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1 Abstract

In this project, I intend to investigate a class of problems which are aimed at finding a contiguous

subarray whose sum of elements is maximized. The prototype of this class of problems is the maximum

subsequence sum problem. Based on the investigation on this prototype problem, then I have explored

how to extend the Dynamic Programming (DP) technique to solve other more complicated problems.

Through this process, I expect to achieve a deeper understanding of DP.

To be more specific, I have done two parts of work:

1. Investigate the maximum subsequence sum problem. I have implemented four algorithms: two

brute-force search algorithms, Divide&Conquer (DC) and DP. I have analyzed the time complexity

of these four algorithms. In addition, a brief comparison between DC and DP is also included.

2. As an extension of the work in the first part, I have applied the DP technique to design algorithms

to extract maximum submatrix, subcube and M subsequences.

2 Part 1: Maximum Subsequence Sum Problem

2.1 Problem Formulation

Given a sequence of n integers A(1)...A(n), which could be positive or negative. Determine a contiguous

subsequence A(i)...A(j) for which the sum of elements is maximized among all possible contiguous sub-

sequences. If all elements in a subsequence are negative integers, the maximum subsequence sum is set

to be 0.

I choose this problem for a couple of reasons. First, we are easy to produce artificial data with random

generators. Secondly, it is also convenient to control the size of the problem, the length of the sequence.

Hence, this problem provides a good model for time complexity comparison among different algorithms.

Thirdly, the brute-force search algorithm is feasible and easy to implement, so that the correct answer

can be known. In this way, we will be able to know whether the algorithms are implemented correctly.

2.2 Algorithms

All algorithms are implemented in MATLAB. Since MATLAB has provided many useful functions, codes

for some algorithms are pretty short. Therefore, I have not written pseudo-code for the report, and I will

just paste some short codes in the report for explanation purposes.
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2.2.1 Brute-Force Search Algorithm 1

The first straightforward idea is to enumerate all possible subsequences, which is implemented by two

loops to enumerate all pairs of start index and end index. Then a nested loop, the most inner one, is

used to calculate the sum of the subsequence. The code for this algorithm is shown in Figure 1.

Figure 1: Code for Brute-Force Search Algorithm 1

Complexity Analysis There are three loops, indexed by i,j and k, respectively. Each of them executes

O(n) times. So, the total time complexity is O(n3).

2.2.2 Brute-Force Search Algorithm 2

The second algorithm is also to enumerate all possible subsequences. But it is a little smarter than the

first one, by calculating the sum of A(i)...A(j + 1) by adding A(j + 1) to the sum of A(i)...A(j). In this

way, the most inner loop is removed. The code for this algorithm is shown in Figure 2.

Complexity Analysis There are two loops, each of which executes O(n) times. Thus, the total time

complexity is O(n2).

2.2.3 Divide&Conquer (DC)

The idea behind DC is to recursively divide the original problem into two almost equal halves, until the

subproblems can be solved instantly, then combine the solutions of subproblems to obtain the solution

for the original problem. In our problem, we recursively divide a longer sequence into two halves until

there is only one integer in each subsequence. To merge two subsequences, say subsequence A and B, we

compare the maximum subsequence sum of A and B with the maximum sum of subsequence that bridges

3



Figure 2: Code for Brute-Force Search Algorithm 2

A and B. Figure 3 shows how we determine the bridging subsequence. Since the subsequence needs to be

contiguous, the bridging subsequence surely includes the right most element of subsequence

A and left most element of subsequence B. Therefore, we can extend from these two points toward

the ends to find the maximum sum bridging subsequence that includes these two points.

For the implementation of the DC algorithm, I have written a recursive function. I append the

algorithm to the end of this report, since it is a little bit long (Figure 12).

Figure 3: Determine the Bridging Subsequence

Complexity Analysis For each merging step, we need to calculate the bridging maximum subsequence

by traversing the merged sequence once in O(n) time. Thus, we have equations as follows:

T (n) = T (n/2) + T (n/2) + O(n) (1)

T (n) = 2× T (n/2) + O(n) (2)

T (n) = 2× {2× T (n/4) + O(n/2)}+ O(n) (3)
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T (n) = 4× T (n/4) + 2×O(n) (4)

... = ... (5)

T (n) = n× T (n/n) + logn×O(n) (6)

T (n) = O(nlogn) (7)

The total time complexity is: O(nlogn).

2.2.4 Dynamic Programming (DP)

Similar to DC technique, DP is also to synthesize the solution for big problems with the solutions of

smaller problems. The core idea underlying DP is to develop a recursion function to transfer from

one state to another. Suppose we have known the maximum subsequence sum for the first i elements

(A(1)...A(i)). For sequence A(1)...A(i + 1), we need to determine whether the maximum subsequence

includes element A(i + 1) or not. If it is, the maximum subsequence for the first i + 1 elements is a

subsequence ended with element A(i). Otherwise, the maximum subsequence for the first i + 1 elements

is the same as that of the first i elements. The recursion function is defined as follows:

M(i) = max{M(i− 1), tempSum(i)} (8)

where tempSum(i) is the maximum subsequence sum ended with element A(i).

The code for DP algorithm is shown in Figure 4.

Figure 4: Code for Dynamic Programming Algorithm

Complexity Analysis We only need to traverse the original sequence once. So, the time complexity

is O(n).
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2.3 Algorithm Comparison

2.3.1 Time Complexity Comparison

Big−O Complexity Analysis The Big−O complexities of all algorithms are summarized in Table 1.

This theoretical analysis shows that DP is the fastest algorithm. It has reduced the time complexity from

O(n3) to a linear time O(n). The complexity of DC is in the middle, better than naive algorithms and

worse than DP.

Algorithm Time Complexity

Brute-Force Search Algorithm 1 O(n3)

Brute-Force Search Algorithm 2 O(n2)

Divide&Conquer (DC) O(nlogn)

Dynamic Programming (DP) O(n)

Table 1: Theoretical Time Complexity Comparison

Real Running Time Analysis We have tested the four algorithms under different problem size n.

Results are shown in Table 2. We can see that when n is small (n = 102), the brute-force search algorithm

2 is the fastest one. The DC is the slowest for this situation. This may be because the running time of DC

algorithm contains more overhead in the form of recursive function calls. As the n increases, say n = 104,

the DC and DP algorithms start to outperform the brute-force algorithms. This observation tells us that

the Big−O analysis only indicates that an algorithm with lower growth rate is faster than an algorithm

with higher growth rate when the input size is very large. When the size is not large enough, this may

be not the truth.

Algorithm n=102 n=103 n=104

Brute-Force Search Algorithm 1 0.008 2.031 1895.581

Brute-Force Search Algorithm 2 0.003 0.009 0.583

Divide&Conquer 0.009 0.027 0.204

Dynamic Programming 0.004 0.004 0.004

Table 2: Real Execution Time (s)

2.3.2 Divide&Conquer V.S. Dynamic Programming

As a summary, a comparison between Divide&Conquer and Dynamic Programming has been made:
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1. First of all, both techniques try to split their input into parts, find sub-solutions to the parts.

Sub-solutions are then synthesized to give the solution to the original problem.

2. Divide&Conquer splits its input at prespecified deterministic points. It always split a big problem

into two almost equal halves. It works best when the subproblems are independent/non-overlapping

of each other. Since each subproblem is a small-sized original problem, we usually implement the

Divide&Conquer algorithm in the form of recursive function.

3. When the sub-problems are dependent on each other, we do not know which splitting points are

optimal. Dynamic Programming may be a better way to go. It is aimed at finding the optimal

partitions by trying all possibilities.

3 Part 2: SubMatrix, SubCube and M Subsequence Problems

As an extension of the first part of my work, I have tried to use Dynamic Programming technique to

solve several variants of the original maximum subsequence sum problem.

3.1 SubMatrix

Similar to the subsequence problem, we want to obtain the maximum submatrix sum. As shown in

Figure 5, the sum of the elements in the shaded area is maximized over all possible selection of contiguous

submatrix. But the above method can only handle one dimension. Then, how can we solve this 2-D

problem based on the method for 1-D problem? If we can fix the value for one dimension, say the start

row and end row, then this 2-D problem can be solved in the same way as the maximum subsequence

sum problem. How to fix the value for one dimension? We can simply enumerate all possibilities for

this dimension, and then use the 1-D algorithm to calculate the start index and end index for the

other dimension. In this way, the maximum submatrix problem can be transformed into a maximum

subsequence sum problem. Steps are summarized as follows:

1. Enumerate all possible pairs of (startRow, endRow).

2. Sum the rows from startRow to endRow together with respect to each dimension, from which we

obtain a sequence (Figure 6).

3. Use the DP algorithm to find the maximum subsequence sum of the sequence generated in step 2.

The code of this algorithm is shown in Figure 7.
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Figure 5: A Snapshot for the Submatrix Problem

Figure 6: Transformation from 2-D to 1-D

Complexity Analysis For brute-force search, we need to enumerate all possible combinations of

(startRow, endRow, startColumn, endColumn). The time complexity would be O(n4). With the DP

implementation, we reduced the time complexity to O(n3).

3.2 SubCube

With the idea in matrix, it is easy to extend the idea to 3-D arrays. Suppose a cube has x, y, z

three dimensions. In analogy to the matrix, we only need to enumerate all possible combinations of

(xStart, xEnd, yStart, yEnd), and sum the elements together over x and y. Then, we use the DP algo-

rithm to determine the start index and end index of z. The code is shown in Figure 8.
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Figure 7: Code for Submatrix Problem

Complexity Analysis For the brute-force search, we need to enumerate all possible combinations of

(xStart, xEnd, yStart, yEnd, zStart, zEnd). Thus, the time complexity is O(n6). With DP technique,

we have reduced the time complexity to O(n5).

3.3 M Subsequence

This problem is a little different from the above two variant problems. For the M subsequence problem,

we are given a sequence and a number M . We are asked to extract M non-overlapping subsequences

whose total sum is maximized. In stead of only one subsequence in maximum subsequence sum problem,

the M subsequence problem asks us to extract M subsequences. Thus, an additional constraint has been

put onto this problem. Just as the knapsack problem, in which a weight constraint is added. What we

need to do is to increase one dimension for the OPT value. Here, we only need to calculate a D(i) for

the maximum subsequence sum problem. But we may need to compute a D(i, j) to transfer from one

state to another state for the M subsequence problem. With this idea, it is not difficult to design a DP

algorithm to solve the M subsequence problem.

Suppose the original sequence is of size N , and we want to maximize the total sum of M subsequences.

We calculate the matrix D, with D(i, j) as the maximum sum of first j elements with i subsequences. For

element j + 1, we have two choices: one is element j + 1 constructs a subsequence exclusively; the other

is this element is integrated into the last subsequence. So, the recursion function is defined as follows:

D(i, j) = max{[max{D(i− 1, k)}+ A(j)], D(i, j − 1) + A(j)}, (i− 1) ≤ k ≤ (j − 1) (9)
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Figure 8: Code for Subcube Problem

The code for this algorithm is shown in Figure 9.

Figure 9: Code for M Subsequence Problem

Complexity Analysis There are two loops, the time complexity is O(n2).

4 Conclusion

In this project, I have implemented four existing algorithms for the maximum subsequence sum problem.

Time complexity of the four algorithms have been compared. I have also made a brief comparison between
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Divide&Conquer and Dynamic Programming.

The innovative part of this project is the extension of the DP algorithm to maximum submatrix, sub-

cube and M subsequence problems. Although these problems may have already been solved with DP by

others before, I have developed all these algorithms completely by myself. Through this process, two main

principles for DP algorithm designing are learnt. First, complicated problems, like maximum submatrix

and subcube problems, can be reduced to simple problems, say maximum subsequence sum problem.

Through this transformation, the seemingly complicated problems can be solved in the same way as the

simple problem. Secondly, when there is an additional constraint added to the problem, an additional

constraint of M for the M subsequence problem when compared with the maximum subsequence sum

problem, we can add one dimension to the OPT value correspondingly.

In summary, I do learn a lot from this project, although it may be not a complicated one. Through

this project, I have achieved a much better understanding of DP technique than before. And my ability

in algorithm designing has also been improved.

5 Appendix

Figure 10: Brute-Force Search Algorithm 1 for Maximum Subsequence Sum Problem
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Figure 11: Brute-Force Search Algorithm 2 for Maximum Subsequence Sum Problem

12



Figure 12: Divide&Conquer Algorithm for Maximum Subsequence Sum Problem
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Figure 13: Dynamic Programming Algorithm for Maximum Subsequence Sum Problem

Figure 14: A Function Called in Submatrix and Subcube Algorithms
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Figure 15: Algorithm for Maximum Submatrix Sum Problem
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Figure 16: Algorithm for Maximum Subcube Sum Problem

Figure 17: Algorithm for M Subsequence Problem
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