HOKKAIDO UNIVERSITY

Title	A NOTE ON THE HA WKINS-SIMON CONDITIONS
Author(s)	M.KATO; G.MATSUMOTO; T.SAKAI
Citation	HOKUDAI ECONOMIC PAPERS, 3: 46-48
Issue Date	1972
DOI	http:/hdl.handle.net/2115/30645
Doc URL	
Right	bulletin
Type	
Additional Information	File Information
3_P46-48.pdf	

Instructions for use

A NOTE ON THE HAWKINS-SIMON CONDITIONS*)

M. Kato, G. Matsumoto, and T. Sakai

The object of the present note is to provide an alternative proof of the theorem that the Hawkins-Simon conditions are necessary and sufficient for the static Leontief system to have positive solutions. Originally, the theorem is proved by Hawkins and Simon [2], and subsequently by Morishima [5], and Nikaido [6], [7] in a more general setting. Most of the books referring to the theorem, however, confine their remarks to the two-sector case for the convenience of a diagrammatic exposition. ${ }^{1)}$ The following proof will be performed in the wake of the original version by Hawkins and Simon.

Let us consider the system of nonhomogeneous linear equations:

$$
\begin{equation*}
\sum_{j=1}^{m} a_{i j} x_{j}=k_{i} \quad(i=1, \cdots, m) \tag{1}
\end{equation*}
$$

with $a_{i j} \leqq 0$ for all $i \neq j$. Then, the theorem to be proved is as follows:
THEOREM: A necessary and sufficient condition that the x_{i} satisfying (1) be all positive for any positive k_{i} is that all principal minors of the square matrix $A=\left(a_{i j}\right)$ are positive, i.e.,

$$
\left|\begin{array}{ccc}
a_{11} & \cdots & a_{1 s} \tag{2}\\
\vdots & & \vdots \\
a_{s 1} & \cdots & a_{s s}
\end{array}\right|>0 \quad(s=1, \cdots, m)
$$

Proof. We first prove that the Hawkins-Simon conditions (2) is necessary for the system (1) to have solutions $x_{i}>0$ for any $k_{i}>0$, and then that (2) is sufficient.
(Necessity) If the system (1) has positive solutions, the first equation of the system (1) can be rewritten as

$$
\begin{equation*}
a_{11}=\frac{1}{x_{1}}\left(k_{1}-\sum_{j=2}^{m} a_{1 j} x_{j}\right)>0 . \tag{3}
\end{equation*}
$$

This implies that (2) holds when $s=1$.
By using the first equation of the system (1), x_{1} can be eliminated from the remaining equations. Thus, we obtain the subsystem of equations:

$$
\begin{equation*}
\sum_{j=2}^{m}\left(a_{i j}-\frac{a_{i 1}}{a_{11}} a_{1 j}\right) x_{j}=k_{i}-\frac{a_{i 1}}{a_{11}} k_{1} \quad(\mathrm{i}=2, \cdots, m) \tag{4}
\end{equation*}
$$

*) The authors are indebted to Professor T. Shirai for suggestions which led them to write this note.
${ }^{1)}$ See, for example, Dorfman, Samuelson, and Sollow ([1], Chap. 9), Kuenne ([3], Chap. 6), and Morishima ([4], Chap. 2).

For simplicity, the system (4) is denoted by

$$
\begin{equation*}
\sum_{j=2}^{m} a_{i j}^{(1)} x_{j}=k_{i}^{(1)} \quad(\mathrm{i}=2, \cdots, m) \tag{5}
\end{equation*}
$$

In view of the conditions that $a_{i j} \leqq 0$ for all $i \neq j$, and $a_{11}>0$, we conclude that

$$
\begin{equation*}
a_{i j}^{(1)} \leqq 0 \quad \text { for all } i=j, \quad \text { and } \quad k_{i}^{(1)}>0 \tag{6}
\end{equation*}
$$

If the system (1) has positive solutions, the first equation of the subsystem (5) can be rewritten as

$$
\begin{equation*}
a_{22}^{(1)}=\frac{1}{x_{2}}\left(k_{2}^{(1)}-\sum_{j=3}^{m} a_{2 j}^{(1)} x_{j}\right)>0 \tag{7}
\end{equation*}
$$

It is easily seen that this implies that the condition (2) holds for $s=2$, because

$$
a_{22}^{(1)}=\frac{1}{a_{11}}\left|\begin{array}{ll}
a_{11} & a_{12} \tag{8}\\
a_{21} & a_{22}
\end{array}\right| .
$$

Similarly, by using the first equation of the subsystem (5), x_{2} (the first variable of the subsystem) can be eliminated from the remaining ($m-2$) equations. Thus, we obtain the second subsystem of ($m-2$) equations whose off-diagonal coefficients and nonhomogeneous terms have the same sign as those of the system (1) or (5). In general, by using the first equation of the s-th subsystem of ($m-s$) equations, x_{s+1} (the first variable of the s-th subsystem) can be eliminated out of the remaining ($m-s-1$) equations. Thus, we shall obtain the $(s+1)$-th subsystem of $(m-s-1)$ equations whose off-diagonal coefficients and nonhomogeneous terms have the same sign as those of earlier subsystems.

If the system (1) has positive solutions, the first equation of the $(s-1)$-th subsystem can be rewritten as

$$
\begin{equation*}
a_{s s}^{(s-1)}=\frac{1}{x_{s}}\left(k_{s}^{(s-1)}-\sum_{j=s+1}^{m} a_{s j}^{(s-1)} x_{j}\right)>0, \quad(s=2, \cdots, m) \tag{9}
\end{equation*}
$$

The above procedure of elimination is equivalent to such operations that a multiple of the elements of one row of the coefficient matrix $\left(a_{i j}\right)$ is added to the corresponding elements of other rows. According to the wellknown property of determinants, this does not alter the values of the principal minors of $\left(a_{i j}\right)$. Thus, we have

$$
\begin{align*}
& \left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 s} \\
a_{21} & a_{22} & \cdots & a_{2 s} \\
\cdots & \cdots & \cdots & \cdots \\
a_{s 1} & a_{s 2} & \cdots & a_{s s}
\end{array}\right|=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 s} \\
0 & a_{22}^{(1)} & \cdots & a_{2 s}^{(1)} \\
& \ddots & \ddots & \\
0 & 0 & \cdots & a_{s s}^{(s-1)}
\end{array}\right| \tag{10}\\
& =a_{11} a_{22}^{(1)} a_{33}^{(2)} \cdots a_{s-1 . s-1}^{(s-2)} a_{s s}^{(s-1)} \quad(s=2, \cdots, m)
\end{align*}
$$

This completes the proof of necessity.
(Sufficiency) In view of (10), we have

$$
\begin{equation*}
a_{11}>0, \quad a_{22}^{(1)}>0, \cdots, a_{m-1, m-1}^{(m-2)}>0, \quad \text { and } \quad a_{m m}^{(m-1)}>0, \tag{11}
\end{equation*}
$$

if all principal minors of the matrix $\left(a_{i j}\right)$ are positive.
To begin with, let us consider the last (i.e., the ($m-1$)-th) subsystem:

$$
\begin{equation*}
a_{m m}^{(m-1)} x_{m}=k_{m}^{(m-1)}, \tag{12}
\end{equation*}
$$

where $k_{m}^{(n-1)}>0$.
By virtue of (11), we can divide both sides of the equation (12) by $a_{n m m}^{(m n-1)}$ and obtain

$$
\begin{equation*}
x_{m}>0 . \tag{13}
\end{equation*}
$$

In order to work out the proof by mathematical induction, suppose that we have already obtained solutions:

$$
\begin{equation*}
x_{m}>0, \quad x_{m-1}>0, \cdots, x_{s+1}>0 \tag{14}
\end{equation*}
$$

Now, let us consider the first equation of the $(s-1)$-th subsystem :

$$
\begin{equation*}
a_{s s}^{(s-1)} x_{s}=k_{s}^{(s-1)}-\sum_{j=s+1}^{m} a_{s j}^{(s-1)} x_{j} \tag{15}
\end{equation*}
$$

where the nonhomogeneous term $k_{s}^{(s-1)}$ is positive and the off-diagonal coefficients $a_{s j}^{(s-1)}$ are nonpositive. By (14), the right-hand-side of the equation is positive. By virtue of (11), we can divide both sides of the equation by $a_{s s}^{(s-1)}$ and obtain

$$
\begin{equation*}
x_{s}>0 . \tag{16}
\end{equation*}
$$

Thus the proof is complete, Q.E.D.

References

[1] Dorfman, R., P. A. Samuelson, and R. M. Solow, Linear Programming and Economic Analysis (McGraw-Hill, 1958).
[2] Hawkins, D., and H. A. Simon, "Note: Some Conditions of Macroeconomic Stability", Econometrica XVII, 1949, pp. 245-248.
[3] Kuenne, R. E., The Theory of General Economic Equilibrium (Princeton University Press, 1963).
[4] Morishima, M., Sangyo Renkan Ron Nyumon, (Introduction to Input-Output Analysis) (Sobunsha, 1956).
[5] , Equilibrium, Stability and Growth (Oxford University Press, 1964).
[6] Nikaido, H., Introduction to Sets and Mappings in Modern Economics. (NorthHolland, 1970).
[7] , Convex Structures and Economic Theory (Academic Press, 1968).

