p-by-q-by-. . . array Z, where

Z(:,:,i,j,...) = X(:,:,i,j,...) .* Y;

for all i=1,...,p, j=1,...,q, etc. This can be done with nested for-loops, or by the following
vectorized code

sx = size(X);
Z = X .* repmat(Y, [1 1 sx(3:end)]);

10.1.2 Multiply each 2D slice with the same matrix (left)

Assume X is an m-by-n-by-p-by-q-by-. . . array and Y is a k-by-m matrix and you want to construct
a new k-by-n-by-p-by-q-by-. . . array Z, where

Z(:,:,i,j,...) = Y * X(:,:,i,j,...);

for all i=1,...,p, j=1,...,q, etc. This can be done with nested for-loops, or by the following
vectorized code

sx = size(X);
sy = size(Y);
Z = reshape(Y * X(:,:), [sy(1) sx(2:end)]);

The above works by reshaping X so that all 2D slices X(:,:,i,j,...) are placed next to each
other (horizontal concatenation), then multiply with Y, and then reshaping back again.

The X(:,:) is simply a short-hand for reshape(X, [sx(1) prod(sx)/sx(1)]).

10.1.3 Multiply each 2D slice with the same matrix (right)

Assume X is an m-by-n-by-p-by-q-by-. . . array and Y is an n-by-kmatrix and you want to construct
a new m-by-n-by-p-by-q-by-. . . array Z, where

30

CHAPTER 10. BASIC ARITHMETIC OPERATIONS 31

Z(:,:,i,j,...) = X(:,:,i,j,...) * Y;

for all i=1,...,p, j=1,...,q, etc. This can be done with nested for-loops, or by vectorized
code. First create the variables

sx = size(X);
sy = size(Y);
dx = ndims(X);

Then use the fact that

Z(:,:,i,j,...) = X(:,:,i,j,...) * Y = (Y’ * X(:,:,i,j,...)’)’;

so the multiplication Y’ * X(:,:,i,j,...)’ can be solved by the method in section 10.1.2.

Xt = conj(permute(X, [2 1 3:dx]));
Z = Y’ * Xt(:,:);
Z = reshape(Z, [sy(2) sx(1) sx(3:dx)]);
Z = conj(permute(Z, [2 1 3:dx]));

Note how the complex conjugate transpose (’) on the 2D slices of X was replaced by a combination
of permute and conj.

Actually, because signs will cancel each other, we can simplify the above by removing the calls
to conj and replacing the complex conjugate transpose (’) with the non-conjugate transpose (.’).
The code above then becomes

Xt = permute(X, [2 1 3:dx]);
Z = Y.’ * Xt(:,:);
Z = reshape(Z, [sy(2) sx(1) sx(3:dx)]);
Z = permute(Z, [2 1 3:dx]);

An alternative method is to perform the multiplication X(:,:,i,j,...) * Y directly but
that requires that we stack all 2D slices X(:,:,i,j,...) on top of each other (vertical concate-
nation), multiply, and unstack. The code is then

Xt = permute(X, [1 3:dx 2]);
Xt = reshape(Xt, [prod(sx)/sx(2) sx(2)]);
Z = Xt * Y;
Z = reshape(Z, [sx(1) sx(3:dx) sy(2)]);
Z = permute(Z, [1 dx 2:dx-1]);

The first two lines perform the stacking and the two last perform the unstacking.

10.1.4 Multiply matrix with every element of a vector

Assume X is an m-by-n matrix and v is a vector with length p. How does one write

Y = zeros(m, n, p);
for i = 1:p
Y(:,:,i) = X * v(i);
end

with no for-loop? One way is to use

Y = reshape(X(:)*v, [m n p]);

For the more general problem where X is an m-by-n-by-p-by-q-by-... array and v is a p-by-q-
by-... array, the for-loop

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ctranspose.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/permute.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/conj.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/conj.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ctranspose.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/transpose.shtml

CHAPTER 10. BASIC ARITHMETIC OPERATIONS 32

Y = zeros(m, n, p, q, ...);
...
for j = 1:q

for i = 1:p
Y(:,:,i,j,...) = X(:,:,i,j,...) * v(i,j,...);

end
end
...

may be written as

sx = size(X);
Z = X .* repmat(reshape(v, [1 1 sx(3:end)]), [sx(1) sx(2)]);

10.1.5 Multiply each 2D slice with corresponding element of a vector

Assume X is an m-by-n-by-p array and v is a row vector with length p. How does one write

Y = zeros(m, n, p);
for i = 1:p

Y(:,:,i) = X(:,:,i) * v(i);
end

with no for-loop? One way is to use

Y = X .* repmat(reshape(v, [1 1 p]), [m n]);

10.1.6 Outer product of all rows in a matrix

Assume X is an m-by-nmatrix. How does one create an n-by-n-by-mmatrix Y so that, for all i from
1 to m,

Y(:,:,i) = X(i,:)’ * X(i,:);

The obvious for-loop solution is

Y = zeros(n, n, m);
for i = 1:m

Y(:,:,i) = X(i,:)’ * X(i,:);
end

a non-for-loop solution is

j = 1:n;
Y = reshape(repmat(X’, n, 1) .* X(:,j(ones(n, 1),:)).’, [n n m]);

Note the use of the non-conjugate transpose in the second factor to ensure that it works correctly
also for complex matrices.

10.1.7 Keeping only diagonal elements of multiplication

Assume X and Y are two m-by-n matrices and that W is an n-by-n matrix. How does one vectorize
the following for-loop

CHAPTER 10. BASIC ARITHMETIC OPERATIONS 33

Z = zeros(m, 1);
for i = 1:m

Z(i) = X(i,:)*W*Y(i,:)’;
end

Two solutions are

Z = diag(X*W*Y’); % (1)
Z = sum(X*W.*conj(Y), 2); % (2)

Solution (1) does a lot of unnecessary work, since we only keep the n diagonal elements of the nˆ2
computed elements. Solution (2) only computes the elements of interest and is significantly faster if
n is large.

10.1.8 Products involving the Kronecker product

The following is based on a posting by Paul Fackler <paul_fackler@ncsu.edu> to the Usenet news
group comp.soft-sys.matlab.

Kronecker products of the form kron(A, eye(n)) are often used to premultiply (or post-
multiply) another matrix. If this is the case it is not necessary to actually compute and store the
Kronecker product. Assume A is an p-by-q matrix and that B is a q*n-by-m matrix.

Then the following two p*n-by-m matrices are identical

C1 = kron(A, eye(n))*B;
C2 = reshape(reshape(B.’, [n*m q])*A.’, [m p*n]).’;

The following two p*n-by-m matrices are also identical.

C1 = kron(eye(n), A)*B;
C2 = reshape(A*reshape(B, [q n*m]), [p*n m]);

10.2 Divide arrays

10.2.1 Divide each 2D slice with the same matrix (element-by-element)

Assume X is an m-by-n-by-p-by-q-by-. . . array and Y is an m-by-nmatrix and you want to construct
a new m-by-n-by-p-by-q-by-. . . array Z, where

Z(:,:,i,j,...) = X(:,:,i,j,...) ./ Y;

for all i=1,...,p, j=1,...,q, etc. This can be done with nested for-loops, or by the following
vectorized code

sx = size(X);
Z = X./repmat(Y, [1 1 sx(3:end)]);

10.2.2 Divide each 2D slice with the same matrix (left)

Assume X is an m-by-n-by-p-by-q-by-. . . array and Y is an m-by-mmatrix and you want to construct
a new m-by-n-by-p-by-q-by-. . . array Z, where

Z(:,:,i,j,...) = Y \ X(:,:,i,j,...);

for all i=1,...,p, j=1,...,q, etc. This can be done with nested for-loops, or by the following
vectorized code

Z = reshape(Y\X(:,:), size(X));

CHAPTER 10. BASIC ARITHMETIC OPERATIONS 34

10.2.3 Divide each 2D slice with the same matrix (right)

Assume X is an m-by-n-by-p-by-q-by-. . . array and Y is an m-by-mmatrix and you want to construct
a new m-by-n-by-p-by-q-by-. . . array Z, where

Z(:,:,i,j,...) = X(:,:,i,j,...) / Y;

for all i=1,...,p, j=1,...,q, etc. This can be done with nested for-loops, or by the following
vectorized code

sx = size(X);
dx = ndims(X);
Xt = reshape(permute(X, [1 3:dx 2]), [prod(sx)/sx(2) sx(2)]);
Z = Xt/Y;
Z = permute(reshape(Z, sx([1 3:dx 2])), [1 dx 2:dx-1]);

The third line above builds a 2D matrix which is a vertical concatenation (stacking) of all 2D slices
X(:,:,i,j,...). The fourth line does the actual division. The fifth line does the opposite of the
third line.

The five lines above might be simplified a little by introducing a dimension permutation vector

sx = size(X);
dx = ndims(X);
v = [1 3:dx 2];
Xt = reshape(permute(X, v), [prod(sx)/sx(2) sx(2)]);
Z = Xt/Y;
Z = ipermute(reshape(Z, sx(v)), v);

If you don’t care about readability, this code may also be written as

sx = size(X);
dx = ndims(X);
v = [1 3:dx 2];
Z = ipermute(reshape(reshape(permute(X, v), ...
[prod(sx)/sx(2) sx(2)])/Y, sx(v)), v);

Chapter 11

More complicated arithmetic
operations

11.1 Calculating distances

11.1.1 Euclidean distance

The Euclidean distance from xi to y j is

di j = ‖xi −y j‖ =
√

(x1i − y1 j)2 + · · ·+(xpi− yp j)2

11.1.2 Distance between two points

To calculate the Euclidean distance from a point represented by the vector x to another point repre-
seted by the vector y, use one of

d = norm(x-y);
d = sqrt(sum(abs(x-y).^2));

11.1.3 Euclidean distance vector

Assume X is an m-by-pmatrix representing m points in p-dimensional space and y is a 1-by-p vector
representing a single point in the same space. Then, to compute the m-by-1 distance vector d where
d(i) is the Euclidean distance between X(i,:) and y, use

d = sqrt(sum(abs(X - repmat(y, [m 1])).^2, 2));
d = sqrt(sum(abs(X - y(ones(m,1),:)).^2, 2)); % inline call to repmat

11.1.4 Euclidean distance matrix

Assume X is an m-by-p matrix representing m points in p-dimensional space and Y is an n-by-p
matrix representing another set of points in the same space. Then, to compute the m-by-n distance
matrix D where D(i,j) is the Euclidean distance X(i,:) between Y(j,:), use

D = sqrt(sum(abs(repmat(permute(X, [1 3 2]), [1 n 1]) ...
- repmat(permute(Y, [3 1 2]), [m 1 1])).^2, 3));

35

CHAPTER 11. MORE COMPLICATED ARITHMETIC OPERATIONS 36

The following code inlines the call to repmat, but requires to temporary variables unless one do-
esn’t mind changing X and Y

Xt = permute(X, [1 3 2]);
Yt = permute(Y, [3 1 2]);
D = sqrt(sum(abs(Xt(:,ones(1,n),:) ...

- Yt(ones(1,m),:,:)).^2, 3));

The distance matrix may also be calculated without the use of a 3-D array:

i = (1:m).’; % index vector for x
i = i(:,ones(1,n)); % index matrix for x
j = 1:n; % index vector for y
j = j(ones(1,m),:); % index matrix for y
D = zeros(m, n); % initialise output matrix
D(:) = sqrt(sum(abs(X(i(:),:) - Y(j(:),:)).^2, 2));

11.1.5 Special case when both matrices are identical

If X and Y are identical one may use the following, which is nothing but a rewrite of the code above

D = sqrt(sum(abs(repmat(permute(X, [1 3 2]), [1 m 1]) ...
- repmat(permute(X, [3 1 2]), [m 1 1])).^2, 3));

One might want to take advantage of the fact that D will be symmetric. The following code first
creates the indices for the upper triangular part of D. Then it computes the upper triangular part of D
and finally lets the lower triangular part of D be a mirror image of the upper triangular part.

[i j] = find(triu(ones(m), 1)); % trick to get indices
D = zeros(m, m); % initialise output matrix
D(i + m*(j-1)) = sqrt(sum(abs(X(i,:) - X(j,:)).^2, 2));
D(j + m*(i-1)) = D(i + m*(j-1));

11.1.6 Mahalanobis distance

The Mahalanobis distance from a vector y j to the set X = {x1, . . . ,xnx} is the distance from y j to x̄,
the centroid of X , weighted according to Cx, the variance matrix of the set X . I.e.,

d2
j = (y j − x̄)′Cx

−1(y j − x̄)

where

x̄ =
1
nx

n

∑
i=1

xi and Cx =
1

nx −1

nx

∑
i=1

(xi − x̄)(xi − x̄)′

Assume Y is an ny-by-p matrix containing a set of vectors and X is an nx-by-p matrix containing
another set of vectors, then the Mahalanobis distance from each vector Y(j,:) (for j=1,...,ny)
to the set of vectors in X can be calculated with

nx = size(X, 1); % size of set in X
ny = size(Y, 1); % size of set in Y
m = mean(X);
C = cov(X);
d = zeros(ny, 1);
for j = 1:ny

d(j) = (Y(j,:) - m) / C * (Y(j,:) - m)’;
end

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/repmat.shtml

CHAPTER 11. MORE COMPLICATED ARITHMETIC OPERATIONS 37

which is computed more efficiently with the following code which does some inlining of functions
(mean and cov) and vectorization

nx = size(X, 1); % size of set in X
ny = size(Y, 1); % size of set in Y

m = sum(X, 1)/nx; % centroid (mean)
Xc = X - m(ones(nx,1),:); % distance to centroid of X
C = (Xc’ * Xc)/(nx - 1); % variance matrix
Yc = Y - m(ones(ny,1),:); % distance to centroid of X
d = sum(Yc/C.*Yc, 2)); % Mahalanobis distances

In the complex case, the last line has to be written as

d = real(sum(Yc/C.*conj(Yc), 2)); % Mahalanobis distances

The call to conj is to make sure it also works for the complex case. The call to real is to remove
“numerical noise”.

The Statistics Toolbox contains the function mahal for calculating the Mahalanobis distances,
but mahal computes the distances by doing an orthogonal-triangular (QR) decomposition of the
matrix C. The code above returns the same as d = mahal(Y, X).

Special case when both matrices are identical If Y and X are identical in the code above, the
code may be simplified somewhat. The for-loop solution becomes

n = size(X, 1); % size of set in X
m = mean(X);
C = cov(X);
d = zeros(n, 1);
for j = 1:n
d(j) = (Y(j,:) - m) / C * (Y(j,:) - m)’;
end

which is computed more efficiently with

n = size(x, 1);
m = sum(x, 1)/n; % centroid (mean)
Xc = x - m(ones(n,1),:); % distance to centroid of X
C = (Xc’ * Xc)/(n - 1); % variance matrix
d = sum(Xc/C.*Xc, 2); % Mahalanobis distances

Again, to make it work in the complex case, the last line must be written as

d = real(sum(Xc/C.*conj(Xc), 2)); % Mahalanobis distances

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/mean.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/cov.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/conj.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/real.shtml

Chapter 12

Statistics, probability and
combinatorics

12.1 Discrete uniform sampling with replacement

To generate an array X with size vector s, where X contains a random sample from the numbers
1,...,n use

X = ceil(n*rand(s));

To generate a sample from the numbers a,...,b use

X = a + floor((b-a+1)*rand(s));

12.2 Discrete weighted sampling with replacement

Assume p is a vector of probabilities that sum up to 1. Then, to generate an array X with size vector
s, where the probability of X(i) being i is p(i) use

m = length(p); % number of probabilities
c = cumsum(p); % cumulative sum
R = rand(s);
X = ones(s);
for i = 1:m-1
X = X + (R > c(i));
end

Note that the number of times through the loop depends on the number of probabilities and not the
sample size, so it should be quite fast even for large samples.

12.3 Discrete uniform sampling without replacement

To generate a sample of size k from the integers 1,...,n, one may use

X = randperm(n);
x = X(1:k);

although that method is only practical if N is reasonably small.

38

CHAPTER 12. STATISTICS, PROBABILITY AND COMBINATORICS 39

12.4 Combinations

“Combinations” is what you get when you pick k elements, without replacement, from a sample of
size n, and consider the order of the elements to be irrelevant.

12.4.1 Counting combinations

The number of ways to pick k elements, without replacement, from a sample of size n is
(n

k

)

which
is calculated with

c = nchoosek(n, k);

one may also use the definition directly

k = min(k, n-k); % use symmetry property
c = round(prod(((n-k+1):n) ./ (1:k)));

which is safer than using

k = min(k, n-k); % use symmetry property
c = round(prod((n-k+1):n) / prod(1:k));

which may overflow. Unfortunately, both n and k have to be scalars. If n and/or k are vectors, one
may use the fact that

(

n
k

)

=
n!

k!(n− k)!
=

Γ(n+1)

Γ(k +1)Γ(n− k +1)

and calculate this in with

round(exp(gammaln(n+1) - gammaln(k+1) - gammaln(n-k+1)))

where the round is just to remove any “numerical noise” that might have been introduced by
gammaln and exp.

12.4.2 Generating combinations

To generate a matrix with all possible combinations of n elements taken k at a time, one may
use the MATLAB function nchoosek. That function is rather slow compared to the choosenk
function which is a part of Mike Brookes’ Voicebox (Speech recognition toolbox) whose homepage
is http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

For the special case of generating all combinations of n elements taken 2 at a time, there is a neat
trick

[x(:,2) x(:,1)] = find(tril(ones(n), -1));

12.5 Permutations

12.5.1 Counting permutations

p = prod(n-k+1:n);

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/round.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gammaln.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/exp.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/nchoosek.shtml
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/txt/choosenk.txt
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

CHAPTER 12. STATISTICS, PROBABILITY AND COMBINATORICS 40

12.5.2 Generating permutations

To generate a matrix with all possible permutations of n elements, one may use the function perms.
That function is rather slow compared to the permutes function which is a part of Mike Brookes’
Voicebox (Speech recognition toolbox) whose homepage is at
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/perms.shtml
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/txt/permutes.txt
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

Chapter 13

Identifying types of arrays

13.1 Numeric array

A numeric array is an array that contains real or complex numerical values including NaN and Inf.
An array is numeric if its class is double, single, uint8, uint16, uint32, int8, int16
or int32. To see if an array x is numeric, use

isnumeric(x)

To disallow NaN and Inf, we can not just use

isnumeric(x) & ~any(isnan(x(:))) & ~any(isinf(x(:)))

since, by default, isnan and isinf are only defined for class double. A solution that works is
to use the following, where tf is either true or false

tf = isnumeric(x);
if isa(x, ’double’)
tf = tf & ~any(isnan(x(:))) & ~any(isinf(x(:)))
end

If one is only interested in arrays of class double, the above may be written as

isa(x,’double’) & ~any(isnan(x(:))) & ~any(isinf(x(:)))

Note that there is no need to call isnumeric in the above, since a double array is always numeric.

13.2 Real array

MATLAB has a subtle distinction between arrays that have a zero imaginary part and arrays that do
not have an imaginary part:

isreal(0) % no imaginary part, so true
isreal(complex(0, 0)) % imaginary part (which is zero), so false

The essence is that isreal returns false (i.e., 0) if space has been allocated for an imaginary part.
It doesn’t care if the imaginary part is zero, if it is present, then isreal returns false.

To see if an array x is real in the sense that it has no non-zero imaginary part, use

~any(imag(x(:)))

Note that x might be real without being numeric; for instance, isreal(’a’) returns true, but
isnumeric(’a’) returns false.

41

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isreal.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/isreal.shtml

CHAPTER 13. IDENTIFYING TYPES OF ARRAYS 42

13.3 Identify real or purely imaginary elements

To see which elements are real or purely imaginary, use

imag(x) == 0 % identify real elements
~imag(x) % ditto (might be faster)

real(x) ~= 0 % identify purely imaginary elements
logical(real(x)) % ditto (might be faster)

13.4 Array of negative, non-negative or positive values

To see if the elements of the real part of all elements of x are negative, non-negative or positive
values, use

x < 0 % identify negative elements
all(x(:) < 0) % see if all elements are negative

x >= 0 % identify non-negative elements
all(x(:) >= 0) % see if all elements are non-negative

x > 0 % identify positive elements
all(x(:) > 0) % see if all elements are positive

13.5 Array of integers

To see if an array x contains real or complex integers, use

x == round(x) % identify (possibly complex) integers
~imag(x) & x == round(x) % identify real integers

% see if x contains only (possibly complex) integers
all(x(:) == round(x(:)))

% see if x contains only real integers
isreal(x) & all(x(:) == round(x(:)))

13.6 Scalar

To see if an array x is scalar, i.e., an array with exactly one element, use

all(size(x) == 1) % is a scalar
prod(size(x)) == 1 % is a scalar
any(size(x) ~= 1) % is not a scalar
prod(size(x)) ~= 1 % is not a scalar

An array x is scalar or empty if the following is true

isempty(x) | all(size(x) == 1) % is scalar or empty
prod(size(x)) <= 1 % is scalar or empty
prod(size(x)) > 1 % is not scalar or empty

CHAPTER 13. IDENTIFYING TYPES OF ARRAYS 43

13.7 Vector

An array x is a non-empty vector if the following is true

~isempty(x) & sum(size(x) > 1) <= 1 % is a non-empty vector
isempty(x) | sum(size(x) > 1) > 1 % is not a non-empty vector

An array x is a possibly empty vector if the following is true

sum(size(x) > 1) <= 1 % is a possibly empty vector
sum(size(x) > 1) > 1 % is not a possibly empty vector

An array x is a possibly empty row or column vector if the following is true (the two methods are
equivalent)

ndims(x) <= 2 & sum(size(x) > 1) <= 1
ndims(x) <= 2 & (size(x,1) <= 1 | size(x,2) <= 1)

Add ~isempty(x) & ... for x to be non-empty.

13.8 Matrix

An array x is a possibly empty matrix if the following is true

ndims(x) == 2 % is a possibly empty matrix
ndims(x) > 2 % is not a possibly empty matrix

Add ~isempty(x) & ... for x to be non-empty.

13.9 Array slice

An array x is a possibly empty 2-D slice if the following is true

sum(size(x) > 1) <= 2 % is a possibly empty 2-D slice
sum(size(x) > 1) > 2 % is not a possibly empty 2-D slice

Chapter 14

Logical operators and comparisons

14.1 List of logical operators

MATLAB has the following logical operators

and & Logical AND
or Logical OR
not ~ Logical NOT
xor Logical EXCLUSIVE OR
any True if any element of vector is nonzero
all True if all elements of vector are nonzero

14.2 Rules for logical operators

Here is a list of some of the rules that apply to the logical operators in MATLAB.

~(a & b) = ~a | ~b
~(a | b) = ~a & ~b

xor(a,b) = (a | b) & ~(a & b)
~xor(a,b) = ~(a | b) | (a & b)

~all(x) = any(~x)
~any(x) = all(~x)

14.3 Quick tests before slow ones

If several tests are combined with binary logical operators (&, | and xor), make sure to put the fast
ones first. For instance, to see if the array x is a real positive finite scalar double integer, one could
use

isa(x,’double’) & isreal(x) & ~any(isinf(x(:)))
& all(x(:) > 0) & all(x(:) == round(x(:))) & all(size(x) == 1)

but if x is a large array, the above might be very slow since it has to look at each element at least
once (the isinf test). The following is faster and requires less typing

44

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/and.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/or.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/not.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/xor.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/any.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/all.shtml

CHAPTER 14. LOGICAL OPERATORS AND COMPARISONS 45

isa(x,’double’) & isreal(x) & all(size(x) == 1) ...
& ~isinf(x) & x > 0 & x == round(x)

Note how the last three tests get simplified because, since we have put the test for “scalarness” before
them, we can safely assume that x is scalar. The last three tests aren’t even performed at all unless
x is a scalar.

Chapter 15

Miscellaneous

This section contains things that don’t fit anywhere else.

15.1 Accessing elements on the diagonal

The common way of accessing elements on the diagonal of a matrix is to use the diag function.
However, sometimes it is useful to know the linear index values of the diagonal elements. To get the
linear index values of the elements on the following diagonals

(1) (2) (3) (4) (5)
[1 0 0 [1 0 0 [1 0 0 0 [0 0 0 [0 1 0 0

0 2 0 0 2 0 0 2 0 0 1 0 0 0 0 2 0
0 0 3] 0 0 3 0 0 3 0] 0 2 0 0 0 0 3]

0 0 0] 0 0 3]

one may use

1 : m+1 : m*m % square m-by-m matrix (1)
1 : m+1 : m*n % m-by-n matrix where m >= n (2)
1 : m+1 : m*m % m-by-n matrix where m <= n (3)
1 : m+1 : m*min(m,n) % any m-by-n matrix

m-n+1 : m+1 : m*n % m-by-n matrix where m >= n (4)
(n-m)*m+1 : m+1 : m*n % m-by-n matrix where m <= n (5)

To get the linear index values of the elements on the following anti-diagonals

(1) (2) (3) (4) (5)
[0 0 3 [0 0 0 [0 0 3 0 [0 0 3 [0 0 0 3

0 2 0 0 0 3 0 2 0 0 0 2 0 0 0 2 0
1 0 0] 0 2 0 1 0 0 0] 1 0 0 0 1 0 0]

1 0 0] 0 0 0]

one may use

m : m-1 : (m-1)*m+1 % square m-by-m matrix (1)
m : m-1 : (m-1)*n+1 % m-by-n matrix where m >= n (2)
m : m-1 : (m-1)*m+1 % m-by-n matrix where m <= n (3)
m : m-1 : (m-1)*min(m,n)+1 % any m-by-n matrix

46

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/diag.shtml

CHAPTER 15. MISCELLANEOUS 47

m-n+1 : m-1 : m*(n-1)+1 % m-by-n matrix where m >= n (4)
(n-m+1)*m : m-1 : m*(n-1)+1 % m-by-n matrix where m <= n (5)

15.2 Creating index vector from index limits

Given two vectors lo and hi. How does one create an index vector

idx = [lo(1):hi(1) lo(2):hi(2) ...]

A straightforward for-loop solution is

m = length(lo); % length of input vectors
idx = []; % initialize index vector
for i = 1:m

idx = [idx lo(i):hi(i)];
end

which unfortunately requires a lot of memory copying since a new x has to be allocated each time
through the loop. A better for-loop solution is one that allocates the required space and then fills in
the elements afterwards. This for-loop solution above may be several times faster than the first one

m = length(lo); % length of input vectors
len = hi - lo + 1; % length of each "run"
n = sum(len); % length of index vector
lst = cumsum(len); % last index in each run

idx = zeros(1, n); % initialize index vector
for i = 1:m
idx(lst(i)-len(i)+1:lst(i)) = lo(i):hi(i);
end

Neither of the for-loop solutions above can compete with the the solution below which has no for-
loops. It uses cumsum rather than the : to do the incrementing in each run and may be many times
faster than the for-loop solutions above.

m = length(lo); % length of input vectors
len = hi - lo + 1; % length of each "run"
n = sum(len); % length of index vector

idx = ones(1, n); % initialize index vector
idx(1) = lo(1);
len(1) = len(1)+1;
idx(cumsum(len(1:end-1))) = lo(2:m) - hi(1:m-1);
idx = cumsum(idx);

If fails, however, if lo(i)>hi(i) for any i. Such a case will create an empty vector anyway, so
the problem can be solved by a simple pre-processing step which removing the elements for which
lo(i)>hi(i)

i = lo <= hi;
lo = lo(i);
hi = hi(i);

There also exists a one-line solution which is very compact, but not as fast as the no-for-loop solution
above

x = eval([’[’ sprintf(’%d:%d,’, [lo ; hi]) ’]’]);

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/cumsum.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/colon operator.shtml

CHAPTER 15. MISCELLANEOUS 48

15.3 Matrix with different incremental runs

Given a vector of positive integers

a = [3 2 4];

How does one create the matrix where the ith column contains the vector 1:a(i) possibly padded
with zeros:

b = [1 1 1
2 2 2
3 0 3
0 0 4];

One way is to use a for-loop

n = length(a);
b = zeros(max(a), n);
for k = 1:n

t = 1:a(k);
b(t,k) = t(:);

end

and here is a way to do it without a for-loop

[bb aa] = ndgrid(1:max(a), a);
b = bb .* (bb <= aa)

or the more explicit

m = max(a);
aa = a(:)’;
aa = aa(ones(m, 1),:);
bb = (1:m)’;
bb = bb(:,ones(length(a), 1));
b = bb .* (bb <= aa);

To do the same, only horizontally, use

[aa bb] = ndgrid(a, 1:max(a));
b = bb .* (bb <= aa)

or

m = max(a);
aa = a(:);
aa = aa(:,ones(m, 1));
bb = 1:m;
bb = bb(ones(length(a), 1),:);
b = bb .* (bb <= aa);

15.4 Finding indices

15.4.1 First non-zero element in each column

How does one find the index and values of the first non-zero element in each column. For instance,
given

CHAPTER 15. MISCELLANEOUS 49

x = [0 1 0 0
4 3 7 0
0 0 2 6
0 9 0 5];

how does one obtain the vectors

i = [2 1 2 3]; % row numbers
v = [4 1 7 6]; % values

If it is known that all columns have at least one non-zero value

[i, j, v] = find(x);
t = logical(diff([0;j]));
i = i(t);
v = v(t);

If some columns might not have a non-zero value

[it, jt, vt] = find(x);
t = logical(diff([0;jt]));
i = repmat(NaN, [size(x,2) 1]);
v = i;
i(jt(t)) = it(t);
v(jt(t)) = vt(t);

15.4.2 First non-zero element in each row

How does one find the index and values of the first non-zero element in each row. For instance, given

x = [0 1 0 0
4 3 7 0
0 0 2 6
0 9 0 5];

how dows one obtain the vectors

j = [1 2 3 1]; % column numbers
v = [1 4 2 9]; % values

If it is known that all rows have at least one non-zero value

[i, j, v] = find(x);
[i, k] = sort(i);
t = logical(diff([0;i]));
j = j(k(t));
v = v(k(t));

If some rows might not have a non-zero value

[it, jt, vt] = find(x);
[it, k] = sort(it);
t = logical(diff([0;it]));
j = repmat(NaN, [size(x,1) 1]);
v = j;
j(it(t)) = jt(k(t));
v(it(t)) = vt(k(t));

CHAPTER 15. MISCELLANEOUS 50

15.4.3 Last non-zero element in each row

How does one find the index of the last non-zero element in each row. That is, given

x = [0 9 7 0 0 0
5 0 0 6 0 3
0 0 0 0 0 0
8 0 4 2 1 0];

how dows one obtain the vector

j = [3
6
0
5];

One way is of course to use a for-loop

m = size(x, 1);
j = zeros(m, 1);
for i = 1:m

k = find(x(i,:) ~= 0);
if length(k)

j(i) = k(end);
end

end

or

m = size(x, 1);
j = zeros(m, 1);
for i = 1:m

k = [0 find(x(i,:) ~= 0)];
j(i) = k(end);

end

but one may also use

j = sum(cumsum((x(:,end:-1:1) ~= 0), 2) ~= 0, 2);

To find the index of the last non-zero element in each column, use

i = sum(cumsum((x(end:-1:1,:) ~= 0), 1) ~= 0, 1);

15.5 Run-length encoding and decoding

15.5.1 Run-length encoding

Assuming x is a vector

x = [4 4 5 5 5 6 7 7 8 8 8 8]

and one wants to obtain the two vectors

len = [2 3 1 2 4]; % run lengths
val = [4 5 6 7 8]; % values

CHAPTER 15. MISCELLANEOUS 51

one can get the run length vector len by using

len = diff([0 find(x(1:end-1) ~= x(2:end)) length(x)]);

and the value vector val by using one of

val = x([find(x(1:end-1) ~= x(2:end)) length(x)]);
val = x(logical([x(1:end-1) ~= x(2:end) 1]));

which of the two above that is faster depends on the data. For more or less sorted data, the first one
seems to be faster in most cases. For random data, the second one seems to be faster. These two
steps required to get both the run-lengths and values may be combined into

i = [find(x(1:end-1) ~= x(2:end)) length(x)];
len = diff([0 i]);
val = x(i);

15.5.2 Run-length decoding

Given the run-length vector len and the value vector val, one may create the full vector x by using

i = cumsum(len); % length(len) flops
j = zeros(1, i(end));
j(i(1:end-1)+1) = 1; % length(len) flops
j(1) = 1;
x = val(cumsum(j)); % sum(len) flops

the above method requires approximately 2*length(len)+sum(len) flops. There is a way
that only requires approximately length(len)+sum(len) flops, but is slightly slower (not sure
why, though).

len(1) = len(1)+1;
i = cumsum(len); % length(len) flops
j = zeros(1, i(end)-1);
j(i(1:end-1)) = 1;
j(1) = 1;
x = val(cumsum(j)); % sum(len) flops

This following method requires approximately length(len)+sum(len) flops and only four
lines of code, but is slower than the two methods suggested above.

i = cumsum([1 len]); % length(len) flops
j = zeros(1, i(end)-1);
j(i(1:end-1)) = 1;
x = val(cumsum(j)); % sum(len) flops

15.6 Counting bits

Assume x is an array of non-negative integers. The number of set bits in each element, nsetbits,
is

nsetbits = reshape(sum(dec2bin(x)-’0’, 2), size(x));

or

CHAPTER 15. MISCELLANEOUS 52

bin = dec2bin(x);
nsetbits = reshape(sum(bin,2) - ’0’*size(bin,2), size(x));

The following solution is slower, but requires less memory than the above so it is able to handle
larger arrays

nsetbits = zeros(size(x));
k = find(x);
while length(k)

nsetbits = nsetbits + bitand(x, 1);
x = bitshift(x, -1);
k = k(logical(x(k)));

end

The total number of set bits, nsetbits, may be computed with

bin = dec2bin(x);
nsetbits = sum(bin(:)) - ’0’*prod(size(bin));

nsetbits = 0;
k = find(x);
while length(k)

nsetbits = nsetbits + sum(bitand(x, 1));
x = bitshift(x, -1);
k = k(logical(x(k)));

end

Glossary

null-operation an operation which has no effect on the operand

operand an argument on which an operator is applied

singleton dimension a dimension along which the length is zero

subscript context an expression used as an array subscript is in a subscript context

vectorization taking advantage of the fact that many operators and functions can perform the same
operation on several elements in an array without requiring the use of a for-loop

53

Index

matlab faq, 55

comp.soft-sys.matlab, vi, 2, 55

dimensions
number of, 7
singleton, 7
trailing singleton, 7

elements
number of, 7

emptiness, 8
empty array, see emptiness

null-operation, 7

run-length
decoding, 51
encoding, 50

shift
elements in vectors, 12

singleton dimensions, see dimensions, single-
ton

size, 6

trailing singleton dimensions, see dimensions,
trailing singleton

Usenet, vi, 2

54

Appendix A

MATLAB resources

The MathWorks home page

On The MathWorks’ web page one can find the complete set of MATLAB documentaton in addition
to technical solutions and lots of other information.

http://www.mathworks.com/

The MATLAB FAQ

For a list of frequently asked questions, with answers, see see Peter Boettcher’s excellent MATLAB

FAQ which is posted to the news group comp.soft-sys.matlab regularely and is also available
on the web at

http://www.mit.edu/~pwb/cssm/

55

http://www.mathworks.com/
http://www.mit.edu/~pwb/cssm/

	Preface
	1 High-level vs low-level code
	1.1 Introduction
	1.2 Advantages and disadvantages
	1.2.1 Portability
	1.2.2 Verbosity
	1.2.3 Speed
	1.2.4 Obscurity
	1.2.5 Difficulty

	1.3 Words of warning

	2 Operators, functions and special characters
	2.1 Operators
	2.2 Built-in functions
	2.3 M-file functions

	3 Basic array properties
	3.1 Size
	3.1.1 Size along a specific dimension
	3.1.2 Size along multiple dimensions

	3.2 Dimensions
	3.2.1 Number of dimensions
	3.2.2 Singleton dimensions

	3.3 Number of elements
	3.3.1 Empty arrays

	4 Array indices and subscripts
	5 Creating basic vectors, matrices and arrays
	5.1 Creating a constant array
	5.1.1 When the class is determined by the scalar to replicate
	5.1.2 When the class is stored in a string variable

	5.2 Special vectors
	5.2.1 Uniformly spaced elements

	6 Shifting
	6.1 Vectors
	6.2 Matrices and arrays

	7 Replicating elements and arrays
	7.1 Creating a constant array
	7.2 Replicating elements in vectors
	7.2.1 Replicate each element a constant number of times
	7.2.2 Replicate each element a variable number of times

	7.3 Using KRON for replicating elements
	7.3.1 KRON with an matrix of ones
	7.3.2 KRON with an identity matrix

	8 Reshaping arrays
	8.1 Subdividing 2D matrix
	8.1.1 Create 4D array
	8.1.2 Create 3D array (columns first)
	8.1.3 Create 3D array (rows first)
	8.1.4 Create 2D matrix (columns first, column output)
	8.1.5 Create 2D matrix (columns first, row output)
	8.1.6 Create 2D matrix (rows first, column output)
	8.1.7 Create 2D matrix (rows first, row output)

	8.2 Stacking and unstacking pages

	9 Rotating matrices and arrays
	9.1 Rotating 2D matrices
	9.2 Rotating ND arrays
	9.3 Rotating ND arrays around an arbitrary axis
	9.4 Block-rotating 2D matrices
	9.4.1 ``Inner'' vs ``outer'' block rotation
	9.4.2 ``Inner'' block rotation 90 degrees counterclockwise
	9.4.3 ``Inner'' block rotation 180 degrees
	9.4.4 ``Inner'' block rotation 90 degrees clockwise
	9.4.5 ``Outer'' block rotation 90 degrees counterclockwise
	9.4.6 ``Outer'' block rotation 180 degrees
	9.4.7 ``Outer'' block rotation 90 degrees clockwise

	9.5 Blocktransposing a 2D matrix
	9.5.1 ``Inner'' blocktransposing
	9.5.2 ``Outer'' blocktransposing

	10 Basic arithmetic operations
	10.1 Multiply arrays
	10.1.1 Multiply each 2D slice with the same matrix (element-by-element)
	10.1.2 Multiply each 2D slice with the same matrix (left)
	10.1.3 Multiply each 2D slice with the same matrix (right)
	10.1.4 Multiply matrix with every element of a vector
	10.1.5 Multiply each 2D slice with corresponding element of a vector
	10.1.6 Outer product of all rows in a matrix
	10.1.7 Keeping only diagonal elements of multiplication
	10.1.8 Products involving the Kronecker product

	10.2 Divide arrays
	10.2.1 Divide each 2D slice with the same matrix (element-by-element)
	10.2.2 Divide each 2D slice with the same matrix (left)
	10.2.3 Divide each 2D slice with the same matrix (right)

	11 More complicated arithmetic operations
	11.1 Calculating distances
	11.1.1 Euclidean distance
	11.1.2 Distance between two points
	11.1.3 Euclidean distance vector
	11.1.4 Euclidean distance matrix
	11.1.5 Special case when both matrices are identical
	11.1.6 Mahalanobis distance

	12 Statistics, probability and combinatorics
	12.1 Discrete uniform sampling with replacement
	12.2 Discrete weighted sampling with replacement
	12.3 Discrete uniform sampling without replacement
	12.4 Combinations
	12.4.1 Counting combinations
	12.4.2 Generating combinations

	12.5 Permutations
	12.5.1 Counting permutations
	12.5.2 Generating permutations

	13 Identifying types of arrays
	13.1 Numeric array
	13.2 Real array
	13.3 Identify real or purely imaginary elements
	13.4 Array of negative, non-negative or positive values
	13.5 Array of integers
	13.6 Scalar
	13.7 Vector
	13.8 Matrix
	13.9 Array slice

	14 Logical operators and comparisons
	14.1 List of logical operators
	14.2 Rules for logical operators
	14.3 Quick tests before slow ones

	15 Miscellaneous
	15.1 Accessing elements on the diagonal
	15.2 Creating index vector from index limits
	15.3 Matrix with different incremental runs
	15.4 Finding indices
	15.4.1 First non-zero element in each column
	15.4.2 First non-zero element in each row
	15.4.3 Last non-zero element in each row

	15.5 Run-length encoding and decoding
	15.5.1 Run-length encoding
	15.5.2 Run-length decoding

	15.6 Counting bits
	Glossary
	Index
	Appendix

	A Matlab resources

