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Social contagion theory: examining
dynamic social networks and
human behavior
Nicholas A. Christakisa,b*† and James H. Fowlerc,d

Here, we review the research we have conducted on social contagion. We describe the methods we have employed
(and the assumptions they have entailed) to examine several datasets with complementary strengths and weak-
nesses, including the Framingham Heart Study, the National Longitudinal Study of Adolescent Health, and other
observational and experimental datasets that we and others have collected. We describe the regularities that led
us to propose that human social networks may exhibit a ‘three degrees of influence’ property, and we review sta-
tistical approaches we have used to characterize interpersonal influence with respect to phenomena as diverse as
obesity, smoking, cooperation, and happiness. We do not claim that this work is the final word, but we do believe
that it provides some novel, informative, and stimulating evidence regarding social contagion in longitudinally
followed networks. Along with other scholars, we are working to develop new methods for identifying causal
effects using social network data, and we believe that this area is ripe for statistical development as current
methods have known and often unavoidable limitations. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

In 2002, we became aware of the existence of a source of raw data that had not previously been used for
research purposes. Although limited in certain ways, these data offered important strengths and oppor-
tunities for the study of social networks. As described below, we were able to exploit previously unused
paper records held by the Framingham Heart Study (FHS), a longstanding epidemiological cohort study,
to reconstruct social network ties among 12,067 individuals over 32 years. In particular, a very uncom-
mon feature of these data was that the network ties themselves were longitudinally observed, as were
numerous attributes of the individuals within the network. We called the resulting dataset the ‘FHS-Net’.

In 2007, we began to publish papers using this dataset — and also other datasets, including the
National Longitudinal Study of Adolescent Health (AddHealth, a public-use dataset with social network
information on 90,000 children in 114 schools) [1], online social network data that we extracted on both
small [2] and large [3] scale, de novo data that we have collected regarding populations as diverse as
American college students and Hadza hunter-gatherers [4,5], and experimental data in which interaction
networks or influence paths were artificially created [3,6,7] — to examine various network phenomena.
These datasets have complementary strengths and weaknesses, as do the various analytic approaches we
have employed.

There are two broad classes of investigations of networks that we have undertaken: studies of network
topology (and its determinants), and studies of the spread of phenomena across network ties. Although
we have done work on the former [5, 7–13], here we will focus primarily on the latter, discussing analy-
ses of the flow of behaviors, affective states, or germs. Our work on social networks and human behavior
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thus covers several domains and relies on diverse data and approaches. It builds on prior research on
‘peer effects’ and interpersonal influence by examining data in which individuals are embedded in
networks much larger than two people. We summarize this work and describe critiques, extensions,
and confirmations of our findings by other scientists.

Using similar modeling approaches and exploiting data from many sources, we have examined the
‘spread’ of obesity [14, 15], smoking [16], alcohol consumption [17], health screening [18], happiness
[19], loneliness [20], depression [21], sleep [22], drug use [22], divorce [23], food consumption [24],
cooperative behavior [6], influenza [4], sexuality and sexual orientation [25], and tastes in music, books,
and movies [26]. We have also conducted experiments regarding the spread within networks of altruism
[6, 7] and of political mobilization [3]; in such experiments, causal inference with respect to network
effects is more robust (although experiments have limitations of their own). We have previously sum-
marized this work, and also the work of numerous other scholars who have investigated social networks
and interpersonal influence, in our book, Connected, published in 2009 [27], and in a 2008 review article
focused on health [28].

In our work, we have used the best currently available methods. Network statistics is a fast-growing
field (for useful reviews of the topic, see [29–36]), and it is clear that perfect methods, free of any
limitations or assumptions, do not exist for every sort of question one might want to ask with obser-
vational (or even experimental) data. Basic issues in coping with missing data (missing nodes, ties,
covariates, waves), sampling (design effects and incomplete network ascertainment), computation of
standard errors, and even of the causal interpretation of model parameters, for example, are still
being addressed.

However, rather than foreswear observations regarding social network phenomena, we have chosen,
in our papers, to analyze available data, and we attempt to characterize known limitations and assump-
tions in available methods. Also, of course, as scientists identify limitations in current methods, many
will, we hope, also take the next step to innovate and propose alternatives, because all statistical methods
have limitations and they frequently rely on untestable or awkward assumptions. We hope our own work
has played a part in stimulating interest in developing statistical methods for network data; we are inter-
ested to deploy new and better methods, and we are attempting to contribute to progress in this area, as
described below. Hence, we invite suggestions regarding how to analyze such data if current approaches
have limitations that some find overwhelming.

This paper proceeds as follows. First, in Section 2 we describe a key dataset that we assembled and
first analyzed, the so-called FHS-Net. Although we describe the FHS-Net in detail, we note that we and
others have replicated our findings using other datasets and methods, as discussed below, including by
using experiments. In Section 3 we describe basic analyses involving permutation tests that show clus-
tering of various traits within various observed social networks. Section 4 addresses a set of concerns
regarding the nature of potential biases introduced to estimates of clustering by the limited nature of
social ties available in the FHS-Net. Section 5 describes the longitudinal regression models we deployed
to analyze peer effects within the network, at the dyadic level. We attempt to provide a comprehen-
sive review of the assumptions and biases present in such models. Also, we summarize model output as
applied to more than one dataset. In Section 6, we describe a novel identification strategy we proposed in
2007 involving the exploitation of the directionality of some social ties. We also describe extensions and
limitations since characterized by other scientists. Section 7 describes how geographic location infor-
mation might be used to help address certain types of confounding with observational network data.
Section 8 describes how the FHS-Net data has been publicly available since 2009, and where other data
regarding longitudinally evolving networks might also be obtained. Section 9 concludes and also sum-
marizes much work that has been conducted in recent years by other scholars documenting spreading
processes in networks.

2. The FHS-Net data and its pertinent features

We start by describing a key (but not the only) dataset that motivated our work. The Framingham Heart
Study was initiated in 1948 when 5209 people in Framingham, MA, were enrolled into the ‘Original
Cohort’ [37]. In 1971, the ‘Offspring Cohort,’ composed of many of the children of the Original Cohort,
and their spouses, was enrolled [38]. This cohort of 5124 people has had almost no loss to follow-up
other than because of death (only 10 cases in the Offspring Cohort dropped out and were uncontactable
by the study managers, and there was a similarly low loss to follow-up in the other cohorts). In 2002,
enrollment of the so-called ‘Third Generation Cohort’ began, consisting of 4095 of the children of the
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Offspring Cohort. The Framingham Heart Study also involves certain other smaller cohorts. Participants
in all the cohorts come to a central facility for detailed physical examinations and data collection every
2–4 years.

For many decades, the FHS has maintained handwritten tracking sheets that administrative personnel
have used to identify people close to participants for the purpose of facilitating follow-up. These
documents contain valuable, previously unused social network information because they systematically
(and, in some cases, comprehensively) identify relatives, friends, and coworkers of study participants. To
create the network dataset, we computerized information about the Offspring Cohort from these archives.

In the field of social network analysis, procedures for identifying social ties between individuals are
known as ‘name generators’ [39, 40]. The ascertainment of social ties in the FHS was both wide and
systematic. The FHS recorded complete information about all first-order relatives (parents, spouses,
siblings, children), whether alive or dead, and also about at least one ‘close friend’ (the set-up and ques-
tion asked were ‘please tell us the name of a close friend, to whom you are not related’ with whom
‘you are close enough that they would know where you are if we can’t find you’). This information was
collected at each of seven exams between 1971 and 2003. Detailed home address information was also
captured at each time point, and we computerized and geocoded it. Information about place of employ-
ment at each wave allowed us to identify ties to coworkers within the network (by seeing whether two
people worked at the same place at the same time). As noted below, all of a person’s contacts of the
foregoing types were recorded, whether those contacts were also themselves participants in one of the
FHS cohorts, and we computerized all this information.

Over the course of follow-up, the participants spread out across the USA, but they nevertheless con-
tinued to participate in the FHS. As a person’s family changed because of birth, death, marriage, or
divorce, and as their contacts changed because of residential moves, new places of employment, or new
friendships, this information was captured. For any given ‘ego’ (the person of interest) in the data, a
particular ‘alter’ (a person who has a relationship with the ego) may usually be placed in one mutually
exclusive category: spouse, sibling, parent, friend, and so on, although, depending on the analysis, we
can also allow multiple categories (for example, a coworker or neighbor might be a friend or sibling).
Further details about our data development process are available in our published work.

We used the Offspring Cohort as the source of 5124 egos to study. Any person to whom these subjects
were linked in any sort of relationship — in any of the FHS cohorts, including the Offspring Cohort
itself — can serve as alters. In total, there were 12,067 egos and alters across all cohorts of the FHS who
were connected at some point during 1971 to 2003.

We observed ties to individuals both inside and outside the sample. For example, an ego might be
connected to two siblings, one of whom was also a participant in the FHS and one of whom was not.
For those who were also participants, we could observe their attributes (for example, their health status)
longitudinally. Overall, as of 2009 and wave 7 of data collection, there were 53,228 observed familial
and social ties to the 5124 subjects observed at any time from 1971 to 2009, yielding an average of 10.4
ties per subject within the network (not including ties to residential neighbors). Fully 83% of subjects’
spouses were also in the FHS and 87% of subjects with siblings had at least one sibling in the FHS.
We also know the identity of spouses, siblings, and other contacts who are outside our sample; and
although they are not in the FHS, we have basic information about them (e.g., their residential location
and vital status).

Importantly, 45% of the 5124 subjects were connected via friendship to another person in the FHS
at some point, which allowed us to observe outcomes for both the naming friend and the named friend.
In total, there were 3542 such friendships for an average of 0.7 friendship ties per subject. For 39% of
the subjects, at least one coworker was captured in the network at some point. For 10% of the subjects,
an immediate (nonrelative) residential neighbor was also present (more expansive definitions, such as
living within 100 m, resulted in many more subjects having identifiable ‘neighbors’).

Our published papers and supplements contain detailed analyses of the possible biases in terms of
who among an ego’s alters are in and out of the network sample. In general, the pattern is one of limited
difference. Egos who name social contacts who are also participants in the FHS are not significantly dif-
ferent from those whose contacts are not in the FHS with respect to their weight [14], smoking behavior
[16], alcohol consumption [17], happiness [19], loneliness [20], or depression [21].

The types of alters that we identified for each ego, the number we identified, and the number we were
able to also include in our actual sample, are generally not far from data gathered on unrestricted, national
samples. For instance, work by others using the General Social Survey identifies the size of people’s
‘core discussion group’ as being about 4 � 6 people, including one’s spouse, siblings, friends, and so
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on [41, 42]. In our own work with a representative sample of 3232 Americans collected in conjunction
with a Gallup Organization, we find that, on average, in response to the commonly used name genera-
tors (‘Who do you spend free time with’ and ‘Who do you discuss important issues with’), Americans
identify an average of 4.4 ˙ 1.8 alters. Also, the average respondent lists 2.2 friends, 0.76 spouses,
0.28 siblings, 0.44 coworkers, and 0.30 neighbors who meet these name-generator criteria [43]. Finally,
although the FHS is almost exclusively white and tends to have somewhat more elevated education and
income than a representative group of Americans, it appears that subjects’ health-related attributes are
similar to broader populations of Americans.

The FHS-Net underwent ongoing development over the course of our work, and we are still upgrad-
ing it. For instance, coworker ties were not available in 2007, but were by 2008; an 8th wave of data
collection has recently become available; and we have extended the number of individuals about whom
we have geocoding and network data substantially.

3. Basic analyses and findings: clustering

One of the first types of computations we performed with most of the network phenomena we have stud-
ied involved assessing whether there was more ‘clustering’ of a trait of interest (that is, co-occurrence
of the trait in connected individuals) than might be expected because of chance alone.‡ To do this, we
implemented the following permutation test: we compared the observed clustering in the network to the
clustering in thousands of randomly generated networks in which we preserved the network topology
and the overall prevalence of the trait of interest, but in which we randomly shuffled the assignment of
the trait value to each node in the network [44, 45].

That is, for any given time interval (e.g., for a survey wave), the network topology is taken as static.
Then, nodes are randomly assigned to have the trait of interest, subject to the constraint that the preva-
lence of the trait is fixed. This is done repeatedly. The statistic that is then calculated, for each geodesic
distance, is the percentage increase in the probability (i.e., a risk ratio) that an ego has the trait of interest
given that an alter also has the trait, compared with the probability that an ego has the trait of interest
given that the alter does not. If clustering is occurring, then the probability that an alter has a trait of
interest (e.g., obesity) given that an ego has the trait should be higher in the observed network than in
the random networks.§ This procedure also allows us to generate the range of values that might occur
because of chance (with 95% probability), and we show these ranges as confidence intervals around
the observed value (specifically, we show the distribution of the observed value minus the permuted
values). This permutation test thus provides a way to test the null hypothesis that the observed value
minus the permuted value is equal to zero. If the range crosses zero, it means that the observed value
falls between the 2.5th and 97.5th percentile of the permuted values and we cannot reject the possibility
that the observed value could have arisen because of chance.¶

Thus, we can measure how far, in terms of geodesic distance (i.e., the number of steps taken through
the network), the correlation in traits between ego and alters reaches before it could plausibly be
explained as a chance occurrence. In many empirical cases, we found that this relationship extended
up to three degrees of separation. In other words, on average, there is a statistically significant and sub-
stantively meaningful relationship between, say, the body mass index (BMI, which is weight divided by
height squared, in units of kg/m2/ of an ego and the BMI of his or her friends (geodesic distance 1),
friends’ friends (geodesic distance 2), and even friends’ friends’ friends (geodesic distance 3).

‡This type of ‘clustering’ is not the same as another frequently described type of clustering in network science, namely, the
clustering coefficient, which captures the degree to which two people tend to share the same social connections.

§It is worth noting that, as executed, the null distribution is a completely random distribution of the pertinent traits on the
network. This allows us to reject the most simple of models. However, it does not demonstrate that the data are more clustered
than predicted based on, for example, homophily on age or on other attributes that one might want to hold in place while
examining phenomena of interest. Moreover, there could be still more complex assumptions, such as an assumption that per-
sons with a particular trait have higher degree. However, the possible specification of such null models is very broad. Also,
developing such tests is not a trivial exercise. In the supplements to some of our papers, we do evaluate whether clustering
in the networks is occurring above and beyond homophily on certain attributes, such as education, by using adjusted values
(we take the residual value from a regression that includes the atrribute and treat this as the outcome of interest).

¶An alternative way to present the same information is to show the permuted range around zero, and then test the null
hypothesis that the observed value falls inside the permuted range. See Ref. [46] for some recent, additional exposition of
such issues.
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At least one author has raised the concern that incomplete ascertainment of the network could be
driving these results, because we might not know that friends’ friends’ friends were, in actuality, directly
connected to an ego [47]. However, other data sets with more complete ascertainment of ties than the
FHS-Net still often show clustering to three degrees. Figure 1 demonstrates significant clustering up
to three degrees for various outcomes in the FHS-Net and also in other data sets, such as AddHealth,
Facebook, and even laboratory experiments [6]. Many of these data sets have virtually complete network
ascertainment, capturing all relevant ties. This suggests that censoring of out-degree is not the sole source
of the conclusions drawn from analyses of the FHS-Net. Moreover, we find similar effect sizes in terms
of obesity in both the FHS-Net and AddHealth [15]. Finally, as discussed below, work by other groups
with diverse datasets has confirmed our findings; and, in any case, as also discussed below, incomplete
sampling would not perforce inflate estimates of geodesic distance.

Figure 1. Results from network permutation tests, using five different observational and experimental datasets,
show significant associations up to between 2 and 4 degrees of separation for a variety of 15 different behaviors
and affective states. The Y axis represents the percentage increase in probability that an ego has the trait of inter-
est given that an alter has it, compared with the probability that an ego has the trait given that the alter does not
have it. Vertical black lines indicate 95% confidence intervals. For more details, see the related manuscripts cited
in the text. Colors indicate data source: yellow: Framingham Heart Study Social Network [14]; blue: AddHealth

[1]; green: lab experiment [6]; red: Facebook strong ties [2]; orange: Hadza hunter gatherers [5].
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Permutation tests like this, to test whether a set of observations can result from a chance process,
are widely used when the underlying distribution is unknown. There is a substantial literature on this
technique, starting with Fisher [48]; the technique has been applied to networks by other scholars [44],
and it is fairly widely used in network science research. At least one commentator has suggested that
this approach is generically limited [49]. We would certainly welcome a closed-form test with well-
understood asymptotic properties, but the network dependencies make such a test difficult to describe
analytically, and we invite suggestions regarding alternatives.

Now, as explicitly noted in all our papers, there are three explanations (other than chance) for cluster-
ing of individuals with the same traits within a social network: (1) subjects might choose to associate with
others exhibiting similar attributes (homophily) [50]; (2) subjects and their contacts might jointly expe-
rience unobserved contemporaneous exposures that cause their attributes to covary (omitted variables
or confounding because of shared context); and (3) subjects might be influenced by their contacts
(induction). However, this observation is nothing new.||

All observational studies seeking to estimate causal processes must cope with the fact that corre-
lations may result from selection effects or spurious associations instead of a true causal relationship.
Correlation is — of course — not causation. However, this does not mean that any observational evidence
is uninformative. The challenge is to disentangle these effects, to the extent possible, and to specify the
assumptions needed before correlative evidence can be taken as suggestive of causation. Distinguishing
interpersonal induction from homophily is easier when (subject to certain statistical assumptions) longi-
tudinal information both about people’s ties and about their attributes (i.e, obesity, smoking) is available
[51, 52], or when certain other techniques (such as the directional test described below) are used. Of
course, actual experimental data helps a lot here too, as in [3, 6, 7, 53, 54].

To be clear, what the observed values and confidence intervals from the permutation test described
above establish is this: if we do not know anything about a subject in a network except one fact — that
his friend’s friend’s friend has some attribute — then we can do better than chance at predicting whether
or not the subject has the same value of the attribute. Of course, it is unclear whether this simple, uncon-
trolled association results from influence (spread), homophily, contextual factors, or some combination
of these, and this is why further analytic approaches are needed.

To illustrate the baseline clustering that exists in the populations we study, we usually present at
least one image of the network that shows each individual’s characteristics (behavior, gender, and so
on) and the social relationships they have. In most cases with large datasets like ours, it is difficult to
show the full network because it would be too intricate, so we usually show only a part of the net-
work. Two illustrative examples are in Figure 2. For example, we either carefully select which kinds
of social relationships to include (as we did in our image of obesity) or we sample subjects (as we
did in our image of happiness), and we show a fully connected ‘component’ (every subject has a
relationship with at least one other subject in the group). We choose the largest component, which
allows inspection of individual relationships while still conveying the complexity of the overall data.
We have used the same techniques to choose subjects to include in movies of the network that show
how it evolves and changes over time, prepared with SONIA (examples of such videos are available at
our websites) [55].

We sometimes employ a technique we call ‘geodesic smoothing’ to make it easier to see large-scale
structure in the network. In this technique, we color each node according to the average value of a
characteristic (e.g., happiness) for a person and all of the person’s direct social contacts. This process
is analogous to smoothing algorithms like LOESS that are used to show trends in representations of
noisy data. Geodesic smoothing tends to make it easier to visualize clusters with distinct characteristics,

||In fact, these issues were identified in the 19th century, when the study of the widowhood effect was first engaged (the wid-
owhood effect is a simple, dyadic, interpersonal health effect, and it is quite likely the earliest example of social network
health effects to receive scholarly attention, as discussed in Connected). Moreover, it is worth noting that all three of these
phenomena are typically present in most social processes. To be clear, it is not necessary for scholars to set up a false
dichotomy — namely, that there is either homophily or influence in some process. Both are typically always present (though
there are obvious exceptions; for example, similarity in race between friends is not due to influence whereby one person’s
race causes a change in the other’s). Also, different analysts might be focused on different phenomena, depending on their
interests. Some might be interested in exogenous factors that cause people to form ties or share an attribute; others might
be interested in how sharing an attribute causes people to form a connection; and still others will be interested in inter-
personal influence. Depending on the analyst’s interest, the other phenomena will be nuisances that must be dealt with
in estimation.
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Figure 2. Network visualizations showing clustering in obesity (top) and happiness (bottom) in the Framingham
Heart Study Social Network in 2000. The top graph shows the largest connected component of friends, spouses,
and siblings for whom information about body mass was available. Node border indicates gender (redDfemale
subject, blueDmale subject), node color indicates obesity (yellowDBMI>30), node size is proportional to BMI,
and tie colors indicate relationship (purpleDfriend or spouse, orangeDfamily). The bottom graph shows a portion
of the largest component of friends, spouses, and siblings for whom information about happiness was available.
Each node represents a subject and its shape denotes gender (circles are female, squares are male). Lines between
nodes indicate relationship (black for siblings, red for friends and spouses). Node color denotes the mean hap-
piness of the ego and all directly connected (distance 1) alters, with blue shades indicating the least happy, and
yellow shades indicating the most happy (shades of green are intermediate). The bottom image involves both

‘geodesic smoothing’ and sampling, as noted in the text.

but because it generates additional correlation between the nodes in the network, we never use these
values in our simulations or our statistical tests. They are generated only for the purpose of visualization.
In all cases, these techniques are explicitly described in our papers. Similar techniques are described
elsewhere [36, 56].

Some people unfamiliar with network visualizations have formed the impression that they are entirely
arbitrary; but they are not. The pictures are visual heuristics, and it is true that their appearance can vary
according to the algorithms used to render the image. However, the topology of the network, which is
a hyperdimensional object, is invariant to how it is rendered in two-dimensional space — just like a
three-dimensional building, which can be photographed from many angles, remains the same regardless
of how it is captured. Conclusions and analyses do not rely solely on the visual appearance of a network.
Also, there are highly developed techniques of diverse sorts for optimally’ rendering a network in two
dimensions, which we exploit [57, 58].

In Connected, we call the empirical regularity that clusters of behaviors or attributes extend to three
degrees of separation the ‘three degrees of influence rule’ [27]. We realize that this telegraphic phrase
can be seen as problematic by some. For instance, so far, the evidence offered above pertains to cluster-
ing, not influence; moreover, the use of the word ‘rule’ may imply a degree of determinism that is too
strong. However, similar to the widespread use of the expression ‘six degrees of separation,’ this turn of
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phrase is meant to be evocative, not definitive. For instance, even the widely discussed ‘six degrees of
separation’ is not precisely six, neither in Milgram’s classic paper [59] nor Watts and colleagues’ clever,
well known email experiment [60].

Our objective — insofar as influence is concerned — is to make the point that (1) there is evidence
that diverse phenomena spread beyond one degree, and (2) there is evidence that the association fades
within a few degrees in what seems like a systematic way across phenomena and datasets. Incidentally,
work by other investigators on the spread of ideas (such as where to find a good piano teacher or what
information inventors are aware of) similarly seems to identify an important boundary at three degrees
at which meaningful effects are no longer detectable [61, 62]. Moreover, recent work using large twitter
datasets also confirm the clustering of happiness (as measured using text processing) to three degrees
of separation [63]. Finally, the boundary at three degrees does not need to be sharp, nor would it be
expected to be; rather, as discussed below, this empirical regularity probably reflects the point at which
effects are simply no longer statistically discernable even with reasonably large datasets.

Regarding the role that interpersonal influence plays in clustering to three degrees of separation, we
frequently make the point that different things spread in different ways and to different extents. Hence,
we also find that the actual number of degrees of separation at which any clustering is (statistically)
detectable, and at which any spread is therefore likely, varies depending on the behavior or the observa-
tional or experimental context. For instance, Figure 1 shows that, using diverse data sets, we have found
evidence of clustering (and hence, possibly, of spread) to two degrees of separation (divorce) [23] and
four degrees (drug use, sleep) [22] Moreover, we have found evidence of spreading in the laboratory
as well; in an experimental study of cooperation in public goods games (with full ascertainment of ties
and no threat from homophily or confounding), we found that behavior spreads to three degrees [6].
Whether three ends up being the modal pattern remains to be seen. However, we do not think that the
value itself is the issue. It is the fact that it is greater than one that really interests us. Moreover, and on
the other hand, it is not too great either: if a given person’s actions could indeed spread to six degrees
of separation, what we know about the connectedness of people on the planet would suggest a kind of
global influence of a single individual that seems very implausible.**

In most of our papers, we use regression methods to discern whether there is evidence for person-
to-person spread, and these methods often suggest that things do not spread. For example, in our obesity
paper, we find evidence of correlation between friends but not between neighbors (see Figure 4 here).
Moreover, some things like health screening behavior [18] and sexual orientation [22], do not appear to
spread across any observed social ties in our analyses. This is noteworthy because we have never claimed
that everything spreads, and the same methods that have been used to develop evidence of spread in some
phenomena fail to show spread in other phenomena.

Not only is it the case that not everything spreads, but it is also the case that not everything spreads
by the same mechanism. For example, weight gain may spread via imitation of a specific eating behav-
ior (e.g., eating fried foods), imitation of a specific exercise behavior (e.g., jogging), or adoption of a
social norm that yields changes in overall behavior. If it is the norm that is transmitted, then other spe-
cific behaviors may not be correlated: a person who starts jogging may influence his friend to take up
swimming or reduce eating, and both individuals may lose weight as a result.

Interestingly, the permutation results raise the possibility that the spread of traits may skip over a per-
son in a given chain. If the only way something like obesity spreads is via realization of a change at each
step on the path between two individuals, and if there are only three individuals connected by two social
ties (i.e., if there is only one path — we discuss this assumption in the next section), then the probability
that a person affects his friend’s friend should be the square of the probability that he affects his friend.
If Joe has a 20% chance of influencing John, and John has a 20% chance of influencing Mary, then
Joe should have a 4% chance of influencing Mary (if we assume that the probabilities are independent).
However, that is not what we find. The associations in traits do not decay exponentially. As a conse-
quence, it may be the case that some people can act as ‘carriers’ who transmit a trait without exhibiting
it themselves (similar to certain pathogens). For example, a person whose friend becomes obese may
become more accepting of weight gain, and as a consequence, may stop encouraging other friends to
lose weight even if his own weight does not change. Such latent transmission is additive to the manifest

**Connectivity (either at six degrees or any other geodesic distance) sets an upper bound on influence. Moreover, it is worth
emphasizing that three degrees (plus or minus one degree) is actually a lot smaller than six, because the number of paths
grows exponentially (or even faster) as a function of geodesic distance.
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transmission. This is one possible reason, among others, for why the effects observed are not simply or
exactly multiplicative.

There are at least two explanations for the apparent limit at roughly three degrees (we discuss others
in our book, Connected). The first and simplest is decay, or a decline in size of meaningful or detectable
effects. Like waves spreading out from a stone dropped into a still pond, the influence we have on oth-
ers may eventually just peter out. In social networks, we can think of this as a kind of social ‘friction.’
Of course, ascertaining decay depends in some sense on the sample size and the effect size. With big
samples and/or big effects (and with complete network ascertainment), any clustering that extends to
further distances — even if unimportant — could be detected. In short, the empirical regularity of three
degrees of influence may simply reflect a decay in the size of an effect to the point where the effect is no
longer detectable.

Second, influence may decline because of an unavoidable evolution in the network that makes the
links beyond three degrees unstable. Ties in networks do not last forever. Friends stop being friends.
Neighbors move. Spouses divorce. People die. The only way to lose a direct connection to someone you
know (geodesic distance 1) is if the tie directly between you disappears. However, for a person three
degrees removed from you along a (solitary) simple chain, any of three ties could be cut and you would
lose the connection. Hence, on average, we may not have stable ties to people at four degrees of separa-
tion given the constant turnover in nodes and ties all along the way. Consequently, we might not influence
nor be influenced by people at four degrees and beyond. The extent to which such an effect holds empir-
ically, however, will also depend on the nature and number of redundant paths between people at various
degrees of separation, as described below.

4. Partial observation of FHS-Net ties

Some commentators have expressed concern that our findings related to clustering to three degrees of
separation might relate to the nature of sampling in the FHS-Net. In particular, subjects only name a lim-
ited number of friends (generally only one person at any given time, a person who can be thought of as the
subject’s one ‘best friend’), which leaves open the possibility of unobserved ‘backdoor’ paths between
nodes. The concern is that if nodes or edges are not observed, then two individuals who are actually
one or two degrees apart might be wrongly supposed to be three (or more) degrees apart. Stated another
way, the claim that a person’s traits are related to the same traits of a person three degrees removed from
them might be an overstatement because a partially observed network might miss pathways that would
otherwise show these individuals to actually be only one or two degrees removed.

This is a sensible concern. However, the intuition that partial observation will necessarily lead to over-
estimation of the length of the path over which influence is transmitted is incorrect. First, it is important
to distinguish between three types of paths: (1) the actual, inherently unobservable, stochastic path taken
by the germ, norm, or behavior that spreads; (2) the shortest path, and hence the most likely single actual
path, between the source and target nodes in the fully observed network; and (3) the shortest path(s)
between the source and target nodes in a partially observed network. This is illustrated in Figure 3.
Although the actual paths cannot be observed in practice, one can nevertheless explore the relationships
between these three path lengths using simulations.

Extensive exploration of a network of 3.9 million cell phone users and the ties between them, as cap-
tured by their call records, reveals that, counter-intuitively, the shortest paths in a sampled (observed)
network may be shorter than the actual paths [11]. In other words, when specific paths of varying lengths
taken by a diffusion process exist between pairs of individuals within a network, and when these paths
are sampled, it turns out that the sampled path lengths can be shorter or longer than the actual paths. The
specific outcome depends on the extent of sampling of nodes and ties, but the actual paths are typically
roughly 10% � 30% shorter than the shortest paths in the partially observed networks for many sam-
pling frames. Consequently, the intuition that partial observation will necessarily lead to an inflation in
measured path length (and hence possibly to a mismeasurement of clustering) is incorrect.

The reason for this is as follows. Imagine that the shortest path in the nonsampled (fully observed)
network connecting the source and the target nodes has a length of, say, three steps. We would take this
as the most probable path of spread of some phenomenon. Now imagine that, because of the sampling
process, part of this path vanishes (i.e., we can no longer observe it). Following the same logic that the
most probable infection path between the source and the target nodes is the shortest path connecting
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Figure 3. Schematic of a network infection and sampling process. (A) The full (unobserved) network with the
initially infected node colored green (upper left corner of the network). (B) The shortest path from the source
node to the target node colored red (lower right corner of the network) corresponds to the most likely infection
path in the fully observed network and has a length of 2. (C) The (unobservable) spreading process unfolds in
the (unobserved) network. The actual path taken by the infection is shown with wavy edges. The target node is
reached in three steps giving a length of 3. (D) The partially observed network has some nodes and links missing
depending on the sampling. The shortest path from source to target has a length of 3 (shown in the dotted lines),
corresponding to the length of the most likely path taken by the infection. In this case, using the shortest path
length in the fully observed network to estimate the actual path length would result in an underestimate of path

length, whereas using the path in the partially observed network correctly yields a path length of 3.

them, we now find the shortest path in the sampled (partially observed) network between the source and
the target nodes. This cannot be shorter than three, but it may be equal to three if there were multiple
paths of that length, and it may also be longer than three.

Suppose that the shortest observed path has a length of four. Although the shortest path is the single
most likely path between the two nodes, it is not the only path between them. Depending on the structure
of the network, there may be multiple paths of length four, and although each of them taken separately
is less likely to be observed than the path of length three, the overall probability that the transmission
happens through four steps versus three steps depends on the number of paths of these lengths. In real
human networks, it is frequently the case that once we let a spreading front proceed a few steps from
the source, the length of the actual path between the source and target nodes is higher than the short-
est length. If that were the case in our example, detecting the shortest path of length three in the fully
observed network would lead to an underestimate of the actual path. Because partial observation may
inflate our estimate of the shortest paths, it may hence, counter-intuitively, reduce the net bias of the
estimated length of the actual path.

Furthermore, equally important with respect to the concern regarding partial observation, we find sim-
ilar clustering, to three degrees of separation, in data sets where networks ties were almost fully observed,
as shown in Figure 1. For example, in the National Longitudinal Study of Adolescent Health, subjects
were asked to name up to 10 friends, and 90% of them named fewer than the maximum. Also, in a paper
on the spread of sleep behavior and drug use in this particular network, we actually find clustering up to
four degrees of separation [22].

5. Basic analysis and findings: longitudinal regression models

The topological permutation tests described above test only simple null hypotheses of no association
(albeit in a way that permits more than dyadic ties). To explore the possible reasons for the clustering
described above, we studied more closely the person-to-person relationship using a regression frame-
work. We specified longitudinal regression models with a basic form wherein the ego’s status (e.g.,
obese or not) at time t C 1, denoted yego

tC1 (with distribution Y ego
tC1/, was a function of various time-

invariant attributes of egos, such as gender and education (captured by the k variables denoted by x on
the right), their status at time t

�
y

ego
t

�
, and, most pertinently, the status of their alters at times t

�
yalter
t

�
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and t C 1
�
yalter
tC1

�
.†† This model could be generalized to allow for time-varying control variables of the

ego, and to allow for attributes of the alter to be included as well.
We used generalized estimating equations (GEE) to account for multiple observations of the same ego

across waves and across ego-alter pairings [64]. Also, we only included observations in which ego and
alter had a relationship at both time t and time tC1— on the grounds that people who are disconnected
from each other should not influence each other that much, if at all (though this is a constraint that
can — informatively — be relaxed) [65].‡‡ In general, interpersonal ties within the FHS-Net were very
stable [9].

Our basic model is thus

g
�
E
�
Y

ego
tC1

��
D ˛C ˇ1y

ego
t C ˇ2y

alter
tC1C ˇ3y

alter
t C

kX

iD1

�ixi (1)

where g./ is a link function determined by the form of the dependent variable. For continuous data,
g.a/D a and for dichotomous data, g.a/D log.a=.1�a/). In most of our articles, we specify both link
functions, for instance, studying dichotomous obesity and continuous BMI, or studying dichotomous
heavy smoking and continuous measures of how many cigarettes per day a person smokes.

Because we are using GEE, we also estimate the covariance structure of correlated observations for
each ego. The covariance matrix of Y ego is modeled by V Dego�A

1=2
ego RA

1=2
ego where � is a scaling con-

stant, A is a diagonal matrix of scaling functions, and R is the working correlation matrix. We assumed
an independence working correlation structure for the clustered errors, which has been shown to yield
asymptotically unbiased and consistent, although possibly inefficient, parameter estimates (the ˇ and �
terms) even when the correlation structure is misspecified [66].

To be clear, our basic model assumes that there is no correlation of ego’s weight at t C 1 with alter’s
weight at t C 1 except via influence, and no other effects on ego’s weight at t C 1 except via the effect
of ego’s past weight at time t and the effect of the measured covariates, that is, conditional on no unob-
served confounding. These are common assumptions in regression models of observational data, of
course. However, a special consideration here is that this assumption implies that there is no unobserved
homophily beyond that on the observable variables. Moreover, pertinently, these models are specified
for each alter type independently (unless comparisons between types of alters are sought, in which case
one could, for instance, specify a ‘sibling’ model and index the kind of siblings at issue).

The time-lagged dependent variable (lagged to the prior exam) typically eliminates serial correla-
tion in the errors when there are more than two time periods observed in the case of AR(1) models in
which the Markov assumption holds. We test for significant serial correlation in the error terms using a
Lagrange multiplier test [67], and, in all cases we have studied, the correlation ceases to be significant
with the addition of a single lagged dependent variable. Inclusion of this variable also helps control for
ego’s genetic endowment or any intrinsic, stable predilection to evince a particular trait.

The lagged independent variable for an alter’s trait helps account for homophily (especially with
respect to the observed trait that is the object of inquiry) because it makes ego’s current state uncon-
ditional on the state the alter was in when the ego and alter formed a connection [51] Conditioning on
the lagged alter’s trait, however, would not comprehensively deal with homophily on unobserved traits
that are both time-varying and also associated with the outcome of interest (for instance, if people who
unobservably knew they wanted to lose weight preferentially formed ties with other similar people). This
term also does not address the issue of a shared context (confounding).

Note also that our base model can be regarded as an equation expressing the effect of alter’s base-
line weight and alter’s change in weight. The generative interpretation is that the control for alter’s and
ego’s baseline weight controls for homophily on weight, and the other terms address the impact of a
change in weight. Thus, our model is closely related to auto-distributed lag and error correction mod-
els that are frequently used in time-series econometrics to evaluate the extent to which two series that
tend towards an equilibrium coupling covary [68]. In particular, one can think of the coefficient on the

††These models are similar to models described by Valente [51].
‡‡Here, this kind of ‘disconnection’ is different than another kind: people can be disconnected from each other (in the sense

that there is no path at all between them through the network) or they can be disconnected in that they have no direct con-
nection (and have only an indirect connection — for example, they are a friend’s friend). In the latter case, as argued here,
they can affect each other via a sequence of dyadic ties.
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contemporaneous alter characteristic as a measure of the ‘short run’ or one-period effect of the indepen-
dent variable on the dependent variable (in this case, of the alter on the ego) [69] According to this inter-
pretation, an alter may experience a shock to some attribute (they may gain 10 pounds, for example) and
the coefficient on alter weight would then tell us the size of the first change back towards the equilibrium
coupling of ego and alter weight. Figure 4 illustrates some of the results we have published using such
longitudinal models.

Importantly, we also specify models with further lags in the alter variables in most of our work, eval-
uating how the change in a trait in an alter between t � 1 and t is associated with the change in a trait in
an ego between t and t C 1. Although these models are underpowered compared with the approach we
describe above, they typically suggest comparable positive effect sizes. As noted by VanderWeele et al.
[70], this approach effectively responds to many of the concerns articulated by one critic [49], including
any concerns about model consistency or test validity.

We have tried to be clear about other assumptions underlying our technical specifications both here
and in our prior published work. For example, we do not believe it is necessary to specify a single, joint
model for all the effects present. Notably, in our exploration of various datasets, we sometimes interact
key variables with the relationship type, but these models have never suggested that we would arrive at
different conclusions by modeling multiple relationship types at the same time in a single dyadic model.
Moreover, whether particular assumptions are required for model estimates to be taken as identifiable
will often depend on the eye of the beholder — for instance, whether it is plausible to assume that there is
no meaningful homophily on unmeasured traits that also affect the trait of interest. Even given such con-
straints and restrictions, however, we believe that the results of such modeling exercises are of interest;
moreover, they give other scholars an opportunity to explore how the estimates change when variables
are added to the model or model assumptions are relaxed.

We also note that there are certainly other valuable ways of analyzing such data, albeit with other
strengths and limitations (such as constraints on network size and on parameter interpretation), includ-
ing the so-called ‘actor-oriented’ models [71, 72]; see Ref. [73, 74] for illustrative applications. These
models also involve their own assumptions, of course, and these models do not escape some of the
general criticisms of the use of observational data, despite any claims to the contrary.§§ In our case, we
did not use this approach, ably described by Snijders and colleagues, because our sample sizes were
bigger than the models could accommodate. Also, of course, there is a long-standing appreciation of the
difficulty of causal inference of peer effects, for which an early and lucid articulation was provided by
Manski [76].

Our basic modeling framework has attracted some specific criticisms about the extent to which
homophily and confounding can indeed be purged from the causal estimates [15], about whether this
model is capable of offering any insight into the effects at hand at all [77], or about the nature of various
biases that might by introduced by changes in network topology across time [78].¶¶ In most cases, we
discussed these potential limitations in our original papers. We have also previously published two dis-
cussions of some of these concerns [15, 79], and we describe some of the other, newer issues below. We
recognize the valuable contribution that these critiques have made to advancing the field of estimating
network effects using observational data.

However, it is also fair to say that these critiques in some cases simply restate the generic claim that
it is difficult (some say impossible) to extract causal inferences from observational data at all. However,
here we do not engage this essentially nihilistic position: it is not specific to our own work or even to

§§For example, Lewis et al. [75] claim that SIENA models suffer less from the threats to causal inference posed by observa-
tional data. However, SIENA is susceptible to contextual effects and indirect homophily just like any other statistical model
of observational data. Moreover, their study has a number of other noteworthy limitations that subvert the plausibility of its
conclusions, including, (1) it treats ‘weak tie’ Facebook friends the same as the ‘strong tie’ real friends among a person’s
Facebook friends; it should have been expected that tenuous ties to acquaintances would not evince much influence; (2) it
starts with 1600 people, but only analyzes 200 for whom they have complete data, and the analyses do not account well
for this missingness; (3) perhaps because they have only 200 cases, their confidence intervals are wide, though the point
estimates for interpersonal influence are actually typically large; (4) it reports that many of their models did not converge
(a problem that plagues SIENA); (5) there is no evidence that the models they report converged (they do not report any
convergence diagnostics such as the Raftery–Lewis test). In contrast, a study of ours involving a randomized controlled trial
of 61,000,000 people in Facebook shows significant levels of interpersonal influence online [3].

¶¶We note, however, that the levels of change in friendship seen in the FHS-Net (as documented in [9]) are sufficiently modest
that they would not be consistent with much bias of the kind suggested by Noel and Nyhan in any case (even judging from the
estimates in the Noel and Nyhan paper).
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Figure 4. Illustrative results from longitudinal regression models for various relationship types and outcomes.
Horizontal bars show 95% confidence intervals derived from GEE models by simulating the first difference in
alter contemporaneous outcome (changing from 0 to 1) using 1000 randomly drawn sets of estimates from the

coefficient covariance matrix and assuming all other variables were held at their means.

the issue of causal inference using network data, and so it is well beyond our present scope.|||| Another
paper, among other things, basically asserts that any modeling of observational data is suspect because
such modeling must rely on assumptions [49]; not only do we reject this nihilistic position as well, but
the claims of this author have either been retracted by the author (in an erratum published after the fact)
or substantially refuted by others [70]. In short, we believe that the key issue is the extent to which one
can be explicit about one’s assumptions, and the reasonableness of those assumptions, in work analyzing
social networks as in any other statistical work.

One paper that attempted to refute the regression approach embodied in Equation (1) claimed to doc-
ument the spread in adolescents of phenomena which were assumed to be intrinsically incapable of
spread, such as acne, headaches, and height [81]. Interestingly, and in accord with this assumption, the
authors indeed find no effect for the first two outcomes (acne and headaches) at conventional levels of
statistical significance (p D 0:05). However, they stretch the threshold to p D 0:10 so they can make
the claim that these outcomes do spread, even in a dataset that is large (over 5000 people). Then they
make their argument: because these outcomes could not possibly spread, the regression framework must
necessarily somehow be intrinsically wrong.

It is worth noting, however, that, in addition to not being statistically significant at conventional levels,
the effect sizes for these phenomena were also small, substantially smaller than the effects observed, for
example, for obesity and smoking in the networks we have studied, including both the FHS-Net and
AddHealth data. Indeed, these effects (for acne, headaches, and height) are not robust to sensitivity anal-
yses for the role of homophily or shared context, as shown by formal sensitivity analyses conducted by
others [82].

Moreover, it is in fact not inconceivable that such small contagion effects for acne, headaches,
and even height (in adolescents) might indeed exist First, it must be remembered that, unlike the

||||We are of the opinion, however, that the world is knowable and that careful observation of the world has a very important
role to play in knowing it, and even that it is indeed possible to make causal inferences from observational data. One of
our favorite illustrations of this is that we know that jumping out of a plane is deadly, even though there has never been a
randomized trial of this ‘treatment.’ One tongue-in-cheek paper that attempted to do a meta-analysis of use concluded: ‘As
with many interventions intended to prevent ill health, the effectiveness of parachutes has not been subjected to rigorous
evaluation by using randomised controlled trials. Advocates of evidence based medicine have criticised the adoption of inter-
ventions evaluated by using only observational data. We think that everyone might benefit if the most radical protagonists of
evidence based medicine organised and participated in a double blind, randomised, placebo controlled, crossover trial of the
parachute’ [80].
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FHS-Net, the dataset used in these analyses (AddHealth) captures only self-reported outcomes. Hence,
if an ego has a friend who complains of headaches, the ego might find it easier to complain of headaches
(either because he has been given license to, or because he finds it normative). Conversely, perhaps the
ego’s friend has discovered an effective means to treat headaches and has communicated it to the ego,
and so both ego and alter might take medication for headaches, thus explaining the diffusion of the pres-
ence or absence of headaches [83]. As for acne, whether an ego deems the few pimples on her face to be
worthy of report as ‘acne’ may be influenced by her friend’s perceptions of her problem or her friend’s
appearance or what her friend has told her that she should think about these pimples. Or, the friend might
encourage the ego (or show her how) to treat the acne, such that the ego’s acne status does indeed come
to be influenced by the friend’s.

At first pass, it would seem that height should not spread. Yet, in adolescents, it is not inconceiv-
able that it might, and environmental factors explain a significant portion of the variance in height
(around 20%) prior to adulthood [84]. To the extent that adolescent growth is, as is well known in
the medical literature, influenced by exercise, nutrition, and smoking, it is entirely possible that an ado-
lescent’s height could depend (to some degree) on the height of his friends, to the extent that they share
smoking or exercise habits, for example. Moreover, adolescents with tall friends could (and perhaps
would) again report that they are taller than they really are, or that they were gaining height faster than
they really were — because, unlike the FHS-Net where height was measured by nurses, in AddHealth,
it was self-reported. Hence, overall, like the spread of obesity, it is not literally the obesity or height that
spreads, but norms and behaviors (e.g., about exercise, nutrition, smoking) that do. These could induce
a correlation in height gain between friends that is not induced between strangers.

Thus, from our perspective, even if the authors had shown that all three phenomena (acne, headaches,
and height) spread among growing adolescents at conventional levels of significance, this would not
have been a fatal blow to the statistical methods that they are criticizing, let alone to the claim that health
phenomena can spread.*** And, again our own work with various outcomes in this modeling framework
has often yielded results that show that phenomena do not spread.

Moreover, a recent paper by VanderWeele is very informative [82]. He applied sensitivity analysis
techniques [85] to several of our papers, and to some analyses conducted by others. In particular, he esti-
mated how large the effect of unobserved factors would have to be to subvert confidence in the results.
He concluded that (subject to certain assumptions) ‘contagion effects for obesity and smoking cessation
are reasonably robust to possible latent homophily or environmental confounding; those for happiness
and loneliness are somewhat less so. Supposed effects for height, acne, and headaches are all easily
explained away by latent homophily and confounding.’

This does not mean, of course, that the modeling framework of Equation (1) is in fact free of any bias
or is perfectly able to capture causal effects. This is one of the reasons we described exactly what mod-
els we implemented both here and in our published papers and their supplements, as well as additional
innovations that we attempted within this framework, such as a novel identification strategy exploiting
tie direction.

6. An identification strategy involving directional ties

In our first paper, we proposed an identification strategy that we thought could provide additional evi-
dence regarding the causal nature of peer effects. Just as researchers use the directional nature of time to
establish a sequence that is consistent with a causal ordering, we tried to use the directional nature of ties
to do the same. Specifically, we suggested that differences in effects according to the asymmetric nature
of social ties could shed light on the possibility of confounding because of extraneous factors [14].

A key element of sociocentric network studies involving friends is that all subjects in the specified
population identify their social contacts. As a result, we have two pieces of information about every
friendship: (1) whether the ego nominates the alter as a friend, and (2) whether the alter nominates the

***The further claim by these authors that adding additional controls for environmental factors attenuates the effect is also lim-
ited, and we examined this possibility in the FHS-Net in a variety of ways. It is important to note that friends in AddHealth
are all physically proximate (they are in the same school), whereas this is not necessarily the case in the FHS-Net. If our
estimates are biased because they capture community-level correlation, one implication is that the increased geographic
distance between friends will reduce the effect size (because distant social contacts are not contemporaneously affected by
community-level variables). However, as noted below, we find that the relationship does not decay with physical distance,
even up to hundreds of miles away.
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ego as a friend. Because these friendship identifications (unlike, say, spouse or sibling ties) are direc-
tional, we can study three different kinds: an ‘ego-perceived friend’ wherein ego nominates alter but
not vice versa; an ‘alter-perceived friend’ wherein alter nominates ego but not vice versa; and a ‘mutual
friend’ in which the nomination is reciprocal. We theorized that the social influence that an alter has
on an ego would be affected by the type of friendship we observe, with the strongest effects occurring
between mutual friends, followed by ego-perceived friends, followed by alter-perceived friends.††† For
alter-perceived friends, we might even expect no effect at all, because ego might not be aware of alter, let
alone alter’s actions. The model in Equation (1) can be specified for different sorts of ego–alter pairings
including different ‘kinds’ of friends. Of course, in the case of friendship, these models can be specified
for friends in general and an indicator can be added to index the kind of friendship.

Figure 4 shows that this pattern of results generally exists for a wide range of behaviors and affective
states — in two different data sets. Evidence regarding the directional nature of the friendship effects
is important because it suggests that covariance in traits between friends is unlikely to be the result of
unobserved contemporaneous exposures experienced by the two persons in a friendship. If it were, there
should be an equally strong association, regardless of the directionality of friendship nomination. We
also proposed a similar argument, using just triads of people (specifically, men paired with their wives
and ex-wives) in another paper [65]. Also, in another recent paper, we lay a foundation that could allow
the use of an asymmetry in ties that is continuous rather than dichotomous [10].

One commentator has asserted that we have somehow misrepresented these results [49]. In most
cases, the confidence intervals for the three types of friendships overlap; in our papers, we have
noted the ordering of the effects and reported their confidence intervals to evaluate the directionality
pattern. All explicit claims of significance that address pairwise differences in point estimates have
contained confidence intervals or p-values for the comparison (derived from a single model with an
interaction term).

Moreover, it is important to note that answering the question about whether or not the pattern (mutual
tie > ego-perceived tie > alter-perceived tie) is true (i.e., can be stated with confidence) depends on the
null hypothesis. For example, what is the probability that all three of the different kinds of relationships
are drawn from the same distribution? How likely is the order of the effects to be as specified? Such
considerations would give a different result than a test of whether or not two of them were drawn from
the same distribution. And what is the likelihood that we would find this ordering over and over again,
including in different network data sets (as shown in Figure 4)?

The strengths and limitations of this network directionality test have since been explored by computer
scientists [87], econometricians [88], statisticians [77], and others [78]. Possibly, there are papers from
before 2007 exploiting the directionality of ties as well, of which we are unaware. One paper in partic-
ular identifies two further, important assumptions that may be necessary or implicit in the directional
test [77]. Specifically, it argues that if two conditions are met, the test becomes less reliable as a way
to exclude confounding. These two conditions are (1) the influencers in a population differ substantially
and systematically in unobserved attributes (X/ from the influenced in a population, and also that (2) the
different neighborhoods of X have substantially different local relationships to Y (the outcome). How
likely such circumstances are to occur in real social networks is unclear, and how big any resulting biases
might be is also unclear; again, like so many discussions of statistical methods, the utility of the method
critically hinges on the question of what assumptions are ‘reasonable.’ We believe that the foregoing
circumstances do not realistically hold to a large extent, at least in general, given what is known about
social systems.

Finally, a recent paper by Iwashyna et al. [89] uses agent-based models to generate network data with
varying processes of friend selection and influence. The authors then perform a GEE regression analysis
like the one we have used to measure its sensitivity and specificity in detecting influence and homophily
in data where the underlying processes are known. They show that the model works well to detect influ-
ence, with a very high sensitivity and high specificity, but that it does not work well to detect homophily.
A particularly important feature of this work is that it addresses the ‘latent homophily’ argument made by
Shalizi and Thomas who argue that covariates that affect both homophily and the outcome can bias the
model (although Shalizi and Thomas do not quantify this bias) [77]. Iwashyna et al. actually test a spec-
ification where people make friends based on an unobservable characteristic related to the outcome, and

†††A paper by Mercken et al. [86] highlights the socially more important role of reciprocated friendships compared with
unreciprocated friendships but does not pursue this difference as an identification strategy.
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yet they still find that the GEE model for inference yields high sensitivity and specificity for detecting
influence. Thus, although there may be some theoretical objections based on unknown amounts of bias
that could be present in our results, applied research is generally pointing to the utility of the approach
in generating informative estimates of the possible interpersonal influence present.

7. Using geographic information to address certain types of confounding

Another important advantage of the FHS-Net is that, in addition to the social network, we also have
information about place of residence (including as it changes across time). This means that we can cal-
culate not only social distance, but also geographic distance, between any two people. Also, because
participants in the FHS-Net have spread out over the country, there is substantial variation in this mea-
sure; ordered by distance between friends’ residences, the last sextile of the distribution averages nearly
500 miles. This is important because it helps us to discern whether or not changes in the local physical
or social context might explain the correlation in outcomes between two people who have a relationship.
For example, the opening of a popular fast food restaurant might cause many people in an area to gain
weight, and this contextual effect might cause us to falsely infer that peers are influencing one another.‡‡‡

Instead, we found in the obesity paper and in other follow-up studies of health behavior (smoking,
drinking) that distance played no discernable role in the correlation in outcomes. An interaction term
between geographic distance and alter’s outcome at time t C 1 yields a coefficient that is near 0 and
insignificant. In other words, a friend who lives hundreds of miles away appears to have a similar effect
as a friend who lives next door. Social distance appears to matter much more than physical distance.
Because these models, as before, condition on the lagged trait value for the egos and the alters, homophily
on the trait of interest is also an unlikely explanation.

On the other hand, when we turned to studies of affective states (happiness, loneliness, and depression)
we found a different result. Associations were only positive for friends and siblings who lived nearby
(within a few miles). One interpretation of this result is that affective states require physical proximity to
spread, and this would be consistent with the psychological literature on the spread of emotions via face-
to-face contact [27]. However, it is also possible that these results are being driven by contextual effects:
people in a given neighborhood, exposed to the same environment, might tend to react by changing
moods in the same direction to the same stimuli. To evaluate this possibility, we compared the associ-
ations in outcomes for next-door neighbors to those for same-block neighbors (people who live within
100 m of one another). Although we had many more observations at the block level, the association in
outcomes was significant for the next-door neighbors and not for others. Thus, although it is still possi-
ble that contextual effects explain some of the association, they would need to be ‘micro-environmental’
contextual effects that would not affect everyone on the same block.

8. Availability of data and code

Some commentators have asked about data availability. We have developed and placed into the public
domain much network data and code (including for the Facebook network, biological networks [91],
experimental networks [6], and various political network datasets [92–95], and we have promptly shared
our code and supplementary results with anyone who has asked (e.g., [78]) Of course, the AddHealth is
a publicly available dataset, so anyone wishing to explore new analytic approaches to network data, or
the assumptions required to analyze such data, may take advantage of it. There are many other sources
of social network data as well (e.g., online data), although longitudinal data are still somewhat scarce.

With respect to the FHS-Net, we worked closely with FHS administrators to release the data. Regret-
tably, given the origin of these data in clinical records and given FHS rules, not all the data were
releasable, which affects the replicability of our results (at least those results with FHS data) by out-
side researchers. However, we have shared data with collaborators using our secure servers. Also, in
2009, the study’s administrators, with our assistance, posted a version of these data in a secure online
NIH repository that requires formal application procedures. FHS implemented a variety of changes to the
data to help protect subject confidentiality, however, before posting. Specifically: (1) all date information
was changed to a monthly resolution rather than daily; (2) only 9000 cases rather than 12,000 could be

‡‡‡ Interestingly, a careful analysis of the FHS reveals no effect of proximity to fast food estabilishments, so this example is just
hypothetical; see Block et al. [90].
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posted (e.g., all nongenetically related relative ties such as adopted siblings, step-children, etc., were
removed); (3) individuals who did not consent to the release of ‘sensitive information’ were excluded;
and (4) the available covariates (e.g., geographic coordinates) were restricted. We have rerun some of
our analyses on this restricted dataset, and many — but not all — of our results survive these restrictions.
This dataset is distributed via the SHARE database at dbGAP (http://www.ncbi.nlm.nih.gov/gap).

9. Social influence and social networks

We believe that we have been careful in interpreting our findings and that we have summarized our
results with the proper caveats. For instance, the first two paragraphs of the Discussion in our 2007
paper on obesity read as follows:

‘Our study suggests that obesity may spread in social networks in a quantifiable and discernable pattern that
depends on the nature of social ties. Moreover, social distance appears to be more important than geographic
distance within these networks. Although connected persons might share an exposure to common environ-
mental factors, the experience of simultaneous events, or other common features (e.g., genes) that cause them
to gain or lose weight simultaneously, our observations suggest an important role for a process involving the
induction and person-to-person spread of obesity.

‘Our findings that the weight gain of immediate neighbors did not affect the chance of weight gain in egos
and that geographic distance did not modify the effect for other types of alters (e.g., friends or siblings) helps
rule out common exposure to local environmental factors as an explanation for our observations. Our models
also controlled for an ego’s previous weight status; this helps to account for sources of confounding that are
stable over time (e.g., childhood experiences or genetic endowment). In addition, the control in our models
for an alter’s previous weight status accounts for a possible tendency of obese people to form ties among
themselves. Finally, the findings regarding the directional nature of the effects of friendships are especially
important with regard to the interpersonal induction of obesity because they suggest that friends do not simul-
taneously become obese as a result of contemporaneous exposures to unobserved factors. If the friends did
become obese at the same time, any such exposures should have an equally strong influence regardless of the
directionality of friendship. This observation also points to the specifically social nature of these associations,
because the asymmetry in the process may arise from the fact that the person who identifies another person as
a friend esteems the other person [14].

We stand behind this summary.
Some who have found fault with our analyses or conclusions have seemed, in reality, to find fault

with second-hand accounts of the work. One of the more frustrating experiences we have had is to
be criticized for overlooking limitations in our data or methods that we did not, in fact, overlook, but
that were instead overlooked by others who were describing or summarizing our work (often for a
lay audience). In reality, we carefully laid out and explored nearly all of these limitations in our pub-
lished research and our public presentations to scientific audiences. While we have sometimes speculated
about mechanisms of interpersonal effects, we have avoided making strong mechanistic claims in our
scientific papers (though we have been a bit more willing to hypothesize in Connected, intended for a
nonscientific audience).

Our work depends, of course, on many who came before us, and there is a long tradition of looking
at peer effects in all sorts of phenomena, particularly in dyadic settings. Our writings cite prior work by
many other scientists. Moreover, since we published our work, a variety of articles by other investigators
have used other data sets and approaches and confirmed our findings and, in many cases, even the mag-
nitude of the effects we observed. Pertinent recent work with obesity, weight gain, weight loss, and the
mechanisms and behaviors related to this (e.g., eating, exercise) that mostly confirm our findings is quite
diverse, including everything from observational studies, to natural experiments, to de novo experiments,
to twin studies that account for genetic similarity, to clever studies involving electronic monitoring of
interactions [24, 96–109]. One experimental study documented the spread of weight loss across spousal
connections; the spouses of individuals randomly assigned to weight loss interventions were tracked,
and evidence of a ripple effect was apparent from the subjects to their (untreated) spouses [53]. Of
course, much work, as expected, has also confirmed the existence of homophily with respect to weight
(e.g., [9, 110]). Still other studies have used experimental and observational methods to confirm the idea
that one mechanism of interpersonal spread of obesity might be a spread of norms, as we speculated in
our 2007 paper (e.g., [102, 107, 111, 112]).
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There is also a longstanding literature on emotional contagion, of course [113], but recent social net-
work papers that have confirmed our findings have also appeared [114–116]. Other outcomes have also
recently received a reevaluation, such as smoking (which, of course, has its own longstanding litera-
ture with respect to peer effects) [117–119], with many papers identifying the obvious importance of
both homophily and influence, especially in adolescent populations (see, e.g., [73, 74]). Indeed, there
have been a number of randomized controlled trials of smoking cessation interventions that target stu-
dents based on their network position and that have documented peer effects, an approach that was
thoughtfully pioneered by Valente et al. [120, 121] and Campbell et al. [122].

A key consideration, therefore, is what the standard for evaluating our findings is. Is the real issue
whether such interpersonal influence for these interesting phenomena (obesity, emotions, etc.) occurs?
In that case, confirmatory work of various types by various investigators should be taken to support our
findings. Here, the standard is whether an observation is true or not. In this regard, we think the body
of evidence accumulated about peer effects — if not network effects — is very persuasive, and we are
joined in this view by many social and biomedical scientists.

Or is the key issue here that interpersonal effects are hard to discern with confidence, and that
data and methods are imperfect and subject to assumptions or biases? If so, we quite agree. This is
one of the reasons we have tried to be transparent about the methods used in our work. This is also
one of the reasons that we ourselves, and others working collaboratively with us, have proposed new
approaches, such as experiments (both offline and online) [3, 6, 7, 123],§§§ and instrumental variable
methods involving genes as instruments [125], both of which might be able to provide different sorts
of confidence in causal inference. Here, the standard is whether an accurate observation is scientifically
possible. We think it is. Because network data are likely to become increasingly available in this era
of computational social science [126], and because questions regarding the structure and function of
social networks are of intrinsic importance, it seems clear that innovation in statistical methods will
be required. We are eager to hear of any practical approaches to the analysis of large-scale, observa-
tional social network data that shed additional light on the interesting and important phenomenon of
interpersonal influence.
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