
HiBISCuS: Hypergraph-Based Source Selection for
SPARQL Endpoint Federation

Muhammad Saleem and Axel-Cyrille Ngonga Ngomo

Universität Leipzig, IFI/AKSW, PO 100920, D-04009 Leipzig
{lastname}informatik.uni-leipzig.de

Abstract. Efficient federated query processing is of significant importance to
tame the large amount of data available on the Web of Data. Previous works have
focused on generating optimized query execution plans for fast result retrieval.
However, devising source selection approaches beyond triple pattern-wise source
selection has not received much attention. This work presents HiBISCuS, a novel
hypergraph-based source selection approach to federated SPARQL querying. Our
approach can be directly combined with existing SPARQL query federation en-
gines to achieve the same recall while querying fewer data sources. We extend
three well-known SPARQL query federation engines with HiBISCus and compare
our extensions with the original approaches on FedBench. Our evaluation shows
that HiBISCuS can efficiently reduce the total number of sources selected without
losing recall. Moreover, our approach significantly reduces the execution time of
the selected engines on most of the benchmark queries.

Keywords: #eswc2014Saleem

1 Introduction

The Web of Data is now a large compendium of interlinked data sets from multiple
domains with large datasets [12] being added frequently [3]. Given the complexity
of information needs on the Web, certain queries can only be answered by retrieving
results contained across different data sources (short: sources). Thus, the optimization of
engines that support this type of queries, called federated query engines, is of central
importance to ensure the usability of the Web of Data in real-world applications. One of
the important optimization steps in federated SPARQL query processing is the efficient
selection of relevant sources for a query. To ensure that a recall of 100% is achieved, most
SPARQL query federation approaches [4, 8, 10, 14, 15, 11] perform triple pattern-wise
source selection (TPWSS). The goal of the TPWSS is to identify the set of relevant (also
called capable, formally defined in section 3) sources against individual triple patterns
of a query [11]. However, it is possible that a relevant source does not contribute to the
final result set of the complete query. This is because the results from a particular data
source can be excluded after performing joins with the results of other triple patterns
contained in the same query. An overestimation of such sources increases the network
traffic and can significantly affect the overall query processing time.

An example for such a query is SSQ1 in Figure 1. A TPWSS that retrieves all relevant
sources for each individual triple pattern would lead to all sources in the example being
queried. Yet, the complete result set of SSQ1 can be computed without querying d2 due

@prefix ns1:<http://auth1/scma/>.
@prefix ns2:<http://auth2/scma/>.
@prefix ns1 2:<http://auth12/scma/>.
@prefix ns1 3:<http://auth13/scma/>.
@prefix cp:<http://common/scma/>.
ns1 3:s1 cp:p1 ns1 3:o11.
ns1:s2 cp:p3 ‘‘o12’’.
ns1 2:s3 cp:p4 cp:o13.
ns1 2:s3 cp:p5 “o14”.
ns2:o21 cp:p2 “o15”.
ns1:p3 cp:p6 cp:p8 .

(a) Dataset d1

@prefix ns2:<http://auth2/scma/>.
@prefix ns3:<http://auth3/scma/>.
@prefix ns1 3:<http://auth13/scma/>.
@prefix ns1 2:<http://auth12/scma/>.
@prefix cp:<http://common/scma/>.
ns1 2:s1 cp:p1 ns2:o21 .
ns1 2:s3 cp:p3 “o22” .
ns2:s4 cp:p5 “o23” .
cp:p2 cp:p6 cp:p7 .
ns1 2:s1 cp:p0 ns1 3:o25 .
ns3:s3 cp:p9 ns3:o26.

(b) Dataset d2

@prefix ns2:<http://auth2/scma/>.
@prefix ns3:<http://auth3/scma/>.
@prefix ns1 3:<http://auth13/scma/>.
@prefix cp:<http://common/scma/>.
ns1 3:s1 cp:p2 “o31” .
ns3:s1 cp:p3 “o32” .
ns3:s2 cp:p4 cp:o13 .
ns1 3:s5 cp:p5 “o34”.
ns2:o21 cp:p3 “o35”.
ns3:s3 cp:p9 ns1 3:o25 .
ns3:s4 cp:p0 ns2:o25 .

(c) Dataset d3

PREFIX cp: <http://common/schema/>
SELECT * WHERE {
?s cp:p1 ?v1.
?s cp:p2 ?v2.}
TP. sources = 4
Optimal TP. sources = 2
Results = 1

d1 d2
d1 d3

(d) Star-shaped query SSQ1

PREFIX cp: <http://common/schema/>
SELECT * WHERE {
?s cp:p1 ?v1 .
?v1 cp:p3 ?v2 .}
TP. sources = 5
Optimal TP. sources = 2
Results = 1

d1 d2
d1 d2 d3

(e) Path-shaped query PSQ2

PREFIX cp: <http://common/schema/>
PREFIX ns3:<http://auth3/schema/>
SELECT * WHERE {
ns3:s3 cp:p9 ?v0.
?s1 cp:p0 ?v0.
?s1 cp:p1 ?v1 .
?v1 cp:p2 ?v2 .
?v1 cp:p3 “o35”}
TP. sources = 9
Optimal TP. sources = 5
Results = 1

d2 d3
d2 d3
d1 d2
d1 d3

d3

(f) Hybrid query HSQ3

Fig. 1: Motivating Examples. #TP is the total number of triple pattern-wise sources
selected. The relevant sources for each are shown next to each triple pattern. The sources
marked in red contribute to the final query result set.

to the type of join used in the query. We thus propose a novel join-aware approach to
TPWSS dubbed HiBISCuS. Our approach goes beyond the state of the art by aiming to
compute the sources that actually contribute to the final result set of an input query and
that for each triple pattern. To the best of our knowledge, this join-aware approach to
TPWSS has only been tackled by an extension of the ANAPSID framework presented
in [9]. Yet, this extension is based on evaluating namespaces and sending ASK queries
to data sources at runtime. In contrast, HiBISCuS relies on an index that stores the
authorities of the resource URIs1 contained in the data sources at hand. Our approach
proves to be more time-efficient than the ANAPSID extension as shown by our evaluation
in Section 5.

HiBISCuS addresses the problem of source selection by several innovations. Our
first innovation consists of modelling SPARQL queries as a sets of directed labelled
hypergraphs (DLH). Moreover, we rely on a novel type of summaries which exploits the
fact that the resources in SPARQL endpoints are Uniform Resource Identifiers (URIs).
Our source selection algorithm is also novel and consists of two steps. In a first step, our
approach labels the hyperedges of the DLH representation of an input SPARQL query
q with relevant data sources. In the second step, the summaries and the type of joins
in q are used to prune the edge labels. By these means, HiBISCuS can discard sources
(without losing recall) that are not pertinent to the computation of the final result set of
the query. Overall, our contributions are thus as follows:

1. We present a formal framework for modelling SPARQL queries as directed labelled
hypergraphs.

2. We present a novel type of data summaries for SPARQL endpoints which relies on
the authority fragment of URIs.

1 http://tools.ietf.org/html/rfc3986

3. We devise a pruning algorithm for edge labels that enables us to discard irrelevant
sources based on the types of joins used in a query.

4. We evaluate our approach by extending three state-of-the-art federate query engines
(FedX, SPLENDID and DARQ) with HiBISCuS and comparing these extensions to
the original systems. In addition, we compare our most time-efficient extension with
the extension of ANAPSID presented in [9]. Our results show that we can reduce
the number of source selected, the source selection time as well as the overall query
runtime of each of these systems.

The structure of the rest of this paper is as follows: we first give a brief overview of
federated query engines. Then, we present our formalization of SPARQL queries as
directed labelled hypergraphs. The algorithms underlying HiBISCuS are then explained
in detail. Finally, we evaluate HiBISCuS against the state-of-the-art and show that we
achieve both better source selection and runtimes on the FedBench [13] SPARQL query
federation benchmark.

2 Related Work

The approaches related to query federation over the Web of Data can be divided into
three main categories (see Table 1 obtained from our public survey results2).

(1) Query federation approaches over multiple SPARQL endpoints make use of the
SPARQL endpoints due to which they provide a time-efficient solution to SPARQL
query federation. However, the RDF data needs to be exposed as SPARQL endpoints.
Due to which they are unable to deal with whole LOD. (2) Query federation over Linked
Data do not require the data to be exposed via SPARQL endpoints. The only requirement
is that it should follow the Linked Data principles.3 Due to URI lookups at runtime,
these type of approaches are commonly slower than the previous type of approaches.
(3) Query federation approaches on top of Distributed Hash Tables store the RDF data
on top of Distributed Hash Tables (DHTs). This is a space-efficient solution and can
reduce the network cost as well. However, an important fraction of the LOD datasets is
not stored using DHTs.

The source selection approaches used in each of the categories can further divided
into three sub-categories(see Table 1). (1)Catalog/index-assisted source selection only
makes use of an index/data catalog (also called data summaries) to perform TPWSS.
The result completeness (100% recall) must be ensured by keeping the index up-to-date.
(2)Catalog/index-free source selection approaches do not make use of any pre-stored
index and can thus always compute complete and up-to-date records. However, they
commonly have a longer query execution time due to the extra processing required
for collecting on-the-fly statistics (e.g. SPARQL ASK operations). (3) Hybrid source
selection approaches are a combination of the previous approaches.

In this paper, we propose a novel hybrid source selection approach for SPARQL end-
point federation systems dubbed HiBISCuS. In contrast to the state of the art, HiBISCuS
uses hypergraphs to detect sources that will not generate any relevant results both at

2 Survey: http://goo.gl/iXvKVT, Results: http://goo.gl/CNW5UC
3 http://www.w3.org/DesignIssues/LinkedData.html

Table 1: Classification of SPARQL federation engines. (SEF = SPARQL Endpoints
Federation, DHT = DHT Federation, LDF = Linked Data Federation, Ctg. = Federation
Type, FdX = FedX, SPL =SPLENDID, ADE = ADERIS, I.F = Index-free, I.O = Index-
only, HB = Hybrid, C.A. = Code Availability, S.S.T. = Source Selection Type, I.U.
= Index Update, NA = Not Applicable, (A+I) = SPARQL ASK and Index, (C+L) =
Catalog and online discovery via Link-traversal, *only source selection approaches.)

FedX LHD SPL DAW* ANAPSID ADE DARQ LDQP WoDQA Atlas QTree* HiBISCus*
[14] [15] [4] [11] [1] [8] [10] [7] [2] [6] [5]

Ctg. SEF SEF SEF - SEF SEF SEF LDF LDF DHT - -
C.A 3 3 3 7 3 3 3 7 3 3 7 3

S.S.T I.F HB(A+I) HB(A+I) HB(A+I) HB(A+I) I.O I.O HB(C+L) HB(A+I) I.O I.O HB(A+I)
Cache 3 7 7 3 7 7 7 7 3 7 7 3

I.U NA 7 7 7 3 7 7 7 3 7 3 3

triple-pattern level and at query level. By these means, HiBISCuS can generate better
approximations of the sources that should be queried to return complete results for a
given query.

3 Preliminaries

In the following, we present some of the concepts and notation that are used throughout
this paper. RDF resources are identified by using a Unified Resource Identifier (URI).
Each URI has a generic syntax consists of a hierarchical sequence of components namely
the scheme, authority, path, query, and fragment4. For example, the prefix ns1 =
<http : //auth1/scma/> used in Figure 1 consist of scheme http, authority auth1,
and path scma. The details of the remaining two components are out of the scope of
this paper. In the rest of the paper, we jointly refer to the first two components (path,
authority) as authority of a URI.

The standard for querying RDF is SPARQL.5 The result of a SPARQL query is
called its result set. Each element of the result set of a query is a set of variable bindings.
Federated SPARQL queries are defined as queries that are carried out over a set of sources
D = {d1, . . . , dn}. Given a SPARQL query q, a source d ∈ D is said to contribute to q
if at least one of the variable bindings belonging to an element of q’s result set can be
found in d.

Definition 1 (Relevant source Set). A source d ∈ D is relevant (also called capable)
for a triple pattern tpi ∈ TP if at least one triple contained in d matches tpi.6 The
relevant source set Ri ⊆ D for tpi is the set that contains all sources that are relevant
for that particular triple pattern.

For example, the set of relevant sources for the triple pattern <?s,cp:p1, ?v1> of
SSQ1 is {d1, d2}. It is possible that a relevant source for a triple pattern does not

4 URI syntax: http://tools.ietf.org/html/rfc3986
5 http://www.w3.org/TR/rdf-sparql-query/
6 The concept of matching a triple pattern is defined formally in the SPARQL specification found

at http://www.w3.org/TR/rdf-sparql-query/

contribute to the final result set of the complete query q. This is because the results
computed from a particular source d for a triple pattern tpi might excluded while
performing joins with the results of other triple patterns contained in the query q.
For example, consider SSQ1. The results from d2 for <?s,cp:p1, ?v1> and d3 for
<?s,cp:p2, ?v1> are excluded after performing the join between the results of the
two triple patterns.

Definition 2 (Optimal source Set). The optimal source setOi ⊆ Ri for a triple pattern
tpi ∈ TP contains the relevant sources d ∈ Ri that actually contribute to computing
the complete result set of the query.

For example, the set of optimal sources for the triple pattern <?s,cp:p2, ?v2> of
SSQ1 is {d3}, while the set of relevant sources for the same triple pattern is {d1, d3}.
Formally, the problem of TPWSS can then be defined as follows:

Definition 3 (Problem Statement). Given a set D of sources and a query q, find the
optimal set of sources Oi ⊆ D for each triple pattern tpi of q.

Most of the source selection approaches [4, 8, 10, 14, 15] used in SPARQL endpoint
federation systems only perform TPWSS, i.e., they find the set of relevant sources Ri for
individual triple patterns of a query and do not consider computing the optimal source
sets Oi. In this paper, we present an index-assisted approach for (1) the time-efficient
computation of relevant source set Ri for individual triple patterns of the query and (2)
the approximation of Oi out of Ri. HiBISCuS approximates Oi by determining and
removing irrelevant sources from each of the Ri. We denote our approximation of Oi by
RSi. HiBISCuS relies on directed labelled hypergraphs (DLH) to achieve this goal. In
the following, we present our formalization of SPARQL queries as DLH. Subsequently,
we show how we make use of this formalization to approximate Oi for each tpi.

4 HiBISCuS

In this section we present our approach to the source selection problem in details. We
begin by presenting our approach to representing BGPs7 of a SPARQL query as DLHs.
Then, we present our approach to computing lightweight data summaries. Finally, we
explain our approach to source selection.

4.1 Queries as Directed Labelled Hypergraphs

An important intuition behind our approach is that each of the BGP in a query can be
executed separately. Thus, in the following, we will mainly focus on how the execution
of a single BGP can be optimized. The representation of a query as DLH is the union of
the representations of its BGPs. Note that the representations of BGPs are kept disjoint
even if they contain the same nodes to ensure that the BGPs are processed independently.
The DLH representation of a BGP is formally defined as follows:

7 http://www.w3.org/TR/sparql11-query/#BasicGraphPatterns

?s

cp:p1 ?v1

cp:p2 ?v2

{d1, d2}

{d1, d3}

Vs = {?s}, Vp = {cp:p1,cp:p2}, Vo = {?v1, ?v2},
V = Vs ∪ Vp ∪ Vo = {?s,cp:p1,cp:p2, ?v1, ?v2},
E = {e1, e2}, e1 = (?s,cp:p1, ?v1), e2 = (?s,cp:p2, ?v2),
λe(e1) = {d1, d2}, λe(e2) = {d1, d3}.

(a) SSQ1

?s1 cp:p0 ?v0

cp:p1 ?v1

cp:p9ns3:s3

cp:p2

?v2
cp:p3”o35”

{d2, d3}
{d1, d2}

{d2, d3}

{d1, d3}

{d3}

Vs = {ns3:n3, ?s1, ?v1}, Vo = {?v0, ?v1, ?v2, ”o35”}
Vp = {cp:p9,cp:po,cp:p1,cp:p2, cp:p3}
V = Vs ∪ Vp ∪ Vo} = {ns3:n3, ?s1, ?v1,cp:p9,cp:po,
cp:p1,cp:p2,cp:p3, ?v0, v2, ”o35”}
E = {e1, e2, e3, e4, e5}
e1 = (ns3:s3,cp:p9, ?v0), e2 = (?s1,cp:p0, ?v0),
e3 = (?s1,cp:p1, ?v1), e4 = (?v1,cp:p2, ?v2)
e5 = (?v1,cp:p3, ”o35”), λe(e1) = {d2, d3}, λe(e2) =
{d2, d3}, λe(e3) = {d1, d2}, λe(e4) = {d1, d3}, λe(e5) = {d3}

(b) HSQ3
star simple hybrid sink Tail of hyperedge

Fig. 2: Labelled hypergraph of query SSQ1 and query HSQ3 of Figure 1

Definition 4. Each basic graph patterns BGPi of a SPARQL query can be represented
as a DLH HGi = (V,E, λe, λvt), where

1. V = Vs ∪ Vp ∪ Vo is the set of vertices of HGi, Vs is the set of all subjects in HGi,
Vp the set of all predicates in HGi and Vo the set of all objects in HGi;

2. E ={e1,. . . , et}⊆ V 3 is a set of directed hyperedges (short: edge). Each edge e=
(vs,vp,vo) emanates from the triple pattern <vs, vp, vo> in BGPi. We represent
these edges by connecting the head vertex vs with the tail hypervertex (vp, vo). In
addition, we use Ein(v) ⊆ E and Eout(v) ⊆ E to denote the set of incoming and
outgoing edges of a vertex v;

3. λe : E 7→ 2D is a hyperedge-labelling function. Given a hyperedge e ∈ E, its edge
label is a set of sources Ri ⊆ D. We use this label to the sources that should be
queried to retrieve the answer set for the triple pattern represented by the hyperedge
e;

4. λvt is a vertex-type-assignment function. Given an vertex v ∈ V , its vertex type can
be ’star’, ’path’, ’hybrid’, or ’sink’ if this vertex participates in at least one join. A

’star’ vertex has more than one outgoing edge and no incoming edge. ’path’ vertex
has exactly one incoming and one outgoing edge. A ’hybrid’ vertex has either more
than one incoming and at least one outgoing edge or more than one outgoing and at
least one incoming edge. A ’sink’ vertex has more than one incoming edge and no
outgoing edge. A vertex that does not participate in any join is of type ’simple’.

Figure 2a shows the hypergraph of SSQ1 and Figure 2b represents the hypergraph of
HSQ3 of motivating example given in Figure 1. We can now reformulate our problem
statement as follows:

Definition 5 (Problem Reformulation). Given a query q represented as a set of hyper-
graphs {HG1, . . . ,HGx}, find the labelling of the hyperedges of each hypergraph HGi

that leads to an optimal source selection.

Listing 1.1: HiBISCuS example. Prefixes are ignored for simplicity
[] a ds : S e r v i c e ;

ds : e n d p o i n t U r l <h t t p : / / d b p e d i a . o rg / s p a r q l> ;
ds : c a p a b i l i t y

[ds : p r e d i c a t e d b p e d i a : kingdom ;
ds : s b j A u t h o r i t y <h t t p : / / d b p e d i a . o rg/> ;
ds : o b j A u t h o r i t y <h t t p : / / d b p e d i a . o rg/> ;
] ;

ds : c a p a b i l i t y
[ds : p r e d i c a t e r d f : t y p e ;

ds : s b j A u t h o r i t y <h t t p : / / d b p e d i a . o rg/> ;
ds : o b j A u t h o r i t y owl : Thing , d b p e d i a : S t a t i o n ; #we s t o r e a l l d i s t i n c t c l a s s e s
] ;

ds : c a p a b i l i t y
[ds : p r e d i c a t e d b p e d i a : p o s t a l C o d e ;

ds : s b j A u t h o r i t y <h t t p : / / d b p e d i a . o rg/> ;
#No o b j A u t h o r i t y a s t h e o b j e c t v a l u e f o r d b p e d i a : p o s t a l C o d e i s s t r i n g
] ;

4.2 Data Summaries

HiBISCuS relies on capabilities to compute data summaries. Given a source d, we define
a capability as a triple (p, SA(d, p), OA(d, p)) which contains (1) a predicate p in d, (2)
the set SA(d, p) of all distinct subject authorities (ref. section 3) of p in d and (3) the set
OA(d, p) of all distinct object authorities of p in d. In HiBISCuS, a data summary for a
source d ∈ D is the set CA(d) of all capabilities of that source. Consequently, the total
number of capabilities of a source is equal to the number of distinct predicates in it.

The predicate rdf:type is given a special treatment: Instead of storing the set
of all distinct object authorities for a capability having this predicate, we store the set
of all distinct class URIs in d, i.e., the set of all resources that match ?x in the query
?y rdf:type ?x. The reason behind this choice is that the set of distinct classes used
in a source d is usually a small fraction of the set of all resources in d. Moreover, triple
patterns with predicate rdf:type are commonly used in SPARQL queries. Thus, by
storing the complete class URI instead of the object authorities, we might perform more
accurate source selection. Listing 1.1 shows an example of a data summary. In the next
section, we will make use of these data summaries to optimize the TPWSS.

4.3 Source Selection Algorithm

Our source selection comprise two steps: given a query q, we first label all hyperedges in
each of the hypergraphs which results from the BGPs of q, i.e., we compute λe(ei) for
each ei ∈ Ei in all HGi ∈ DHG. We present two variations of this step and compare
them in the evaluation section. In a second step, we prune the labels of the hyperedges
assigned in the first step and compute RSi ⊆ Ri for each ei. The pseudo-code of our
approaches is shown in Algorithms 1, 2 (labelling) as well as 3 (pruning).

Labelling approaches We devised two versions of our approach to the hyperedge
labelling problem, i.e., an ASK-dominant and an index-dominant version. Both take the
set of all sources D, the set of all disjunctive hypergraphs DHG of the input query q
and the data summaries HiBISCuSD of all sources in D as input (see Algorithms 1,2).
They return a set of labelled disjunctive hypergraphs as output. For each hypergraph and

Algorithm 1 ASK-dominant hybrid algorithm for labelling all hyperedges of each
disjunctive hypergraph of a SPARQL query

Require: D= {d1, . . . , dn}; DHG = {HG1, . . . , HGx}; HiBISCuSD //sources, disjunctive
hypergraphs of a query, HiBISCuSmaries of sources

1: for each HGi ∈ DHG do
2: E = hyperedges (HGi)
3: for each ei ∈ E do
4: s = subjvertex(ei); p = predvertex(ei); o = objvertex(ei);
5: sa = subjauth(s); oa = objauth(o); //can be null i.e. for unbound s, o
6: if !bound(s) ∧ !bound(p) ∧ !bound(o) then
7: λe(ei) = D
8: else if bound(p) then
9: if p = rdf : type ∧ bound(o) then

10: λe(ei) = HiBISCuSDlookup(p, o)
11: else if !commonpredicate(p) ∨ (!bound(s) ∧ !bound(o)) then
12: λe(ei) = HiBISCuSDlookup(sa, p, oa)
13: else
14: if cachehit(s, p, o) then
15: λe(ei) = cachelookup(s, p, o)
16: else
17: λe(ei) = ASK(s, p, o, D)
18: end if
19: end if
20: else
21: Repeat Lines 14-18
22: end if
23: end for
24: end for
25: return DHG //Set of labelled disjunctive hypergraphs

each hyperedge, the subject, predicate, object, subject authority, and object authority
are collected (Lines 2-5 of Algorithms 1,2). Edges with unbound subject, predicate, and
object vertices (e.g e = (?s, ?p, ?o)) are labelled with the set of all possible sources D
(Lines 6-7 of Algorithms 1,2). A data summary lookup is performed for edges with the
predicate vertex rdf:type that have a bound object vertex. All sources with matching
capabilities are selected as label of the hyperedge (Lines 9-10 of Algorithms 1,2).

The ASK-dominant version of our approach (see Algorithm 1, Line 11) makes use of
the notion of common predicates. A common predicate is a predicate that is used in a
number of sources above a specific threshold value θ specified by the user. A predicate
is then considered a common predicate if it occurs in at least θ|D| sources. We make use
of the ASK queries for triple patterns with common predicates. Here, an ASK query is
sent to all of the available sources to check whether they contain the common predicate
cp. Those sources which return true are selected as elements of the set of sources
used to label that triple pattern. The results of the ASK operations are stored in a cache.
Therefore, every time we perform a cache lookup before SPARQL ASK operations
(Lines 14-18). In contrast, in the index-dominant version of our algorithm, an index
lookup is performed if any of the subject or predicate is bound in a triple pattern.We
will see later that the index-dominant approach requires less ASK queries than the
ASK-dominant algorithm. However, this can lead to an overestimation of the set of
relevant sources (see section 5.2).

Algorithm 2 Index-dominant hybrid algorithm for labelling all hyperedges of each
disjunctive hypergraph of a SPARQL query

Require: D= {d1, . . . , dn}; DHG = {HG1, . . . , HGx}; HiBISCuSD //sources, disjunctive
hypergraphs of a query, HiBISCuSmaries of sources

1: for each HGi ∈ DHG do
2: E = hyperedges (HGi)
3: for each ei ∈ E do
4: s = subjvertex(ei); p = predvertex(ei); o = objvertex(ei);
5: sa = subjauth(s); oa = objauth(o); //can be null i.e. for unbound s, o
6: if !bound(s) ∧ !bound(p) ∧ !bound(o) then
7: λe(ei) = D
8: else if bound(s) ∨ bound(p) then
9: if bound(p) ∧ p = rdf : type ∧ bound(o) then

10: λe(ei) = HiBISCuSDlookup(p, o)
11: else
12: λe(ei) = HiBISCuSDlookup(sa, p, oa)
13: end if
14: else
15: if cachehit(s, p, o) then
16: λe(ei) = cachelookup(s, p, o)
17: else
18: λe(ei) = ASK(s, p, o, D)
19: end if
20: end if
21: end for
22: end for
23: return DHG //Set of labelled disjunctive hypergraphs

4.4 Pruning approach

The intuition behind our pruning approach is that knowing which authorities are relevant
to answer a query can be used to discard triple pattern-wise (TPW) selected sources that
will not contribute to the final result set of the query. Our source pruning algorithm (ref.
Algorithm 3) takes the set of all labelled disjunctive hypergraphs as input and prune
labels of all hyperedges which either incoming or outgoing edges of a ’star’,’hybrid’,
’path’, or ’sink’ node. Note that our approach deals with each BGP of the query separately
(Line 1 of Algorithm 3).

For each node v of a DLH that is not of type ‘simple’, we first retrieve the sets
(1) SAuth of the subject authorities contained in the elements of the label of each
outgoing edge of v (Lines 5-7 of Algorithm 3) and (2) OAuth of the object authori-
ties contained in the elements of the label of each ingoing edge of v (Lines 8-10 of
Algorithm 3). Note that these are sets of sets of authorities. For the node ?v1 of HSQ3
in our running example (see Figure 3), we get SAuth = {auth13, auth2} for
the ingoing edge and OAuth = {{auth13, auth2}, {auth2}} for the outgoing
edges. Now we merge these two sets to the set A of all authorities. For node ?v1 in
HSQ3, A = {{auth13, auth2}, {auth13, auth2}, {auth2}}. The intersec-

tion I =

(⋂
ai∈A

ai

)
of these elements sets is then computed. In our example, this results

in I = {auth2}. Finally, we recompute the label of each hyperedge e that is connected
to v. To this end, we compute the subset of the previous label of e which is such that
the set of authorities of each of its elements is not disjoint with I (see Lines 16-23 of

Algorithm 3 Hyperedge label pruning algorithm for removing irrelevant sources
Require: DHG //disjunctive hypergraphs
1: for each HGi ∈ DHG do
2: for each v ∈ vertices(HGi) do
3: if λvt(v) 6= ‘simple’ then
4: SAuth = ∅; OAuth = ∅;
5: for each e ∈ Eout(v) do
6: SAuth = SAuth ∪ {subjectauthories(e)}
7: end for
8: for each e ∈ Ein(v) do
9: OAuth = OAuth ∪ {objectauthories(e)}

10: end for
11: A = SAuth ∪OAuth // set of all authorities
12: I = A.get(1) //get first element of authorities
13: for each a ∈ A do
14: I = I ∩ a //intersection of all elements of A
15: end for
16: for each e ∈ Ein(v) ∪ Eout(v) do
17: label = ∅ //variable for final label of e
18: for di ∈ λe(e) do
19: if authorities(di) ∩ I 6= ∅ then
20: label = label ∪ di
21: end if
22: end for
23: λe(e) = label
24: end for
25: end if
26: end for
27: end for

Algorithm 3). These are the only sources that will really contribute to the final result set
of the query.

We are sure not to lose any recall by this operation because joins act in a conjunctive
manner. Consequently, if the results of a data source di used to label a hyperedge cannot
be joined to the results of at least one source of each of the other hyperedges, it is
guaranteed that di will not contribute to the final result set of the query. In our example,
this leads to d1 being discarded from the label of the ingoing edge, while d3 is discarded
from the label of one outgoing hyperedge of node ?v1 as shown in Figure 3. This step
concludes our source selection.

5 Evaluation

In this section we describe the experimental evaluation of our approach. We first describe
our experimental setup in detail. Then, we present our evaluation results. All data used
in this evaluation is either publicly available or can be found at the project web page.8

5.1 Experimental Setup

Benchmarking Environment: We used FedBench [13] for our evaluation. It is the
only (to the best of our knowledge) benchmark that encompasses real-world datasets

8 https://code.google.com/p/hibiscusfederation/

?s1

cp:p0 ?v0

cp:p1 ?v1

cp:p9 ns3:s3

cp:p2 ?v2

cp:p3 ”o35”

auth12 auth3
Subject auth’s

d2 d3

auth13 auth2
Object auth’s

d2 d3

auth3 auth13
Object auth’s

d2 d3

auth13 auth12
Subject auth’s

d1 d2
auth2

Subject auth’s

d3

auth13 auth2
Object auth’s

d1 d2

auth2 auth13
Subject auth’s

d1 d3

{d2, d3}

{d1, d2}

{d2, d3}

{d1, d3}

{d3}

Fig. 3: Source pruning of Labeled hypergraph HSQ3 of Figure 1. All the sources high-
lighted in red are finally selected

and commonly used queries within a distributed data environment. Furthermore, it is
commonly used in the evaluation of SPARQL query federation systems [14, 4, 9, 11].
Each of FedBench’s nine datasets was loaded into a separate physical virtuoso server. The
exact specifications of the servers can be found on the project website. All experiments
were ran on a machine with a 2.70GHz i5 processor, 8 GB RAM and 300 GB hard
disk. The experiments were carried out in a local network, so the network costs were
negligible. Each query was executed 10 times and results were averaged. The query
timeout was set to 30min (1800s). The threshold for the ASK-dominant approach was
best selected to 0.33 after analysing results of different threshold values.
Federated Query Engines: We extended three SPARQL endpoint federation engines
with HiBISCuS: DARQ [10] (index-only), FedX [14] (index-free), and SPLENDID [4]
(hybrid). In each of the extensions, we only replaced the source selection with HiBISCuS.
The query execution mechanisms remained unchanged. We compared our best extension
(i.e., SPLENDID+HiBISCuS) with ANAPSID as this engine showed competitive results
w.r.t. its index compression and number of TPW sources selected.
Metrics: We compared the three engines against their HiBISCuS extension. For each
query we measured (1) the total number of TPW sources selected, (2) the total number
of SPARQL ASK requests submitted during the source selection, (3) the average source
selection time and (4) the average query execution time. We also compare the source
index/data summaries generation time and index compression ratio of various state-of-the
art source selection approaches.

5.2 Experimental Results

Index Construction Time and Compression Ratio Table 2 shows a comparison of
the index/data summaries construction time and the compression ratio9 of various state-
of-the art approaches. A high compression ratio is essential for fast index lookup during
source selection. HiBISCuS has an index size of 458KB for the complete FedBench data
dump (19.7 GB), leading to a high compression ratio of 99.99%. The other approaches
achieve similar compression ratios. HiBISCuS’s index construction time is second only

9 The compression ratio is given by (1 - index size/total data dump size).

Table 2: Comparison of index construction time and compression ratio. QTree’s com-
pression ratio is taken from [5]. (NA = Not Applicable).

FedX SPLENDID LHD DARQ ANAPSID Qtree HiBISCuS
Index Generation Time (min) NA 75 75 102 6 - 36
Compression Ratio (%) NA 99.998 99.998 99.997 99.999 96 99.997

to ANAPSID’s. This is due to ANAPSID storing only the distinct predicates in its index.
Our results yet suggest that our index containing more information is beneficial to the
query execution time on FedBench.

Efficient Source Selection We define efficient source selection in terms of: (1) the total
number of TPW sources selected, (2) total number of SPARQL ASK requests used to
obtain (1), and (3) the TPW source selection time. Table 3 shows a comparison of the
source selection approaches of FedX, SPLENDID, ANAPSID and HiBISCuS based on
these three metrics. Note that FedX (100% cached) means that we gave FedX enough
memory to use only its cache to perform the complete source selection. This is the
best-case scenario for FedX. Overall, HiBISCuS (ASK-dominant) is the most efficient
approach in terms of total TPW sources selected, HiBISCuS (Index-dominant) is the
most efficient hybrid approach in terms of total number of ASK request used, and FedX
(100% cached) is most efficient in terms of source selection time. However, FedX (100%
cached) clearly overestimates the set of sources that actually contributes to the final
result set of query. In the next section, we will see that this overestimation of sources
greatly leads to a slightly higher overall query runtime. For ANAPSID, the results are
based on Star-Shaped Group Multiple endpoint selection (SSGM) heuristics presented in
its extension [9]. Further, the source selection time represents the query decomposition
time as both of these steps are intermingled.

Query execution time The most important criterion when optimizing federated query
execution engines is the query execution time. Figures 4, 5, and 6 show the results of our
query execution time experiments. Our main results can be summarized as follows:

(1) Overall, the ASK-dominant (AD) version of our approach performs best. AD is
on average (over all 25 queries and 3 extensions) 27.82% faster than the index-dominant
(ID) version. The reason for this improvement is due to ID overestimating sources in
some queries. For example, in CD1, AD selects the optimal number of sources (i.e., 4)
while ID selects 12 sources. In some cases, the overestimation of sources by ID also
slows down the source pruning (e.g. CD2),

(2) A comparison of our extensions with AD shows that all extensions are more
time-efficient than the original systems. In particular, FedX’s (100% cached) runtime is
improved in 20/25 queries (net query runtime improvement of 24.61%), FedX’s (cold)
is improved in 25/25 queries (net improvement: 53.05%), SPLENDID ’s is improved
in 25/25 queries (net improvement: 82.72%) and DARQ’s is improved in 23/23 (2
queries are not supported) queries (net improvement: 92.22%). Note that these values
were computed only on those queries that did not time-out. Thus, the net improvement
brought about by AD is actually even better than the reported values. The reason for our

Table 3: Comparison of the source selection in terms of total TPW sources selected #T,
total number of SPARQL ASK requests #A, and source selection time ST in msec. ST*
represents the source selection time for FedX(100% cached i.e. #A =0 for all queries)
which is very rare in practical. ST** represents the source selection time for HiBISCuS
(AD,warm) with #A =0 for all queries. (AD = ASK-dominant, ID = index-dominant,
ZR = Zero results, NS = Not supported, T/A = Total/Avg., where Total is for #T, #A,
and Avg. is ST, ST*, and ST**)

FedX SPLENDID DARQ ANAPSID HiBISCuS(AD) HiBISCuS(ID)
Qry #T #A ST ST* #T #A ST #T #A ST #T #A ST #T #A ST ST** #T #A ST
CD1 11 27 285 6 11 27 392 NS NS NS 3 20 667 4 18 215 36 12 0 363
CD2 3 27 200 6 3 18 294 10 0 6 3 1 42 3 9 4 3 3 0 57
CD3 12 45 367 8 12 18 304 20 0 12 5 2 73 5 0 77 41 5 0 91
CD4 19 45 359 8 19 9 310 20 0 12 5 3 128 5 0 54 52 5 0 179
CD5 11 36 374 7 11 9 313 11 0 4 4 1 66 4 0 25 23 4 0 58
CD6 9 36 316 8 9 9 298 10 0 11 10 11 140 8 0 36 23 8 0 54
CD7 13 36 324 9 13 9 335 13 0 6 6 5 ZR 6 0 30 35 6 0 55
LS1 1 18 248 9 1 0 217 1 0 4 1 0 35 1 0 5 6 1 0 9
LS2 11 27 264 8 11 27 390 NS NS NS 12 30 548 7 18 118 60 7 0 118
LS3 12 45 413 8 12 9 310 20 0 9 5 13 808 5 0 31 27 5 0 200
LS4 7 63 445 7 7 18 287 15 0 15 7 1 314 7 0 8 9 7 0 15
LS5 10 54 440 8 10 9 308 18 0 13 7 4 885 8 0 20 21 8 0 44
LS6 9 45 430 8 9 18 347 17 0 7 5 13 559 7 0 23 22 7 0 42
LS7 6 45 389 8 6 9 292 6 0 5 7 2 193 6 0 18 17 6 0 24
LD1 8 27 297 8 8 9 295 11 0 7 3 1 428 3 0 24 19 3 0 21
LD2 3 27 320 7 3 9 268 3 0 9 3 0 34 3 0 3 5 3 0 6
LD3 16 36 330 9 16 9 324 16 0 11 4 2 130 4 0 31 29 4 0 48
LD4 5 45 326 7 5 18 290 5 0 17 5 0 33 5 0 6 7 5 0 10
LD5 5 27 280 8 5 18 236 13 0 4 3 2 210 3 0 9 9 3 0 19
LD6 14 45 385 8 14 9 331 14 0 8 14 12 589 7 0 32 30 7 0 136
LD7 3 18 258 7 3 9 235 4 0 4 2 4 223 4 0 7 7 4 0 11
LD8 15 45 337 8 15 9 333 15 0 7 9 7 1226 5 0 23 25 5 0 41
LD9 3 27 228 12 3 18 188 6 0 3 3 3 1052 3 9 50 3 3 0 17
LD10 10 27 274 8 10 9 309 11 0 6 3 4 2010 3 0 19 18 3 0 27
LD11 15 45 351 7 15 9 260 15 0 9 5 2 2904 7 0 23 24 7 0 42
T/A 231 918 330 8 231 315 299 274 0 8 134 143 554 123 54 36 22 131 0 67

slight (less than 5 msec) greater runtime for 5/25 queries in FedX (100% cached) is due
to FedX (100% cached) already selecting the optimal sources for these queries. Thus,
the overhead due to our pruning of the already optimal list of sources affects the overall
query runtime.

(3) Our extensions allow some queries that timed out to be carried out before the
time-out. This is especially the case for our DARQ extension, where LD6 and LD10 are
carried out in 1123 msec and 377 msec respectively by DARD+AD, while they did not
terminate within the time-out limit of 30 minutes on the original system.

(4) Our SPLENDID (AD) extension is 98.91% faster than ANAPSID on 24 of the
25 queries. For CD7, ANAPSID returned zero results.

An interesting observation is that FedX(100%) is better than SPLENDID in 25/25
queries and 58.17% faster on average query runtime. However, our AD extension of
SPLENDID is better than AD extension of FedX(100%) in 20/25 queries and 45.20%

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7 LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10 LD11 Avg
101

102

103

104

105

106

107

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(m

s,
 lo

g
sc

al
e)

DARQ
DARQ+HiBISCuS(AD,cold)
DARQ+HiBISCuS(AD,warm)
DARQ+HiBISCuS(ID)

Fig. 4: Query runtime of DARQ and its HiBISCuS extensions. CD1, LS2 not supported,
CD6 runtime error, CD7 time out for both. LD6, LD10 timeout and CD3 runtime error
for DARQ.

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7 LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10 LD11 Avg
101

102

103

104

105

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(m

s,
 lo

g
sc

al
e)

SPLENDID
SPLENDID+HiBISCus(AD, cold)
SPLENDID+HiBISCus(AD, warm)
SPLENDID+HiBISCus(ID)
ANAPSID

Fig. 5: Query runtime of ANAPSID, SPLENDID and its HiBISCuS extensions. We have
zero results for ANAPSID CD7

faster on average query runtime. This means that SPLENDID is better than FedX in term
of pure query execution time (excluding source selection time). A deeper investigation
of the runtimes of both systems shows that SPLENDID spends on average 56.10% of
total query execution on source selection. Thus, our extension showcase clearly that an
efficient source selection is one of key factors in the overall optimization of federated
SPARQL query processing.

6 Conclusion and Future Work

In this paper we presented HiBISCus, a labelled hypergraph based approach for efficient
source selection for SPARQL endpoint federation. We evaluated our approach against
DARQ, SPLENDID, FedX and ANAPSID. The evaluation shows that the query runtime
of the first three systems is improved significantly on average.

In future, we will investigate the impact of the threshold θ on our approach. We
will also study the effect of our source pruning algorithm on SPARQL 1.1 queries with
SPARQL service clause, where the TPW sources are already specified by the user.
Furthermore, we will evaluate our approach on big data as the query execution time for

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7 LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10 LD11 Avg
0

100

200

300

400

500

600

700

Q
u
e
ry

 E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

FedX(cold)
FedX+HiBISCuS(AD, cold)
FedX(100% cached)
FedX+HiBISCuS(AD, warm)
FedX+HiBISCuS(ID)

Fig. 6: Query runtime of FedX and its HiBISCuS extensions

majority of the FedBench queries is less than 1s, which make it difficult to select the
best SPARQL federation engine and have have a deeper look into the behaviour of these
engines in different data environments.

7 Acknowledgments

This work was partially financed by the FP7 project GeoKnow (GA no. 318159).

References

1. M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. ANAPSID: an adaptive
query processing engine for SPARQL endpoints. In ISWC, 2011.

2. Z. Akar, T. G. Halaç, E. E. Ekinci, and O. Dikenelli. Querying the web of interlinked datasets
using void descriptions. In LDOW at WWW, 2012.

3. S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo. Introduction to linked data and its lifecycle
on the web. In Reasoning Web, 2011.

4. O. Görlitz and S. Staab. Splendid: Sparql endpoint federation exploiting void descriptions. In
COLD at ISWC, 2011.

5. A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler, and J. Umbrich. Data summaries
for on-demand queries over linked data. In WWW, 2010.

6. Z. Kaoudi, M. Koubarakis, and K. Kyzirakos. Atlas: Storing, updating and querying rdf(s)
data on top of dhts. JWS, 8(4), 2010.

7. G. Ladwig and T. Tran. Linked data query processing strategies. In ISWC. 2010.
8. S. Lynden, I. Kojima, A. Matono, and Y. Tanimura. Aderis: An adaptive query processor for

joining federated sparql endpoints. In OTM. 2011.
9. G. Montoya, M.-E. Vidal, and M. Acosta. A heuristic-based approach for planning federated

sparql queries. In COLD, 2012.
10. B. Quilitz and U. Leser. Querying distributed rdf data sources with sparql. In ESWC, 2008.
11. M. Saleem, A.-C. Ngonga Ngomo, J. X. Parreira, H. F. Deus, and M. Hauswirth. Daw:

Duplicate-aware federated query processing over the web of data. In ISWC, 2013.
12. M. Saleem, S. Shanmukha, A.-C. Ngonga, J. S. Almeida, S. Decker, and H. F. Deus. Linked

cancer genome atlas database. In I-Semantics 2013, 2013.
13. M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. Fedbench: a

benchmark suite for federated semantic data query processing. In ISWC, 2011.

14. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: Optimization techniques
for federated query processing on linked data. In ISWC, 2011.

15. X. Wang, T. Tiropanis, and H. C. Davis. Lhd: Optimising linked data query processing using
parallelisation. In LDOW at WWW, 2013.

