
Large-scale Item Categorization for e-Commerce

Dan Shen∗

dianping.com
No. 492 AnHua Rd
Shanghai, China

dan.shen@dianping.com

Jean-David Ruvini
eBay Research Labs

2145 Hamilton Avenue
San Jose, CA 95032, USA

jruvini@ebay.com

Badrul Sarwar†
eBay Research Labs

2145 Hamilton Avenue
San Jose, CA 95032, USA
bsarwar@ebay.com

ABSTRACT
This paper studies the problem of leveraging computation-
ally intensive classification algorithms for large scale text
categorization problems. We propose a hierarchical approach
which decomposes the classification problem into a coarse
level task and a fine level task. A simple yet scalable classi-
fier is applied to perform the coarse level classification while
a more sophisticated model is used to separate classes at the
fine level. However, instead of relying on a human-defined
hierarchy to decompose the problem, we we use a graph al-
gorithm to discover automatically groups of highly similar
classes. As an illustrative example, we apply our approach
to real-world industrial data from eBay, a major e-commerce
site where the goal is to classify live items into a large taxon-
omy of categories. In such industrial setting, classification
is very challenging due to the number of classes, the amount
of training data, the size of the feature space and the real-
world requirements on the response time. We demonstrate
through extensive experimental evaluation that (1) the pro-
posed hierarchical approach is superior to flat models, and
(2) the data-driven extraction of latent groups works signif-
icantly better than the existing human-defined hierarchy.

Categories and Subject Descriptors
H.3.2 [Information Storage]: Record classification

General Terms
Algorithms, Performance, Experimentation

Keywords
Classification, Text

1. INTRODUCTION
Online commerce has gained a lot of popularity over the

past decade. Large online consumer-to-consumer (C2C) mar-

∗Work done while the author was at eBay Research Labs.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

ketplaces such as eBay.com and Amazon.com, feature a very
large and long-tail inventory with millions of items (product
offers) entered into the marketplace every day. To structure
and manage items effectively and help buyers find them eas-
ily, these web sites often organize items into a taxonomy
of fine-grained categories. For instance, the eBay category
structure has approximately 20,000 leaf categories which
cover almost all of the goods that can be legally traded in
the world.

Item categorization is fundamental to many aspects of an
item life cycle for e-commerce sites. A correct categoriza-
tion of items is essential for tasks such as extracting relevant
item-specific metadata or attributes, assigning category spe-
cific rules for listing policy enforcement, charging insertion
and final value fees, determining reasonable shipping and
handling fees and so on. Moreover, the quality of item cat-
egorization plays a significant role in subsequent customer
facing applications such as search, product recommendation,
trust & safety, product catalog building, and seller utilities.
A correct item categorization system is also essential for
user experience as it helps determine the relevant presenta-
tion logic in surfacing the items to users through search and
browsing.

Item categorization can be formulated as a supervised
classification problem where the categories are the target
classes and the features are the words composing some tex-
tual description of the items. Text classification has been
well studied in recent years. Classification algorithms such
as Näıve Bayes [14], K-Nearest-Neighborhood (kNN) [28],
Decision Tree (DT) [1], Support Vector Machines (SVM) [11]
and Maximum Entropy(ME) [16] have demonstrated satis-
factory empirical results in various domains of text classi-
fication. However, the computational complexity involved
in some of the state-of-the-art learning algorithms is well
beyond linear with respect to the numbers of training ex-
amples, features, or classes. For an e-commerce site like
eBay the item categorization problem translates into a su-
pervised classification with 20, 000+ target classes. A recent
study of eBay’s categorization problem describes a super-
vised method that is trained using several million items and
approximately 3 million unique features. The system clas-
sifies several millions of newly listed items on-the-fly every-
day into these 20, 000+ classes (see [21] for more details).
The computational complexity may arise due to polynomial
variable selection, e.g., to compute information gain in de-
cision tree based learning, or iterative optimization algo-
rithms, such as in maximum entropy or SVM learning. The
scale of the classification problem on e-commerce web sites

595

requires algorithms capable of processing huge volume of
training data in reasonable time, capable of handling large
number of classes and also capable of making fast real-time
predictions.

In this paper, we describe a novel approach to leverage
computationally demanding classification algorithms on very
large datasets. We don’t use any pre-existing hierarchy but
rather learn a new hierarchy automatically from the data.
The basic idea is to 1) group classes into disjoint sets called
latent groups and 2) to decompose the classification task into
two classification tasks, coarse level classification and fine
level classification. The coarse level classifier is responsible
for classifying items into one latent group while the fine level
classifiers (typically one such classifier per latent group) are
responsible for assigning items to the right class in a given
latent group. In other words, our approach consists in using
a simple classifier to make coarse-grained classification and
a sophisticated classifier to make fine-grained distinctions.

Clearly, one key element of this approach is the way these
latent groups are identified. Given the scale of the clas-
sification task at hand, it is very impractical to manually
construct them and we propose a data-driven solution to dis-
cover them automatically. Furthermore, our approach aims
at minimizing inter latent group similarity while maximizing
intra latent group similarity1. This is very important as low
inter latent group similarity makes coarse level classification
relatively easy and allows the use of a simple and scalable
machine learning algorithm. High intra latent group sim-
ilarity makes fine level classification relatively harder but,
because latent groups comprise only a subset of the classes
and involve a much smaller volume of data, more sophisti-
cated algorithms can be leveraged for this second classifica-
tion task.

Comparing with the flat classification approach which treats
classes separately, our decomposition of the classification
problem has the following advantages:

• The constraints on the choice of learning algorithm are
largely alleviated since the numbers of training sam-
ples, features, and classes are considerately reduced in
the fine level classification step. Sophisticated machine
learning algorithms, which cannot be directly applied
for flat item classification due to their computational
complexity, can now be leveraged.

• The decomposition approach can lead to more problem-
specialized feature selection and hence more accurate
classifier. Intuitively, many locally predictive features
are not useful discriminators in the flat approach. For
instance, a word like case is not very discriminative
globally since it occurs within so many different classes.
But at fine level classification time, it may play a cru-
cial role to differentiate between cell phone devices
and some of their accessories. As an example, we
have empirically shown that the word case is the most
indicative feature to assign the item ”Leather Cover
Case for Verizon Motorola RIZR Z6tv” to the category
”Cell Phones & PDAs → Cell Phone & PDA Acces-
sories” rather than the incorrect category ”Cell Phones
& PDAs → Cell Phones & Smartphones”.

1This notion of similarity will be defined later. For now one
can assume it is a function of the similarity of the training
samples belonging to these groups.

In the remainder of this paper, we first review related work
and then we describe the 3 components of our approach,
namely how we discover the latent groups, the coarse level
classifier and the fine level classifier. Finally, we present
experimental results on real large-scale e-commerce data.

2. RELATED WORK
Many websites organizes categories into a concept hier-

archy or taxonomy. Some notable examples are the Inter-
national Patent Classification (IPC) schema, the Web cata-
logs created by Yahoo!, the Open Directory Project (ODP),
Amazon.com, eBay.com and most recently the Wikipedia
subject hierarchy. A lot of results have been published
around leveraging pre-existing concept hiearchies for clas-
sification. For instance, Koller and Sahami [12] applied
a “gates-and experts” strategy to a small hierarchy using
naive Bayes as local classifier, and demonstrated advan-
tages over flat models on a small feature space. Weigend
et al. [23] transformed a category hierarchy into a neural
network, and multiplicatively combined output probabili-
ties from each level to yield a final classification decision.
On a Reuters benchmark dataset, they reported a 5% im-
provement in average precision by the hierarchical model
over the flatten model. Dumais and Chen [6] showed that
a hierarchical approach leveraging SVM as a local classifier
is particularly suited for web page classification. To better
exploit the semantic relationship embedded in a hierarchy,
McCallum et al. [15] studied a statistical technique called
“shrinkage” to smooth parameter estimates along a hierar-
chy. Some recent work [3, 26, 4] leveraged the hierarchical
structure by developing a tree-induced loss function from a
learning theoretical perspective. Readers interested in hier-
archical classification may refer to Sillas and Freitas [22] for
an extensive survey of this litterature.

Our approach for solving a large text classification prob-
lem consists in reformulating it into a two levels (coarse level
and fine level) hierarchical classification problem. However,
it ignores pre-existing hierarchical information (or any sort
of pre-defined parent-child relationship between the cate-
gories) and does not belong to this trend of research. Also,
while this prior work is methodologically appealing, the data
and category collection under study is still relatively small
and well organized compared with many real-world commer-
cial applications. For instance, the dataset used by Dumais
and Chen [6] contains only 370597 training samples, which
is relatively small according to nowadays e-commerce stan-
dards.

The idea of simplifying a classification problem by mod-
ifying the output space (i.e. the target classes) is not new.
Pairwise decomposition [10], one-vs-all decomposition [18]
and error correcting output codes [5] are well known ex-
amples. However, these methods have a high training time
because they require to learn many binary classifiers over
most of the training data; have a long classification time be-
cause they require to query all these classifiers; and are thus
not suitable for large scale classification problems. Kumar
et al. [13], and later Bengio et al. [2], proposed algorithms
to break down a classification problem into smaller problems
by learning a tree structure over the set of classes. Kumar
et al. used a clustering algorithm based on Fisher’s discrimi-
nant to cluster training examples in disjoint groups and thus
induce a partitioning of the classes. Although the classifica-
tion process of this approach is orders of magnitude faster

596

than previous work, the training process is computation-
ally expensive as it requires to solve many clustering prob-
lems. Bengio et al. solution to large scale classification does
not involve clustering the training samples but rather uses
the confusion matrix of a surrogate one-vs-all classifier as a
proxy to estimate class similarity. Two classes are assumed
to be similar if there are highly confused together by the
surrogate classifier. A spectral clustering algorithm where
the edges of the similarity graph are weighted by the class
confusion probabilities is then used to group similar classes
together. Although theoretically very appealing, Bengio et
al. approach leads to an accuracy comparable (and actually
worse on one of their datasets) to the accuracy of the flat
one-vs-all solution.

Large-scale classification problems have received increased
attention in the recent years. Liu et al. [27] conducted a
thorough analysis of the behavior of the SVM algorithm
with respect to a large-scale classification task and found
that its performance is “still far from satisfactory”. Xue
et al. [8] proposed an interesting two stage strategy called
”deeped classification”. Whenever a document needs to be
classified, the most similar documents in the training set are
retrieved using a search approach and the classification task
is reduced to the classes these documents belong to. In the
second stage, a classifier is trained on these classes and used
to eventually classify the document. The main drawback of
this approach is that a specific classifier is trained for each
document to classify, considerably slowing down the classi-
fication process.

In contrast to the approaches mentioned in this section,
our solution has a fast training and classification process;
allows us to use any off-the-self classification algorithm to
separate classes that tend to be highly confused with each
other; and leads to improved accuracy as will be shown in
the next sections.

3. METHODS
In order to achieve item classification for a very large num-

ber of target classes, we propose to decompose the classifi-
cation problem into smaller problems. This is achieved by
grouping classes into mutually exclusive “latent groups” and
performing a two stage classification process. First, a coarse
level classifier assigns an item into one of the latent groups;
second, a fine level classifier assigns a specific class within
the latent group. This section describes in details how these
three steps are carried out.

3.1 Latent groups discovery
The key element of our approach is obviously how the la-

tent groups of classes are built. Ideally, these groups should
be such that similar classes are grouped together and classes
that are not similar belong to different groups, so that a sim-
ple classifier can be used to separate groups while a sophis-
ticated algorithm may be applied to separate classes within
each group.

One way to measure similarity between classes is through
the similarity of the training samples that belong to these
classes. As mentioned in section 2, this is the approach
followed by [13] who used a clustering algorithm to cluster
training examples in disjoint groups and thus induce a par-
titioning of the classes. However, clustering is a hard and
computationally expensive process.

As in [2], our approach consists of leveraging the confu-

sion matrix of a classification algorithm to approximate the
similarity of classes. More precisely, following the intuition
that categories that are hard to separate by a classification
algorithm may actually be similar, we approximate the sim-
ilarity of two classes by the probability of the classifier to in-
correctly predict one of the categories when the correct label
is the other category. In practice, class confusion probabili-
ties are estimated empirically by (1) training a flat classifier
on all the classes and (2) applying the classifier on a devel-
opment data set. This classifier can be any classifier but, as
we will explain below, we recommend using the exact same
algorithm for coarse level classification. More formally, the
confusion probability between two categories Conf(c1, c2) is
defined as follows:

Conf(c1, c2) =

∑
t:fs(t) �=fm(t),fs(t)∈{c1,c2},fm(t)∈{c1,c2} (1)∑

t:fs(t)∈{c1,c2},fm(t)∈{c1,c2} (1)
,

where, fs(t) is the class of item t and fm(t) is the class
predicted by the model. It is clear that the distance measure
is specialized for the task and reflects the difficulty of making
a distinction between two classes.

Once the confusion probabilities have been estimated, we
use a graph algorithm to generate problem-specific latent
groups. We represent the relationship among classes using
an undirected graph (G = (V,E)), where the set of vertices
V is the set of all the classes and E is the set of all edges.
Two vertices are connected by an edge if the confusion prob-
ability Conf(c1, c2) is greater than a given threshold α (to
be discussed later).

If the actual confusion probability of every pair of classes
was known, one could formulate the latent group discov-
ery problem as finding all maximum cliques, a clique being
defined as a set of vertices any two of which are adjacent.
However, and this is a key observation, because the confu-
sion probabilities are estimated using a finite development
set, all possible class confusions may not be observed and
our graph may lack some edges. As a consequence, we for-
malize the latent group discovery problem as finding dense
subgraphs [9], that is, sets of vertices highly connected with
each other, which turns out to be a much easier problem
than the NP-complete clique problem.

We approximate the dense subgraph enumeration problem
using an efficient two steps algorithm we devised specifically
for this purpose. The first step consists of randomly impos-
ing a direction to all the edges of our undirected confusion
graph. Second, once the graph is directed, we formulate
the subgraph enumeration problem as a strongly-connected
components enumeration problem. A directed graph or sub-
graph is called strongly connected if there is a path from
each vertex in the graph to every other vertex. We use a
well known and efficient algorithm from Tarjan [24] to list
all the strongly connected components.

Randomly imposing a direction to edge may seem arbi-
trary but it practically leads to a good approximation of
dense subgraphs. This is due to the fact that the denser a
subgraph, the higher the probability that a path between
any two nodes exists. However, the sensitivity of the perfor-
mances of our approach to the algorithm used to identidy
the latent groups is a very interesting question and on-going
research work.

Algoritm 1 below summarizes the latent group discovery
process.

597

Algorithm 1 Algorithm for latent group discovery

Input: i) Set of categories C = {c1, c2, ..., cn}
ii) a threshold value α

Output: Set of dense subgraphs G = {g1, g2, ..., gm} that forms a latent group

1: Train a Classifier H on all flat classes.
2: Compute pair-wise confusion probabilities Conf(ci, cj) between classes.
3: Build the confusion graph, G = (V,E)
4: Apply the input threshold α to remove loosely connected edges.
5: Run a dense subgraphs approximation algorithm to find a set of dense subgraphs {g1, g2, ..., gm} each dense subgraph

forms a latent group G.

The parameter α controls the size of the latent groups.
Higher values of α induce smaller latent groups and thus re-
duce the computational complexity at the fine classifier level.
But classes within these groups are likely to be very similar
and harder to separate. The right value for this parameter
is problem specific and can be found using a development
set.

3.2 Coarse level classification
Once classes have been clustered into latent groups, the

coarse level classifier can be trained. The coarse level classi-
fier is responsible for classifying items into one latent group.
For this classifier, each latent group is a class (in the ma-
chine learning sense) and the training set is the union of the
samples of all the classes belonging to that group.

Any scalable classifier can be used at the coarse level and
the Näıve Bayes algorithm or the k-Nearest-Neighborhood
algorithm are good candidates. However, we recommend
using the exact same classifier that was used to estimate
the confusion probabilities during the latent group discovery
process (see Section 3.1) so that no re-training is needed.

3.3 Fine level classification
The fine level classifiers are dedicated to separating classes

within latent groups and are responsible for the final classifi-
cation, that is assigning a class to an item (as opposed to the
coarse level classifier which assigns a latent group). There
is one fine level classifier per latent group. Each category in
a latent group is a target class for this multi-class classifier.

The dimensionality reduction obtained by training each
fine level classifier on a latent group, whose size can be con-
trolled empirically by using the α parameter described in
Section 3.1, allows using a sophisticated and computation-
ally demanding algorithm for fine level classification.

The next sections shows, through experiments on real
data, that decomposing the classification tasks into coarse
level and fine level subtasks, leads to significantly higher
classification accuracy.

4. EXPERIMENTS
This section presents experimental results on a real dataset.

The goal of this empirical study is to address the following
research questions:

• How does the state-of-the-art text classification tech-
nologies perform on the large-scale item categorization
on e-commerce site?

• Does the item classification task benefit from the hi-
erarchical category structure typically available at e-
commerce sites? In other words, we want to compare

the performance of flat classification with hierarchical
classification models.

• Does the proposed coarse level - fine level method bring
any performance gains over the flat classification or
more conventional hierarchical classification models?

In the following, we describe the dataset used for these
experiments, the algorithms we compared and finally discuss
the results.

4.1 Dataset
We collected a sample data from the eBay.com e-commerce

site for this experiment.
eBay organizes items (product offers) into a six-level cat-

egory structure similar to a topic hierarchy, where there are
39 top-level nodes called meta categories, and more than
20,000 bottom-level nodes called leaf categories. The hierar-
chy is designed and maintained by human experts. Table 1
shows the leaf category distribution on the hierarchy. It can
be observed that the leaf categories are highly skewed over
the nodes at higher levels. For the nodes at the first three
levels (Level 1, Level 2 and Level 3), there can be hundreds
or thousands of leaf categories under a node. Our task is to
categorize items into the most relevant leaf categories, that
is to solve a 20,000+ class classification problem.

An item is typically listed in one category, although it is
possible that the item might be suitable for multiple cate-
gories by nature. Furthermore, eBay has a very large and
complex hierarchical taxonomy in which the topic nodes al-
most cover all of the goods in the world. The category nodes
are not guaranteed to be mutually exclusive with each other,
although the hierarchy was designed by human experts and
has been extensively refined over the past years. Some of
ambiguous leaf categories are even across meta categories,
such as:

1. Clothing, Shoes & Accessories → Men’s Shoes

2. Sporting Goods → Outdoor Sports → Camping & Hik-
ing → Clothing, Shoes & Accessories → Shoes → Men

Although it seems at first sight that the inventory listed
in these categories should be very different, many type of
shoes can be listed in both categories and sellers use both
categories interchangeably.

The distribution of items over leaf categories exhibits high
skewness and heavy-tail nature, as shown in Figure 1. 86.9%
of the categories (the head) only containing less than 1,000
items per category, while 1% of the categories (the tail) with
more than 10K items per category account for 51.7% of the
items. As a consequence, a large portion of the categories

598

Level Top nodes
Leaf Nodes within a top node
Avg Max Min

Level 1 (meta) 39 547.1 4526 3
Level 2 487 43.8 793 1
Level 3 4346 4.9 495 1
Level 4 13904 1.5 80 1
Level 5 19942 1.1 35 1
Level 6 (leaf) 21337 1 1 1

Table 1: Distribution of categories in eBay topic hierarchy. Level 1 represents the “meta” categories and level
6 represents the “leaf” categories

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

8000

number of items per category (binned)

nu
m

be
r

of
 c

at
eg

or
ie

s

Figure 1: Distribution of items over eBay leaf categories. eBay categories exhibit high skewness with the
vast majority of categories holding little inventory.

still suffers from data sparseness in spite of a huge inventory
on the whole. The lack of training data for the correspond-
ing classes may adversely affect the performance of machine
learning algorithms which require adequate labeled docu-
ments for each class to learn reliable statistics. Moreover,
many algorithms tend to behave poorly on unbalanced train-
ing sets as they tend to favor strongly predominant classes.

It is dauntingly expensive to label items manually for such
a large number of categories. To alleviate this problem we
tap into the expertise of millions of savvy eBay sellers and
use the high volume of existing item inventory labeled by
sellers as the proxy of ground-truth labels, under the as-
sumption that items successfully sold have been placed into
appropriate categories by sellers. Although the assumption
does not always hold, it avoids the otherwise very expensive
human labeling, and serves as a good approximation. How-
ever, the reduction in cost of human labeling comes at the
expense of a quality drop of the training data. We observed,
using editorial validation, that approximately 15% of the
time the label provided by the seller is incorrect. This error
rate in label approximation can give a loose upper bound
of actual prediction error, based on observed experimental
results.

When a seller lists an item on eBay, he or she is asked to
write a title to briefly describe the item. Once the title is
entered, the site suggests proper categories for the seller to
choose from. So the item categorization is only based on the
title words. Unlike typical free text documents, eBay limits
the length of item title to a maximum of 50 characters (about
10 words on average), which in many cases is inadequate to
describe an item precisely. For example, the following item

title does not contain enough information to decide the most
appropriate category.

Title: 9.5 White Gold Ring with .25 Carat Diamond Stones Band

• Jewelry & Watches → Men’s Jewelry → Rings → Diamond

• Jewelry & Watches → Fine Jewelry → Fine Rings → Dia-
mond

• Jewelry & Watches → Fashion Jewelry → Rings

Furthermore, the quality of titles varies a lot on the eBay
site. Some inexperienced or malicious sellers give inaccurate
or fraudulent titles, which makes our data set even noisier.

One important criterion for any large-scale production
system is scalability. As an item categorization system for
a popular e-commerce site, the model needs to be trained
offline with hundreds of millions items, and then make on-
line prediction in real-time for an incoming item. There are
four million to twenty millions items listed daily on eBay.
For the experiment presented here, we randomly collected a
sample of 83 million items sold over a three month period of
time. We ensured that even the smallest classes have some
examples. For testing we used several millions of item sold
a few days after the training period.

Although we cannot share the exact dataset we used due
to legal reasons, very similar data is publicly available on
eBay web site and through eBay Developers API 2.

2See https://www.x.com/developers/ebay/ for details.

599

Level Top nodes
Leaf Nodes within a top node
Avg Max Min

Balanced Splitting 4659 4.6 50 1

Table 2: Balanced splitting for the hier-ebay-struc baseline model.

4.2 Algorithms

4.2.1 Preprocessing
In data preprocessing step, item titles are first tokenized,

and then punctuation is removed. A small stop-word list is
used to omit the most common words. Furthermore, we ob-
serve that (1) numbers are indicative to distinguish between
single sale and whole sale categories, and (2) prepositions,
such as with and for, are useful to distinguish between prod-
uct and accessory categories. Therefore, contrary to other
text classification tasks, we keep numbers and prepositions
in titles.

Our training set has more than 3 millions unique words
after the preprocessing. We use unigrams of title words as
features.

4.2.2 Coarse level classifier
For the coarse level classifier we use the K-Nearest-Neighbor

(kNN) algorithm but applied feature selection to reduce the
feature space.

We employ information gain (IG) as selection criteria which
showed promising results in other text classification tasks [29].
We select the top 10% features with the highest IG. The op-
timal number of features was cross-validated in a foregoing
study under a similar setting [21, 20]. There are 322,792
features in the coarse level.

We choose K-Nearest-Neighbor (kNN) algorithm as the
coarse level classifier because of its great scalability, lin-
ear computational complexity, robustness to data sparseness
and skewed category distribution [28], and interpretable cat-
egory predictions which is especially important for a practi-
cal system.

KNN is based on a lazy learning method in which no ex-
plicit training process is required and all computation is de-
ferred until classification. It classifies a test instance based
on its closest training instances in the feature space. Given a
test item, the kNN classification performs two steps: (1) find
the k nearest neighbors among the items in training set, and
then (2) perform a majority voting amongst the k neighbors
to identify the category candidates. We use cosine values of
two vectors to measure the similarity between items. The
number of neighbors k is dynamically decided as follows: for
an item to classify, the neighbors are fetched greedily first
in descending order of similarity until the similarity score
of a neighbor is below a threshold. The threshold is set as
half of the score of the first neighbor. Next, the item is as-
signed to the class with the majority votes of its k nearest
neighbors. The nearer neighbors are supposed to contribute
more in the voting than the more distant ones. We have
investigated various voting schema in our experiments, and
finally used the reciprocal of the rank position to weight the
neighbors. The voting function is a generalization of linear
interpolation as follows:

score(t, ci) =
∑

tj∈KNN(t)

1

R(tj)
y(tj, ci)

where, KNN(t) indicates the set the k nearest neighbors of
the item to classify t; R(tj) = {1, 2, ..., k} is the rank position
of the neighbor tj ; y(tj , ci) ∈ {0, 1} is the classification for
the training item tj with respect to the class ci (y = 1
for tj ∈ ci, otherwise, y = 0). This paper does not aim
to report rigorous exploration of the optimal settings for
the parameter k, neighbor weighting or voting function in
the kNN model. The setting introduced above, however,
performed the best in our preliminary experiments of kNN-
based flat classification.

The kNN classifier is often considered a slow classifier as
intensive computation is needed at classification time to re-
trieve the neighbors. However, modern search engines make
it possible to fetch and sort neighbors in milliseconds and
have rendered kNN perfectly suitable for large scale classifi-
cation problems. For instance, our production implementa-
tion of kNN using eBay search engine is able to classify an
item in less than 100 ms in spite of a large number of classes
and training samples.

4.2.3 Fine level classifier
For the fine level classifier we experimented with the Sup-

port Vector Machine (SVM) [25] algorithm. We do not ap-
ply feature selection for fine level classification as the feature
space in latent groups is much smaller than the overall fea-
ture space.

Extensive empirical comparisons on text classification [19,
28] have shown that SVMs achieve excellent state-of-the-art
performance.

SVMs construct a binary classifier that predicts whether
an instance �x is positive or negative, where the instance is
represented as a feature vector. In the case of linearly sep-
arable instances, the decision f(x) = sgn(�w · �x+ b) is made
based on a separating hyperplane �w ·�x+ b = 0 (�w ∈ Rn, b ∈
R). The goal of SVMs is to find the optimal hyperplane that
separates the positive and negative training instances with a
maximal margin, by solving a dual quadratic programming
problem. Given a set T of training data and correspond-
ing label pairs (xi, yi), i = 1, . . . ,m, where xi ∈ Rn and
yi ∈ {1,−1}, SVMs essentially solve the following opti-
mization problem:

minw,b,ξ
1

2
wTw + C

m∑

i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi and ξi ≥ 0

Here xi are the training vectors and C > 0 is the bud-
get parameter, a penalty for the error term. In case of lin-
early non-separable data SVMs project the instances from
the original space Rn to a higher dimensional space RN

based on a kernel function K(�x1, �x2) = Φ(�x1) · Φ(�x2). This
is commonly referred to as the kernel-trick, which makes it
possible to find a linearly separable hyperplane in the pro-
jected high dimensional space.. A kernel function has the
form K(xi, xj) = φ(xi)

Tφ(xj) and projects the input data
xi into a higher dimensional feature space φ(xi). Although
there are a number of kernels, in practice most often a linear

600

Classification Models Top 1 Top 2 Top 5
flat-NB 64.4 77.1 87.3
flat-kNN 71.8 81.5 88.5
hier-ebay-struc 72.2 81.6 88.0
KNN-SVM 75.4 83.8 89.9

Table 3: Precision of various classification methods when top 1, 2 and 5 categories are returned. The
classification methods are flat multinomial NB, flat k-nearest neighbor, hierarchical classifier leveraging eBay
category structure and our proposed algorithm kNN-SVM.

kernel or radial basis function (RBF) kernels are used. They
have the following form:

• linear kernel : K(xi, xj) = xT
i xj .

• RBF kernel : K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0.

For our fine level classifier, we employed a highly efficient
implementation of SVM with linear kernel, LibLinear [7].
This package also supports multi-class classification using
one-vs-all strategy.

4.3 Baselines
We evaluated our proposed algorithm (kNN-SVM) against

three different baselines, namely a flat kNN classifier (flat-
kNN), a flat multinomial Naive Bayes (flat-NB) and a hier-
archical classifier leveraging eBay category structure (hier-
ebay-struc). We describe the baseline methods below.

• Flat-kNN is an implementation of the kNN classifier.
As described in section 4.2.2, we use information gain
(IG) as feature selection method, employ a production
search engine for initial candidate selection, and finally
use cosine similarity and dynamic neighbor selection
for nearest neighbor voting.

• The multinomial NB classifier (flat-NB) is a good choice
especially for large-scale online classification mainly
because of its great scalability. Many previous work [14]
reported that it performs quite well empirically. Smooth-
ing plays an important role in NB training to allevi-
ate the problems caused by data sparseness and un-
balanced distribution. Since Shen et al. [21] reported
quite promising results of the Dirichlet Priors (DP)
smoothing in a similar task, we adopt DP smoothing
(μ = 1000) in the flat-NB model. One notorious draw-
back of NB classifier though, is that it may produce
poorly calibrated probability estimation.

• The third baseline, hier-ebay-struc, performs hierar-
chical classification using the existing six-level topic
structure at eBay. The large number of eBay cate-
gories makes it hard to train an iteration-based second-
level classifier efficiently and accurately, such as DT,
SVM or ME. On the other hand, lower levels (Level 4
and Level 5) contain too many nodes to train the first
level classifier effectively, e.g., Level 4 has 13,904 nodes
and Level 5 has 19,942 nodes. To optimize the perfor-
mance of the hierarchical classification, we propose a
balanced splitting method to extract a small number of
high-level nodes under which leaf categories distribute
more or less evenly. The balanced splitting works as
follows. We search on the entire hierarchical tree as

in depth-first search (DFS). Once a non-leaf node (in-
ternal node) contains less than 50 leaf categories, we
extract the internal node as a high-level node, and re-
move the path from root to the extracted node from
further consideration. After exhausting the entire hi-
erarchical tree, the extracted high-level nodes are mu-
tually exclusive and spanning all leaf categories. The
row ”Balanced splitting” in Table 2 shows the number
of high-level nodes (4659 nodes) and the distribution
of the leaf categories over these internal nodes. This
approach is easy to implement and heavily relies on
the existing hierarchy. hier-ebay-struc uses this bal-
anced splitting hierarchy. We first apply kNN model,
the same as the flat-kNN model, to classify items into
top-level nodes, and then apply a SVM model to fur-
ther classify the items into one of the leaf categories.
Flat-kNN serves as a proxy for one-vs-all classification.
Unfortunately we have not been able to scale SVM to
our classification problem.

4.4 Results
The item classification system is evaluated using the usual

precision metric defined as the fraction of items of the test for
which the classifier recovered the correct class label. How-
ever, because some applications of item classification on e-
commerce require to present several alternatives to the users,
we are also interested in measuring accuracy when 2 and 5
classes are returned. This requires the fine level classifiers to
return a ranked list of classes instead of a single prediction.
For the various classifiers we tested, the ranking is obtained
using the confidence score returned by the classifier. In the
case of SVM, Platt’s scaling [17] was used to obtain such con-
fidence score. For the purpose of measuring accuracy when
more than one class is returned, the classifier is considered
correct when the gold standard (i.e the category picked by
the seller when the item was listed on the site) is one of the
returned classes. In the following “Top 1”, “Top 2” and “Top
5” denotes the accuracy when 1, 2 and 5 classes are returned
respectively.

Table 3 shows the overall accuracies of the flatten classi-
fication models (flat-NB, flat-kNN), the hierarchical classi-
fication models (hier-ebay-struc and our proposed approach
(KNN-SVM). At all three recall levels (“Top 1”, “Top 2”
and “Top 5”), our approach performs the best in terms of
accuracy. For ”Top 1” in particular, it outperforms flat-kNN
and hier-ebay-struc by about 3.6 percentage points, 3.2 per-
centage points, and the edge over flat-NB is 11 percentage
points.

As for the conventional text classification models, flat-
kNN significantly outperforms flat-NB by 7.4 percentage
points for “Top 1”. This gives the insight that the instance-
based learning method, i.e. kNN, might be more suitable

601

1. Cell Phones & PDAs → Cell Phone & PDA Accessories
Electronics → iPod & MP3 Accessories → Cases

2. Video Games → Wholesale Lots → Accessories
Video Games → Accessories

3. Jewelry & Watches → Loose Beads → Crystal
Crafts → Beads & Jewelry Making → Beads, Pearls & Charms → Beads

4. Books → Textbooks, Education
Books → Nonfiction

5. Sports Mem, Cards → Fan Shop → Cards → Football
Sports Mem, Cards → Fan Shop → Autographs-Original → Football-NFL →
Trading Cards

6. Business & Industrial → Restaurant & Catering → Commercial Kitchen
Equipment → Food Preparation Equipment → Food Processors
Home & Garden → Inside the Home → Kitchen, Dining & Bar → Small
Kitchen Appliances → Food Processors

Table 4: Examples of the category pairs which are frequently misclassified by the flatten classification model
flat-kNN

Model
First level classification Second level classification

Number of Nodes Top 1
Number of leafs per node

Top 1
Avg Max Min

hier-ebay-struc 4659 79.8 4.6 50 1 72.2
KNN-SVM 6494 86.1 3.3 45 1 73.0

Table 5: Number of categories and accuracy for two level hierarchical classification models.

for classifying heterogeneous and short texts, i.e. the items
on eBay. One conclusion we can draw here is that data
sparseness penalizes flat-NB severely while it does not af-
fect flat-kNN in the same fashion.

Another interesting finding is that the hierarchical clas-
sification model hier-ebay-struc does not show significant
improvement over the flatten classification model flat-kNN.
A later manual inspection of the items misclassified by flat-
kNN suggests one explanation for this—the error cases from
flat-kNN are beyond adjacent leaf categories on the category
structure. This violates one prerequisite of hierarchical clas-
sification that it requires satisfactory classification accuracy
at the top level and tackles the difficulty of classifying very
confusing categories at lower levels. Table 4 shows examples
of 6 category pairs which are most frequently misclassified
by the flatten classification model flat-kNN. It is can be ob-
served that some of the error cases are even across meta
categories. Thus in the hierarchical model hier-ebay-struc,
this type of errors will be made on the top level, which can-
not be recovered by SVM models at the lower levels due to
algorithmic design.

We now attempt to answer the third question concerning
our proposed two level classification with latent group ap-
proach. The experiments show that our approach is signifi-
cantly better than the conventional hierarchical model hier-
ebay-struc. In Table 5 we show the detailed performance
comparison between two hierarchical classification models.
For KNN-SVM, classes are grouped into 6494 latent groups
and each latent group contains 3.3 classes on average. For
the top level classification, KNN-SVM performs better than
hier-ebay-struc by 6.3 percentage points, although the num-
ber of categories is more than that in hier-ebay-struc. It
indicates the latent group generation method we proposed

in this paper captures class similarities properly, groups the
most similar classes effectively, and ultimately ensures satis-
factory performance on the top level classification. Table 6
further illustrates some examples of leaf categories within a
latent group. It is obvious that the leaf categories in this la-
tent group are actually hard to distinguish from each other
despite some of them are quite far away in the eBay hierar-
chy structure.

Finally, the main motivation of this research is to lever-
age computationally demanding classification algorithms on
very large datasets. The mere fact that we are able to lever-
age SVM (as a fine level classifier) and achieve higher clas-
sification accuracy on a problem where a flat SVM does not
scale is a very significant step in that direction. But speed of
execution is also a very important criterion in term of scala-
bility and we now show that the goal is achieved on that front
as well. The training time of KNN-SVM which includes
training the kNN coarse level classifier (i.e. indexing the
training sample using the search engine), estimating class
confusion probabilities, running the dense subgraph enumer-
ation algorithm and training the fine level classifier is about
3 hours for the setting of this experiment using a 10 thread
implementation. The classification time of KNN-SVM is
520ms per item (for our research prototype, the produc-
tion implementation taking only 100ms per item). This was
measured on a 16 core x86 processor operating at 2.3 Ghz
with 128Gb of memory. Table 7 shows a comparison with
the multinomial NB classifier and the K-Nearest-Neighbor
algorithm. Although KNN-SVM is slower than the flat clas-
sifiers, it is remarkably fast given the problem involves more
than 20,000 classes and 83 million training samples.

602

1. Clothing, Shoes & Accessories → Men’s Accessories → Backpacks, Bags &
Briefcases → Duffle, Gym Bags

2. Clothing, Shoes & Accessories → Unisex Clothing, Shoes & Accs → Unisex
Accessories → Bags & Backpacks → Backpacks & Bookbags

3. Clothing, Shoes & Accessories → Unisex Clothing, Shoes & Accs → Unisex
Accessories → Bags & Backpacks → Duffle, Gym Bags

4. Clothing, Shoes & Accessories → Women’s Handbags & Bags → Duffle & Gym
Bags

5. Computers & Networking → Computer Accessories → Laptop Cases & Bags
→ Backpacks

6. Travel → Luggage

Table 6: Example of leaf categories in a latent group. Latent groups are discovered automatically using a
graph algorithm. Our algorithm discovers latent group that spans three different meta categories namely,
“Clothing, Shoes & Accessories”, “Computers and Networking”, and “Travel”.

Classification model Training (h) Classification (ms)
flat-NB 0.66 20
flat-kNN 1 360
KNN-SVM 3 520

Table 7: Training speed (in hours) and classification speed (in millisecond) of two flat models and our two
levels approach.

5. CONCLUSION
Item categorization, which can be formulated as a super-

vised text classification problem, is a fundamental technical
challenge for e-commerce sites such as eBay. But the num-
ber of classes, the volume of the training data and the size
of the feature space make the use of computationally in-
tensive algorithms impractical for large scale deployment.
In this paper, we proposed a novel and practical approach
that allows leveraging off-the-shelf text classification algo-
rithm by automatically grouping similar classes into latent
groups using a dense subgraph enumeration algorithm and
decomposing the problem into a coarse level classification
task and a fine level classification task. The coarse level
classifier is responsible for assigning a latent group while
the fine level classifiers are responsible for assigning a class
within a latent group. Experiments on large scale real data
from eBay show that our approach significantly outperforms
other known approaches while maintaining a very practical
speed of execution.

For future work we are particularly interested in exploring
the sensitivity of this two-levels approach in terms of classi-
fication accuracy with respect to the coherence of the latent
groups i.e., the method used for enumerating the dense sub-
graphs.

6. ACKNOWLEDGMENTS
Authors are grateful to Rajyashree Mukherjee, Suresh Ra-

man, Niraj Kothari, Chelly Yan and Wallace Mann for fruit-
ful discussions about this research and for engineering assis-
tance in deploying our algorithm into the production classifi-
cation system. Thanks to Chih-Jen Lin for useful comments.
Also thanks to the anonymous reviewers for providing us
with important suggestions.

7. REFERENCES
[1] C. Apté, F. Damerau, and S. M. Weiss. Automated

learning of decision rules for text categorization. ACM
Trans. Inf. Syst., 12:233–251, 1994.

[2] S. Bengio, J. Weston, and D. Grangier. Label
embedding trees for large multi-class tasks. In
Advances in Neural Information Processing Systems
(NIPS), 2010.

[3] L. Cai and T. Hofmann. Hierarchical document
categorization with support vector machines. In Proc.
of the 13th ACM International Conference on
Information and Knowledge Management(CIKM),
pages 78–87, 2004.

[4] O. Dekel, J. Keshet, and Y. Singer. Large margin
hierarchical classification. In Proc. of the 21st
International Conference on Machine
Learning(ICML), pages 27–34, 2004.

[5] T. G. Dietterich and G. Bakiri. Solving multiclass
learning problems via error-correcting output codes.
Artificial Intelligence Research, 2:263–286, 1995.

[6] S. T. Dumais and H. Chen. Hierarchical classification
of web content. In Proc. of the ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 256–263, 2000.

[7] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang,
and C. J. Lin. Liblinear: A library for large linear
classification. Journal of Machine Learning Research,
pages 1871–1874, 2008.

[8] Q. Y. G.-R. Xue, D. Xing and Y. Yu. Deep
classification in large-scale text hierarchies. In Proc. of
the 31st International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 619–626, 2008.

[9] A. V. Goldberg. Finding a maximum density

603

subgraph. Technical Report UCB/CSD-84-171, EECS
Department, University of California, Berkeley, 1984.

[10] T. Hastie and R. Tibshirani. Classification by pairwise
coupling. Annals of Statistics, 26:451–471, 1998.

[11] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
Proc. of the 10th European Conference on Machine
Learning(ECML), pages 137–142, 1998.

[12] D. Koller and M. Sahami. Hierarchically classifying
docuemnts using very few words. In Proc. of the 14th
International Conference on Machine
Learning(ICML), pages 171–178, 1997.

[13] S. Kumar, J. Ghosh, and M. M. Crawford.
Hierarchical fusion of multiple classifiers for
hyperspectral data analysis. Pattern Analysis and
Applications, 5:210–220, 2002.

[14] A. Macallum and K. Nigam. A comparison of event
models for naive bayes text classification. In Proc. of
the AAAI-98 Workshop on Learning for Text
Categorization, 1998.

[15] A. McCallum, R. Rosenfeld, T. Mitchell, and A. Y.
Ng. Improving text classification by shrinkage in a
hierarchy of classes. In Proc. of the 15th International
Conference on Machine Learning(ICML), pages
359–367, 1998.

[16] K. Nigam, J. Lafferty, and A. McCallum. Using
maximum entropy for text classification. In Proc. of
IJCAI-99 Workshop on Machine Learning for
Information Filtering, pages 61–67, 1999.

[17] J. C. Platt. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. In ADVANCES IN LARGE MARGIN
CLASSIFIERS, pages 61–74. MIT Press, 1999.

[18] R. Rifkin and A. Klautau. In defense of one-vs-all
classification. Machine Learning Research, 5:101–141,
2004.

[19] F. Sebastiani. Machine learning in automated text
categorization. ACM Computing Surveys (CSUR),
34:1–47, 2002.

[20] D. Shen, J. Ruvini, M. Somaiya, and N. Sundaresan.
Item categorization in the e-commerce domain. In
Proc. of The 20th ACM International Conference on
Information and Knowledge Management (CIKM),
2011.

[21] D. Shen, J. D. Ruvini, R. Mukherjee, and
N. Sundaresan. A study of smoothing algorithms for
item categorization on e-commerce sites. In Proc. of
The Ninth International Conference on Machine
Learning and Applications(ICMLA), 2010.

[22] C. N. Silla and A. A. Freitas. A survey of hierarchical
classification across different application domains.
Data Mining and Knowledge Discovery, 22:31–72,
2011.

[23] A. S.Weigend, E. D.Wiener, and J. O. Pedersen.
Exploiting hierarchy in text categorization.
Information Retrieval, pages 193–216, 1999.

[24] R. Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[25] V. N. Vapnik. Statistical Learning Theory, 1998.

[26] K. Weinberger and O. Chapelle. Large margin
taxonomy embedding with an application to document
categorization. Advances in Neural Information
Processing Systems, pages 1737–1744, 2008.

[27] T. yan Liu, Y. Yang, H. Wan, H. jun Zeng, Z. Chen,
and W. ying Ma. Support vector machines
classification with a very large-scale taxonomy.
SIGKDD Explorations, 7:2005, 2005.

[28] Y. Yang and X. Liu. A re-examination of text
categorization methods. In Proc. of the ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 42–49, 1999.

[29] Y. Yang and J. O. Pedersen. A comparative study on
feature selection in text categorization. In Proc. of the
14th International Conference on Machine
Learning(ICML), pages 412–420, 1997.

604

