Westgard Rules

The Nitty Gritty of Quality Control

Sarah Dawson

MS, MT(ASCP)SH

HPTN Central Lab

What is QC?

Why do we do it?

Calculations

- > Mean = $\overline{X} = \sum X_i / n$
 - \sum = Sum of
 - X_i = individual measurements
 - n = number of measurements

Calculations

> Standard Deviation

$$S = \sum (Xi - \overline{X})^2 / (n-1)$$

Calculations

Coefficient of Variation

$$CV = (S/\overline{X})100$$

signifies random error or imprecision

Historically

- > 95% Confidence limit
 - 95 of every 100 normal patient's results would be within +/- 2 S of the mean
 - 1 of every 20 controls could be out of range and that is to be expected – the analytical run would be rejected
 - This rule is called the 1_{2s} rule and gives a high level of false rejections or false alarms

Rates of False Rejection

- With 1 control false rejection rate is 5%.
- With 2 controls false rejection rate is 9%
- With 3 controls false rejection rate is 14%

False rejections can become very expensive.

To diminish the false rejection rate without compromising quality, we need to change the way we look at or analyze control data.

Westgard Rules

- Development of 'multi-rule' QC
 - Rules that are used in conjunction with each other to provide a high level of error detection while reducing the incidence of false rejection
 - There are different combinations of rules depending on the number of controls being used, the total allowable error and your instrumentation

Typical Rule Combinations

- For controls run in multiples of 2 (typically chemistry)
 - \bullet 1_{3S} / 2_{2S} / R_{4S} / 4_{1S} / 10_X
- For controls run in multiples of 3 (typically hematology, coagulation, blood gases)
 - 1_{3S} / 2of3_{2S} / R_{4S} / 3_{1S} / 12_X

- 1_{2s} refers to the historical rule of plus/minus 2_s from the mean
 - with multi-rules: a warning rule to trigger careful inspection of control data
- $> 1_{3s}$ refers to plus/minus 3_{s}
 - a run is rejected when a single control exceeds the mean $\pm 3_{\rm s}$
- \gt 2_{2s} reject the run when 2 consecutive controls exceed the mean \pm 2_s

- R_{4s} when 1 control in a group exceeds the mean ± 2_s and another control exceeds the mean in the other direction by 2_s
 - reject run
- 4_{1s} when 4 consecutive control measurements are on one side of the mean either ± 1_s
 - Warning rule or a rejection rule depending on the accuracy of your instrument

- ➤ 10_x 10 consecutive control measurements fall on one side of the mean
 - If within 1 s, warning
 - If between 1 and 2 s, reject

 $ightharpoonup 2 ext{of } 3_{2s}$ – reject the run when 2 of 3 controls exceed the mean $\pm 2_s$

9_x – reject when 9 consecutive control measurements fall on one side of the mean

7_T – reject when seven control measurements trend in the same direction, either higher or lower

Random Errors

- Random Errors these errors affect the reproducibility or precision of a test system.
 - Usually 1_{3s} or R_{4s} rules
 - can be due to variations in line voltage, pipettes, dispensers, contamination, volume dispensed, bubbles in lines of reagents, etc.

Systematic Errors

- Systematic Errors (bias, shifts and trends) – these errors affect the accuracy of the test system.
 - Usually 2_{2s}, 4_{1s}, or 10_x rules
 - can be due to calibration lot changes, temperature changes in incubator unit, light source deterioration, electronics, reagent lot changes, etc.

Accuracy –vs- Precision

Accuracy – how close you are to the correct value

Precision – how close together your results are to each other

Define Your QC Protocol

- ➤ Each lab needs to define its' QC protocol based on the number of controls used, the accuracy of the instrumentation, the total allowable error, etc.
- How do you interpret the results of the controls?
- What do you do based on those results?

QC Protocol - example

1. Statistical QC Procedure

Use a 1_{2s} as a warning rule and the 1_{3S} / 2_{2S} / R_{4S} / 4_{1S} / 10_X as rejection rules with 2 control measurements

2. Analyze control materials

a) Analyze 1 sample of each level of control.

QC Protocol

3. Interpretation of warning rules

If both control results are within 2s, report the results. If one control exceeds a 2s limit, follow flow chart and if any rule is violated, reject run.

4. Within run inspection

Inspect control results by applying rules: 1_{3s} in each run and 2_{2s} and R_{4s} across levels.

QC Protocol

- 5. Inspect controls across runs
 - Apply the 2_{2s} rule with each level across the last two runs.
 - Apply the 4_{1s} rule within each control level across the last 4 runs and across the last 2 runs of both levels.
- If none of the rules are violated, accept the run.

Problem Solving

- ▶ If a run is out of control, investigate the process and correct the problem.
 - Do not automatically repeat the control!
 What do you need to do to investigate the process?
 - Determine the type of error based on your rule violation (random or systematic)
 - Relate the type of error to the potential cause
 - Inspect the testing process and consider common factors on multi-test systems
 - Relate causes to recent changes
 - Verify the solution and document the corrective action

To help us investigate the problem, we need to look at our QC / QA Records

What records do we need?

Instrument Information & Validation

- Reportable range (linearity)
- Precision and Accuracy studies
- Analytical sensitivity / specificity
- > Reference range
- Proficiency testing results
- Reagent logs
- Problem logs

QC Documents / Logs

- Preventative maintenance
 - Scheduled and unscheduled
 - Reason for maintenance
 - Frequency and length of downtime
 - Signs of instrument deterioration
- Calibration and Calibration Verification
 - Lot numbers and expiry of calibrators, dates of calibration, reason for calibration/verification, and by whom
- Instrument function and temperature checks
- > Previous Control runs

All of these documents can be helpful when investigating errors!

Why use Westgard Rules?

- We use Westgard Multi-rules to help us reduce costs while maintaining a high level of certainty that our analytical process is functioning properly.
- In other words to diminish the false rejection rate without compromising quality.

Questions???