Summary of Atomic Quantum Numbers

28th July 2006

For Hydrogen Atoms

When we ignored the spin of the electron, we came up with three quantum numbers to describe the energy eignestates of a hydrogen atom: n, l, m_l .

Quant. $\#$	Name	Possible Values	What it Represents	Formula
n	principle q. n.	$n = 1, 2, 3, \dots$	energy, total number of "nodes"	$E = E_1/n^2$
l	orbital q. n.	l = 0, 1, 2,, n - 1	orbital angular momentum, angular "nodes"	$L = \hbar \sqrt{l(l+1)}$
m_l	magnetic q. n.	$m_l = 0, \pm 1, \pm 2, \dots, \pm l$	z -component of orb. ang. mom., "nodes" in ϕ	$L_z = \hbar m_l$

When we realized that electrons had a spin described by the quantum number s = 1/2, we realized that we needed one more quantum number to describe the z-component of the electron's spin angular momentum: m_s

Quant. #	Possible Values	What it Represents	Formula
m_s	$m_s = \pm 1/2$	z-component of spin angular momentum	$S_z = \hbar m_s$

When we realized that the spin of the electron would interact with the orbital angular momentum, we decided that m_l and m_s were no longer good quantum numbers to describe the energy eigenstates. So we came up with two new ones to replace them: j and m_j .

Quant. $\#$	Possible Values	What it Represents	Formula
j	j = l - s , l - s + 1,, l + s	total angular momentum	$J = \hbar \sqrt{j(j+1)}$
m_{j}	$m_j = 0, \pm 1, \pm 2,, \pm j$	z-component of total angular momentum	$J_z = \hbar m_j$

For Multi-Electron Atoms

For multi-electron atoms we first added together the spin angular momentum of all of the electrons to get a total spin quantum number \mathbf{S} . Then we added together the orbital angular momentum for each electron to get a total orbital quantum number \mathbf{L} . Then we put those two together to get a total angular momentum quantum number \mathbf{J} . Of course each of these has an associated z-component quantum number: $\mathbf{M}_{\mathbf{S}}$, $\mathbf{M}_{\mathbf{L}}$, and $\mathbf{M}_{\mathbf{J}}$.

Quant. $\#$	Possible Values	Formula
S	Integer steps from $\mathbf{S_{min}} = 1/2 - 1/2 + 1/2 - 1/2 +$ to $\mathbf{S_{max}} = 1/2 + 1/2 + 1/2 + 1/2 +$	$S = \hbar \sqrt{\mathbf{S}(\mathbf{S} + 1)}$
L	with as many $1/2s$ as there are unpaired electrons. Integer steps from $\mathbf{L_{min}} = l_1 \pm l_2 \pm l_3 \pm$ to $\mathbf{L_{max}} = l_1 + l_2 + l_3 +$ with as many l_s as there are unpaired electrons.	$L = \hbar \sqrt{\mathbf{L}(\mathbf{L} + 1)}$
J	$\mathbf{J} = \mathbf{L} - \mathbf{S} , \mathbf{L} - \mathbf{S} + 1,, \mathbf{L} + \mathbf{S}$	$J = \hbar \sqrt{\mathbf{J}(\mathbf{J} + 1)}$
$M_{ m J}$	$\mathbf{M}_{\mathbf{J}} = 0, \pm 1, \pm 2,, \pm \mathbf{J}$	$J_z = \hbar \mathbf{M_J}$