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Introduction

1. This work introduces First-Order Logic with Dependent Sorts (FOLDS). FOLDS is inspired

by Martin-Löf's Theory of Dependent Types (TDT) [M-L]; in fact, FOLDS may be regarded a

proper part of TDT, similarly to ordinary first-order logic being a proper part of higher-order

logic. At the same time, FOLDS is of a much simpler nature than the theory of dependent

types. First of all, the expressive power of FOLDS is no more than that of ordinary first-order

logic; in fact, FOLDS may be regarded as a constrained form of Multi-Sorted First-Order

Logic (MSFOL). Secondly, the syntax of FOLDS is quite simple, only slightly more

complicated than that of MSFOL.

In general terms, the significance of FOLDS is analogous to that of ordinary first-order logic

(FOL). On the one hand, FOL has a simple and powerful semantic metatheory; on the other

hand, FOL is the basis of a multitude of specific foundational theories. Correspondingly,

FOLDS has a simple semantic metatheory, not essentially more complicated than that for FOL.

It is one of the aims of this work to develop the basic semantic theory of FOLDS. On the other

hand, I make a start on showing that FOLDS is good, and better than FOL, for the purposes of

formal systems dealing with sets, categories, and more general categorical concepts.

FOLDS is very simple; for the understanding of the motivation for, and the basic mechanics

of, FOLDS there is no need for any prior knowledge of the, by now, extensive literature of

dependent types. I find the idea of FOLDS so simple and natural (we will also see that FOLDS

is useful, which is another issue) that I am thoroughly surprised by the apparent fact that, in

the literature, it has not so far been singled out for study. (Nevertheless, there are important

pointers to FOLDS in the literature that I will point out below.) Incidentally, I decided to use

the word "sort", instead of "type", in "first-order logic with dependent sorts", to emphasize the

closeness of FOLDS to MSFOL, and because of the strongly-felt connotation, in phrases like

"type-theory", of the word "type", that implies the presence of a higher-order structure; you

would not say "multi-typed first-order logic", would you?

J. Cartmell [C] introduced a syntax of variable types for the purposes of a novel presentation

of generalized algebraic theories; Cartmell's syntax was also "abstracted from ... Martin-Löf

type theory". FOLDS differs in two ways from Cartmell's syntax. Firstly, in Cartmell's syntax,

there are no logical operators in the usual sense; there are no propositional connectives, or

quantifiers; FOLDS has them, with quantification constrained in the natural way already given
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in TDT. Secondly, the type-structure of FOLDS is much simpler than that of Cartmell's syntax.

Cartmell's syntax may be characterized as the result of abstracting the structure of contexts,

types, terms and equality out of TDT. FOLDS has the first two of these, contexts and types

(although the latter are called "sorts"), but it does not have the third, terms (except in the

rudimentary form of mere variables), and it has equality in a greatly restricted form only.

The restriction on the use of equality in FOLDS is a fundamental feature. FOLDS is to be used

in formulating categorical situations in which, for example, equality of objects of a category is

not an admissible primitive. The absence of term-forming operators, to be interpreted as

functions, is a consequence of the absence of equality; it seems to me that the notion of

"function" is incoherent without equality.

It is convenient to regard FOLDS a logic without equality entirely, and deal with equality, as

much as is needed of it , as extralogical primitives.

It is worth-while for the reader at this point to make a quick comparison of the way [C]

formulates the theory of categories (pp. 212, 213 in [C]), and the way FOLDS formulates the

same (see §1, p.11). Let me emphasize that essentially this particular instance of FOLDS have

been introduced early on by G. Blanc [B], in his characterization (mathematically equivalent to

P. Freyd's earlier characterization) of first-order properties of categories invariant under

equivalence of categories. A. Preller [P] makes the specification of the specific instance of

FOLDS clearer. The theme of invariance under equivalence is in fact the main theme for this

work; see below.

The FOLDS formulation of the theory of categories is, admittedly, longer than the Cartmell

formulation. It consists in writing out the axioms of "category" in essentially the usual

first-order terms, with a special regard for the typing of variables. The main points to observe

are that (1) no equality on objects is used; (2) equality of arrows is used only when the arrows

already are assumed to be parallel; and (3) quantification on arrows is restricted to one

hom-set at a time.

The formulation in [C] is more "mathematical"; in particular, the essential algebraic nature of

the concept of category is clear on it, whereas, because of the presence of the usual first-order

operators that in general do not yield essentially algebraic concepts, in the FOLDS formulation

the essential algebraic quality of the concept of category is obscured.
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In the case of the theory of categories, the notions of context in the two formulations coincide;

in fact, now a context is a finite diagram of objects and arrows represented by variables.

Below, we will take a look at the formulations of the concept of a category with finite limits in

the two frameworks, when the differences become greater.

The most obvious difference of the two formulations is that the one in FOLDS is purely

relational, in Cartmell's syntax, purely operationaI. In FOLDS, the concepts of identity and

composition are represented by relations, rather than operations as in [C]. The arity of a

relation is the type of a particular context; the places of a relation are to be filled by variables

forming a context of a given type. To give an example, in case of composition as a relation,

the variables filling the places of the relation T (for (commutative) triangle) form a system

consisting of variables U, V, W, u, v, w (not necessarily all distinct), related to each other by

sorting data

U, V, W:O; u:A(U, V), v∈A(V, W), w∈A(U, W)

( O for "object", A for "arrow"),

or more pictorially,

V�u��� �� v
�� ��
� �U 	








� W ;w

T then says of this diagram that it is commutative.

A general context in the FOLDS language for categories is a finite graph of object and arrow

variables, with sorting data specifying which object variable is the domain of each arrow

variable, and the same for codomain (when we say "graph", we mean to imply that there is no

arrow-variable without a corresponding object-variable designated as its domain, or codomain).

An immediate consequence of the absence of operations in FOLDS is the simplification of the

notions of context and type (sort) in FOLDS with respect to the Cartmell syntax. To see the

effect of this, we take the example of the theory of categories with finite limits. Although this

example is not discussed in [C], it is highly relevant to the subject of [C] as acknowledged by

the title of section 6: "Essentially algebraic theories and categories with finite limits".
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In the Cartmell syntax, pullbacks would be introduced by the following introductory rules:

U, V, W∈Ob , v∈Hom(V, U) , w∈Hom(W, U) : pb (U, V, W, v, w)∈Ob0
(here, the "informal syntax" allows writing pb (v, w) in place of the longer term) ;0

U, V, W∈Ob , v∈Hom(V, U) , w∈Hom(W, U) :

pb (v, w)∈Hom(pb (v, w), V) , pb (v, w)∈Hom(pb (v, w), W) .1 0 2 0

(Of course, one has in mind the pullback diagram

vV�������������������U

� �pb (v, w)� �1 � �w� �

pb (v, w) ��������������W .)0 pb (v, w)2

There are further terms and rules expressing the universal property of the pullback.

Now, in FOLDS, we have two possibilities. One is simply adopting the same language of

categories as before; after all, pullbacks are first-order definable in the language of categories;

in fact, pullbacks are definable in FOLDS over the language of categories. Another possibility

would be adopting an additional primitive relation of arity the diagram

vV�����������U

� �p� �� �w� �

P�����������W ;q

we would do this if we wanted (as we may) to keep down the quantifier complexity of the

axioms of the resulting theory. In either case, appropriate first-order axioms, formulated in

FOLDS, are adopted.

Now, compare the notions of context and type (sort) in the Cartmell formulation, to those in

the FOLDS formulations, in this example. In either of the FOLDS formulations, the notions of

context and type remain the same as in the previous example of the theory of categories; in

particular, contexts are finite graphs of variables. However, in the Cartmell formulation,

because of the presence of terms of arbitrarily high complexity, both of the type of an object
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and of an arrow, contexts and types of arbitrarily high complexity will come up. In particular,

the second rule above features a type with a place filled by a term which is not a variable.

This example explains the reason for the complexity of the definition the general concept of

theory in Cartmell's syntax; see section 6, loc.cit. In particular, the definition of "type" cannot

be made independent of the axioms of the theory in question; what counts as a well-formed

type depends on what axioms are present. This is not at all unexpected; M. Coste's earlier

syntax for essentially algebraic theories [Co] (not referred to in [C]) also had this feature. In

contrast, in FOLDS, there is no such complication in the definition of "type" ("sort").

Let me point out another aspect in which FOLDS is simpler than Cartmell's syntax. In FOLDS,

one never substitutes in a sort expression; in the formal system, there is a substitution rule, but

it does not effect sorts. Related to this is the circumstance that the sorting of variables can be

given rigidly; that is, when we say that the variable x is sort X , where the sort X may

contain further variables, we mean a formal, once-for-all specification concerning x . In

FOLDS, in contrast to Cartmell's syntax, it is impossible to have the same variable x to be

declared of types X and Y unless X and Y are literally the same.

I consider the just-described feature of FOLDS to be of foundational importance. The view

underlying FOLDS is that sort-declarations are not subject to logical manipulation; they are

not propositions; one cannot negate a sort-declaration. One cannot ask whether x is of sort X

within logic; the variable x being of sort X is purely notational, or conventional, matter.

More pointedly, membership in a set is not a matter for logic; what is the matter for logic is

whether certain elements, declared to belong to various sets, do or do not satisfy certain

predicates. One should compare simple type theory (higher-order logic), in which typing of

variables is also absolute. The difference in FOLDS is only that the type of a variable may

also contain variables; however, the latter variables are uniquely determined from the variable

being typed.

There is an important difference between the FOLDS-formulation and the Cartmell

formulation, indicated above, of the notion of category with finite limits; in fact, the very

notions formulated, not just their formulation, differ. Cartmell's syntax formalizes the notion of

category with specified finite limits; FOLDS (in our application) formalizes the notion of

category with finite limits, with the latter defined only up to isomorphism. Moreover,

Cartmell's syntax cannot formalize the latter notion, for the simple reason that that notion is

not an essentially algebraic one. Conversely, FOLDS, with the restriction that no equality on
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objects is allowed, cannot formalize the notion of category with specified finite limits.

It is possible to recapture the full expressive power, and more, of Cartmell's syntax within the

framework of FOLDS. This will essentially be shown in Appendix C, when discussing "global

equality". However, FOLDS with global equality captures more than Cartmell's syntax;

because of this, it fails to represent that syntax faithfully. Thus, Cartmell's syntax is not

rendered superfluous, or redundant, in any sense by what we do here. There is a similar

situation with Coste's syntax for essentially algebraic theories mentioned above. Coste's syntax

is one using the unique existential quantifier; it can be easily subsumed under the simpler

regular logic which uses the ordinary existential quantifier. The point of Coste's syntax, and of

Cartmell's, is that they capture exactly the essentially algebraic doctrine. In addition, I want to

stress the great practical value of Cartmell's syntax. It is, in my opinion, the most practical

specification language for structures such as (possibly) higher dimensional categories, with

(possible) additional structure.

In this work, I present two ways of introducing FOLDS, which, however, are ultimately

equivalent; one in §1, the other in Appendix A. The one in Appendix A is the more direct one.

It starts with a simultaneous inductive definition of the concepts of kind, context, sort and

variable, together with some other auxiliary concepts. Kinds are the heads (names) of sorts;

each sort is obtained by appropriately filling out the places of a kind by variables. After

defining the syntax in a global manner, one isolates specific vocabularies, or similarity types,

for the purposes of formulating specific theories in FOLDS.

On the other hand, the treatment in §1 starts with the idea of a vocabulary for FOLDS (DSV).

It is interesting that the data for a DSV can be naturally and succinctly captured by a, usually

finite, one-way category. One-way categories were isolated by F. W. Lawvere in [L]; a

category is one-way if its endomorphism monoids are trivial; in the skeletal case, this means

that there are no non-trivial circuits of arrows. Subsequently, Lawvere observed that one-way

categories are intimately related to the sketch-based syntax of [M1]. Their appearance in this

paper is related to their role in [M1], although this fact is not worked out here. The DSV as a

one-way category has objects the kinds and the relation-symbols; the latter are "top"-level

objects in the category; the arrows between kinds represent the dependencies built into the

syntax.

The formulation of FOLDS based on one-way categories is simpler than the "direct" approach.

In fact, it can be put into a succinct algebraic form, in the form of certain hyperdoctrine-type
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structures. We will exploit this possibility for the presentation of the Gödel and the Kripke

completeness theorems for FOLDS.

2. Let me indicate the foundational motivation behind this work.

P. Benaceraff, in a well-known paper [Ben] entitled "What numbers could not be", expressed a

criticism of the set-theoretical reconstruction of mathematical concepts such as that of "natural

number". Benaceraff's point is that any one set-theoretical definition of "natural number" gives

rise to truths, such as "17 has exactly seventeen members", that become false under an

alternative, but equally legitimate set-theoretical definition of "natural number" (his illustration

compares the von Neumann definition ( 0=∅ , n+1=n∪{n} ) and the Zermelo definition (

0=∅ , n+1={n} ). Thus, the set-theoretical reconstruction of mathematics is inevitably

cluttered with irrelevant and arbitrary truths.

The way out of this requires a language of mathematics in which one talks about the system

(�, 0, S) of the natural numbers in such a way that any property of (�,0,S) that can be

expressed in the language is necessarily invariant under isomorphism of structures of the form

(A; a∈A, f:A��A) . We quickly realize, as did Benaceraff, that in such a language, we

cannot allow an equality predicate relating things belonging to various sets; we may

contemplate equality a= a’ of elements a, a’ of a fixed, but arbitrary, set A only. As aA
consequence, we cannot allow an equality predicate whose arguments are sets; for if A and B

are sets, A=B should imply that ∀a∈A.∃b∈B.a=b , but the last use of the equality

predicate is not restricted to elements of a fixed set!

Doing mathematics under such restrictions is not as absurd as it may sound first. In fact,

considering sets to be objects of a category, with functions as arrows, and using the FOLDS

language of category theory mentioned above, one may do, specifically in the

Lawvere-Tierney theory of elementary toposes with a natural numbers object, a significantly

large part of mathematics, without violating the said exclusions, and in fact, fully observing

the above-italicized requirement.

One may contemplate a comprehensive language of abstract mathematics, with the property

that in it, only "relevant", that is, suitably invariant, predicates can be expressed. In the case of

properties of sets, "suitably invariant" means "invariant under isomorphism (bijection)". In the

contemplated foundational framework, sets are singled out among arbitrary totalities by the
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quality of a set that an equality predicate on its elements as arguments is present as part of the

"structure" of the set. The totality of all sets is not a set, since there is no equality predicate on

sets as arguments.

But then, what kind of structure does the totality of all sets form? Answer: a category. The

isomorphisms will be particular arrows. We quickly realize that, to do set-theory, we need

more general arrows than isomorphisms. In category theory, equality of parallel arrows is

fundamental; we stipulate that the arrows from a fixed object to another fixed object form a

set. We find that there are other categories, such as that of groups and homomorphisms, which

in many ways are similar to that of sets and functions. For instance, we do not want to have

equality of groups as a primitive. Categories appear as generalizations of sets; every set is a

category, a discrete category. There is, in general, no such thing as the "underlying set of the

objects of a category", not because of size considerations, but rather because, in general, there

is no equality predicate whose arguments are the objects of the category.

We find that the idea of an isomorphism of categories, let alone equality of categories, is

incoherent; it is obvious that the notion of an isomorphism of two categories must involve

reference to equality of objects in each of the categories. This entails that a totality of

categories cannot be, in general, a category; in any category, the notion of isomorphism is

well-defined. For totalities of categories, we must have a new type of structure, some kind of

2-dimensional category.

However, in our quest for the "perfectly invariant" language we quickly get into conflict with

standard category theory. The trouble is that we must conclude that the notion of functor,

surely a mainstay of the subject, is not acceptable. The problem with it is that it implicitly

refers to equality of objects in the codomain category, in the requirement that its value at any

given object in the domain category be uniquely determined. Is there a way out of this?

In an old paper ([Kel]), G. M. Kelly described a common situation one finds oneself when one

wants to define a functor. It appears that all data are there to define the functor, still, it is not

possible to canonically single out the value of the functor at an argument-object; one needs to

make an arbitrary choice of a value, while it is also clear that it is immaterial what choice one

makes. Frequently, the choice cannot be made without the Axiom of Choice. Kelly described

in precise terms what the data are like before one makes the arbitrary choices. Relatively

recently, without knowing about Kelly's paper, I also went through a similar consideration, and

made a formal definition of the notion of anafunctor (a term suggested by D. Pavlovic),
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anticipated by Kelly some thirty years ago (he did not give a name to the concept). (Related

ideas occurred to R. Paré some time ago.) I have found that one can live, quite well actually,

with anafunctors, without converting them into functors by making non-canonical choices.

There is a basic category theory that, in its main outline, does not deviate too much from the

standard one, and which uses anafunctors in place of functors; this theory gets by to a large

extent without the Axiom of Choice. The beginnings of anafunctor theory is presented in [M2].

Let me emphasize that the work in [M2] is done in a traditional set-theoretic framework. The

"perfectly invariant" foundation is not yet available for use; the mathematical work in [M2] is

intended to help formulate such a foundation.

I envisage a foundational set-up, a universe of abstract concepts, in which we have sets,

functions, categories and anafunctors as specific distinct kinds of entities. It is clear that we

cannot stop here. We will have natural transformations of anafunctors. But the totality of all

categories, anafunctors and natural transformations of the latter will form a new kind of entity,

an anabicategory. This differs from a bicategory in that each composition operation of 1-cells,

one for each triple of objects (0-cells), instead of being a functor, is an anafunctor. [M2] treats

the afore-mentioned concepts.

The concepts of anafunctor and anabicategory mentioned above are "non-radical" revisions of

established notions of category theory. As Kelly explained in [Kel], using a global version of

the Axiom of Choice, anafunctors can be "converted" into functors. Technically, this amounts

to saying that, under an appropriate Axiom of Choice, every anafunctor is isomorphic to a

functor (this makes sense since a functor is canonically an anafunctor; "anafunctor" is a

generalization of "functor"). Thus, under the full force of the usual set-theoretic foundations,

anafunctors are of no importance. (Let me mention in this context that the global Axiom of

Choice we have in mind is in fact meaningless in the Invariant Foundation, since it talks about

a function with values which are sets, the very idea of which is inexpressible because of the

lack of equality on sets. In fact, Kelly already in loc.cit. considered the global type of choice

involved here more suspect than ordinary choice.)

The universe of the Invariant Foundation is not clearly defined as yet. It should contain

ana-n-categories for all natural n’s; the totality of ana-n-categories, with their morphisms,

etc., will form an ana-n+1-category. The task of formulating these concepts is closely related

with the task of defining the general notion of "weak n-category", mentioned in [BD].
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3. In the previous subsection, I gave an incomplete outline of the universe of the Invariant

Foundation. The contribution of the present work is to the language of that foundation. The

proposal is to use FOLDS as the basic language.

For any vocabulary L for FOLDS, taken (for convenience) completely without equality, I

introduce the notion of L-equivalence of L-structures; this is the replacement for the notion

of isomorphism for ordinary kinds of structure. An L-structure M is at the same time an

ordinary structure for an ordinary language �L� ; the properties of M expressible in FOLDS

are particular ordinary first-order properties of M as an �L�-structure, but not vice versa. It

turns out (General Invariance Theorem, GIT) that the first-order properties that are invariant

under L-equivalence are precisely the ones that are expressible in FOLDS over L . This

indicates that L-equivalence is the right notion of "isomorphism" for structures for FOLDS.

As was mentioned above, anafunctors are a generalization of functors. But, upon closer look,

we see that the requirements of the "logic of (generalized) equality" impose an additional

condition on anafunctors. Whereas an anafunctor determines its value at a given argument up

to isomorphism, meaning that any two possible values are isomorphic, in the case of a

saturated anafunctor, the value is determined also no more than up to isomorphism, meaning

that any object isomorphic to a possible value is also one. (The precise definition also relates

to the given isomorphism between a possible value and a new object.) The requirement of

saturation is an extension of the principle of substitutability of equal for equal, transferred to

isomorphism from equality. Now, it turns out that every anafunctor, in particular every functor,

has a canonically defined saturation, a parallel saturated anafunctor, to which it is isomorphic.

The right notion of "functor" is "saturated anafunctor".

On the one hand, we have traditional types of categorical structures, examples which are (1)

categories, (2) diagrams of categories, functors and natural transformations, and (3)

bicategories, etc.. We have notions of equivalence for each of these kinds; e.g., the one for

bicategories is usually called "biequivalence".

On the other hand, we have anaversions of each of the above kinds of structure. In particular,

we have a canonical saturation of any structure of each of the above kinds; in case of the first

(category), the saturation is identical to the original. Each kind of anastructure has a

vocabulary L for FOLDS as its similarity type; as a result, we have the notion of

L-equivalence for these anastructures. The chief point of the work here is that the concept of

equivalence for traditional structures of a given kind, and the concept of L-equivalence for
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their saturations correspond to each other. E.g., two bicategories are biequivalent iff their

saturations are L-equivalent, where L is the FOLDS vocabulary for anabicategories.

#The saturation � of a categorical structure (e.g., bicategory) � is quite simply defined in

terms of � ; in particular, the definition is a first-order interpretation. As a result, any

#first-order property, and in particular, any FOLDS property, of � is also, by a direct

translation, a first-order property of � . Hence, it is meaningful to ask of a first-order property

#P of � whether it is expressible as a FOLDS property of � . We have the conclusion that

this holds iff P is invariant under equivalence of the appropriate kind. E.g., a first-order

property of a variable bicategory � is invariant under biequivalence iff it is expressible in

FOLDS as a property of the saturation of � . This theorem is a result of a combination of the

relation of the two kinds of equivalence mentioned above, and an appropriate generalization of

the GIT.

The last result for categories is due to P. Freyd [F], and G. Blanc [B]; Blanc's formulation is

closer to the spirit of this work. A detailed proof is available in [FS]. The methods of the

present work are entirely different from Freyd's. Restricted to the case of categories, the former

give stronger results, although the additional strength that I cannot reproduce by Freyd's

methods seems of minor importance. More important is the fact that Freyd's methods employ

the axiom of choice, through the use of the skeleton of a category, and thus do not generalize

to "constructive category theory". In Appendix E, I give a proof of the GIT for intuitionistic

FOLDS. This gives rise to an intuitionistic version of the Freyd-Blanc characterization theorem

for properties of categories invariant under equivalence. This does not seem to be accessible

by the methods of [FS].

The main mathematical results of the present work are thus syntactic characterizations of

formulas that are invariant under equivalence, in various senses of "equivalence". For the

statement of these results, there is no need to understand the anaconcepts. In fact, for the case

of bicategories, I organized the presentation in a way that does not refer to anabicategories

explicitly, although, in this way, I missed the proof of the full strength of the main result. By

contrast, in the case of diagrams of categories, functors and natural transformations, the

anaconcepts are displayed.

From the foundational point of view, the results give confirmation to the idea that FOLDS

employed in the context of anastructures is a suitable foundational language. I expect that the
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analysis started here will extend with similar results to higher dimensions. This is a concrete

matter in the case of tricategories [GPS]; but I believe the case of general n-dimensional

structures will soon be accessible too. I find it an interesting proposition, verified up to

dimension 2 here, and conjectured to hold in all dimensions, that the appropriate notion of

equivalence, "weak n-equivalence" in the terminology of [BD], has a form, namely

L-equivalence for the saturations of the structures involved, which is of a general "logical

nature"; the original notion of "weak n-equivalence" looks a priori to be a rather involved

idea.

4. Let me give an overview of the contents. I have organized the material into seven sections

and five appendices, with the obvious implication as to what parts I felt to be the more

important ones. §1 is the basic introduction to the syntax and semantics of FOLDS. The reader

may immediately look at Appendix A, which contains the alternative, "more logical",

introduction of FOLDS. §2 contains the formal systems for the classical, intuitionistic and

coherent versions of FOLDS. §3 is a purely algebraic (categorical) study of "fibrations with

quantification". I deal with hyperdoctrine-like structures; specifically, fibrations in which the

base category has finite limits, but there is a distinguished class of arrows along which

quantification is allowed. The applications to FOLDS is given in §4. I was surprised at the

appropriateness of this simple idea for the purposes of FOLDS. The (Gödel, Kripke)

completeness of the systems of §2 are thus seen to be a special case of something much more

general.

§5 introduces the concept of L-equivalence, the main new concept of the work, and proves, in

a suitably general form, the General Invariance Theorem (GIT). Appendices B and C are

elaborations on the theme of L-equivalence. In Appendix C, I give, among others, proofs that

follow the spirit of the treatment in [FS]. §§6 and 7 work out the conclusions concerning the

three kinds of categorical structure we discussed above. In §6, the example of a single functor

between two categories as a categorical structure is considered in some detail. In particular,

fibrations are such structures. Appendix D contains some of calculations for §7.

Finally, Appendix E does two main things. One is the extension of the theory of

L-equivalence to intuitionistic logic and Kripke models. The other is ordinary Craig

interpolation and Beth definability for FOLDS.

I would like to thank George Janelidze and Dusko Pavlovic for valuable conversations on the
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subject of this work.
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§§§1. Logic with dependent sorts

First, we describe the kinds of structure which the assertions of logic with dependent sorts are

about.

It is well-known from categorical logic that the similarity types that are graphs (having sorts

the objects, and unary sorted operation symbols only) are sufficient for all purposes. The

simplest consideration here replaces a relation-symbol sorted as R ⊂ A ×...×A by a new1 n
pisort R , and operations R����A , i=1, ..., n . Our first move is to restrict attention toi

one-way graphs; in fact, more conveniently, to one-way categories.

The concept of one-way category is due to F. W. Lawvere [L]. In [M1], I reproduce Lawvere's

observation to the effect that categories of finite sketches obtained by the repeated use of the

Csecond construction of [M1] starting from Set are exactly the ones of the form Set , with

C a finite one-way category.

A one-way category is one in which all endomorphisms are trivial (identities). In a skeletal

one-way category, for any objects A and B , it is not possible that there are proper

(non-identity) arrows in both direction A��B and B��A . As a consequence, there are no

cycles (positive-length paths A ��A ��...��A of proper arrows with A =A ).0 1 n 0 n

We are mainly interested in finite, skeletal, one-way categories. However, for certain purposes,

we need to relax the finiteness condition.

A category C has finite fan-out (I owe this concept to Jim Otto) if for every object A , there

are altogether finitely many arrows with domain A ; the set �{C(A, C): C∈Ob(C)} is

finite. A simple category is one which is one-way, skeletal, and has finite fan-out.

A simple category is reverse-well-founded; in other words, it satisfies the ascending chain

condition: there are no infinite paths A ��A ��...��A ��A ��... ( n<ω ) consisting0 1 n n+1
of proper arrows. (Namely, any such would have to have the objects A pairwise distinct, byn
the above, and that would mean, a fortiori, infinitely many arrows out of A .)0

If L is a simple category, the set Ob(L) of objects is partitioned as in
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⋅Ob(L) = ���Lii< �

into non-empty levels L , for i< � , � the height of L , �≤ω , such that L consist of thei 0
objects A for which there is no proper arrow with domain A , and such that, for i>0 , Li
consists of those objects A for which all proper arrows A��B have B∈L = ���L , and<i jj<i
there is at least one arrow A��B with B∈L . (If A∈Ob(L) , and for all properi-1

⋅ ⋅f:A��B , B∈���L , then A∈���L ; in fact A∈L for some i not greater than thei i ii<ω i<ω
maximum of the levels of the codomains of the finitely many proper arrows with domain A

⋅plus one. Therefore, if A∈Ob(L)-���L , then there is a proper A��B withii<ω
⋅B∈Ob(L)-���L , and thus there is an infinite proper path out of A .) All proper arrows goii<ω

from a level to a lower level. Of course, the height of a finite simple category is finite.

A maximal object in a simple category is one which is not the codomain of a proper arrow.

Every object of the maximal level (if any) is maximal, but not necessarily conversely.

By a vocabulary for logic with dependent sorts, or DS vocabulary, or even DSV,

we mean a simple category given with a distinguished, but otherwise arbitrary (possibly

empty) set of maximal objects. The distinguished maximal objects of the DSV are its relation

symbols (or relations); the rest of its objects are its kinds. We write Rel(L) and Kind(L)

for the sets of relations and of kinds of L , respectively.

DS vocabularies are our similarity types for structures for logic with dependent sorts;

concomitantly, they figure as vocabularies for the syntax of logic with dependent sorts. Unlike

in multisorted logic, the arrows of a DSV do not enter the syntax of FOLDS as

operation-symbols; the role of the arrows in a DSV and their composition will serve to

determine the "dependence structure" of the variables.

Here are some examples for DSV's .

A
� �d� �cL : � �graph � �
O
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�T dt =ct , dt =ct ,t � �t �t 1 0 2 10� � 1� 2� � � dt =dt , di =ci .L : 2 0cat i �A ���������� I
� � relations: I , Td� �c� �� �
O

A1
d � �c1� � 1� �

L : A dd =dc , cd =cc .2-graph 1 1 1 1� �d� �c� �� �
O

Only non-identity arrows are shown. The proper arrows are those shown and their composites,

among which we have the equalities shown, and no more. E.g., there are three distinct arrows

T��O . L and L have no relations. The dots in L signify that Igraph 2-graph cat
and T are relations.

For a DSV L , and an object A in it, we write A�L for the set of proper arrows with

domain A (the notation resembles the notation A�L for the comma category). For an arrow

p , K denotes its codomain.p

Given a DSV L , the intended structures for L , the L-structures, are the functors

M:L��Set in which for each relation R∈Rel(L) the following holds: the family

〈M(p):M(R)��M(K ) 〉 of functions, indexed by the proper arrows in L withp p∈R�L
domain R , is jointly monomorphic: for a, b∈M(R) , if M(p)(a)=M(p)(b) for all

p∈R�L , then a=b . The condition means that M(R) is essentially a subset of the set

� M(K ) , actually a subset of M[R] ; here, for any A∈Ob(L) ,pp∈R�L

M[A] = { 〈a 〉 ∈ � M(K ) : M(q)(a )=a whenever qp=p’} (1)def p p p p p’p∈A�L

Φ M( M[A] is the limit (joint pullback) of the diagram A�(L-{1 })���L���Set (with ΦA
the forgetful functor) mapping (A��K) to M(K) ). We will usually (and without loss of

generality) assume that in case R∈Rel(L) , the canonical monomorphism
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Mm :M(R)��M[R] taking a to 〈(Mp)(a) 〉 is an inclusion of sets.R p∈R�Kp

We recognize that the L -structures are the graphs, the L -structures are thegraph 2-graph
2-graphs. Categories are particular L -structures. If M is a category, for M as ancat
L -structure, M(O) , M(A) are the sets of objects and of arrows, M(d) and M(c) arecat
the domain and codomain functions; as a consequence, M[T] is the set of triangles

V�u �� ��v�� �	
U ��������� Ww

in M ; by definition, M(T) is the set of commutative triangles, a subset of M[T] ; M(I) is

the set of identity arrows. In fact, we realize that the L -structures are exactly thecat
category-sketches of [M1] .

For L a DSV , L� denotes its underlying graph. Any (small) graph L can be used as a

similarity type for multisorted logic; the L-structures are the graph-maps (diagrams)

L��Set ; C-valued L-structures are the diagrams L��C . Multisorted first-order logic with

L as vocabulary uses the objects of L as sorts and the arrows of L as sorted unary operation

symbols; we always allow equality (to be interpreted in the standard way) when we refer to

multisorted logic. For these matters, see [MR1]. First-order logic with dependent sorts over L

will be a proper part of multisorted first order logic over L .

To be sure, the L�-structures are not exactly the L-structures; the latter are those among the

former that satisfy a certain set Σ[L] of axioms over L� , to be described next. Σ[L]

consists of the following sentences:

∀x∈A.(���{q(p(x))=p’(x) : p, p’∈A�L, q∈Arr(L) , qp=p’} ,

one for each A∈Ob(L) ( = Kind(L)∪Rel(L) ) ; and

∀x∈R.∀y∈R.[( ��� p(x)=p(y)) ��� x=y] ,
p∈R�L

one for each R∈Rel(L) .
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One feature of logic with dependent sorts is that there will not be any operation symbols

(explicitly) used in it; thus, the just-listed sentences are definitely not in logic with dependent

sorts over L .

Let us explain the intuition behind logic with dependent sorts for the case when the vocabulary

is L . First of all, logic with dependent sorts is a (proper) part of what we know ascat
ordinary multisorted logic over �L � , the (a) language of categories. In logic withcat
dependent sorts over L , we have variables ranging over O ; we can quantify thesecat
variables. However, instead of variables ranging over A , we will have ones that range over

A(U, V) , where U and V are variables of sort O . A(U, V) is a "dependent sort", one

depending on the variables U and V . A variable u ranging over A(U, V) is of sort

A(U, V) , and we write u:A(U, V) . Of course, we should think of A(U, V) as

hom(U, V) , and of u:A(U, V) as u:U��V . In terms of the semantics of

L -structures, the interpretation of A(U, V) in M is {a∈MA:(Md)(a)=(Mc)(a)} .cat
Thus, we have no variables ranging over all arrows at once; only ones ranging over arrows

with a fixed domain and codomain.

An immediate consequence of this is that if a formula has the free variables U and V , and

also u:U��V (that is, u:A(U, V) ), then forming ∀Uϕ should and will be illegal; the free

variable u in ∀Uϕ has lost its fixed reference to a domain.

In FOLDS in general, and in particular over L , we will have a restricted use of equalitycat
only. The reason for this is our main aim, which is to formulate languages for categorical

structures in which all statements are invariant under the equivalence appropriate for the kind

of categorical structure at hand. Typically, equivalences does not respect equality of certain

kinds of entities; in the case of categories, equality of objects, in the case of bicategories,

equality of objects (0-cells) and equality of 1-cells. In FOLDS with restricted equality, we will

allow "fiberwise equality" over maximal kinds; in the case of L , this means fiberwisecat
equality over A . The restrictions on equality in FOLDS over L will correspond to thecat
intuition that in category theory, one should not refer to equality of objects, and equality on

arrows should be mentioned only with reference to arrows which have the same domain and

the same codomain.

The above remarks, made for the case L = L , on how logic with dependent sorts over Lcat
is constrained with respect to ordinary first-order multi-sorted logic over �L� have natural

extensions to the case of a general vocabulary L . The constraints will be built into the general
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definition of the syntax.

Before giving the general definitions, to illustrate FOLDS (first-order logic with dependent

sorts), we write down the axioms for category in this logic.

∀U:O.∃i:U��U.I(i) ;

∀U:O.∀i:U��U.∀j:U��U.(I(i)�I(j)��i=j) ;

∀U:O.∀V:O.∀W:O.∀u:U��V.∀v:V��W.∃w:U��W.T(u, v, w) ;

∀U:O.∀V:O.∀W:O.∀u:U��V.∀v:V��W.∀w:U��W.∀w’:U��W

(T(u, v, w)�T(u, v, w’)���w=w’) ;

∀U:O.∀i:U��U.∀u:U��V.T(i, u, u) ;

∀U:O.∀i:U��U.∀u:V��U.T(u, i, u) ;

∀U:O.∀V:O.∀W:O.∀X:O.

∀u:U��V.∀v:V��W.∀w:U��W.∀x:W��X.∀y:V��X.∀z:U��X

((T(u, v, w)�T(v, x, y)�T(w, x, z))���T(u, y, z)) .

We have applied certain abbreviations in writing these formulas. The atomic formula I(i)

should be really I(U, i) ; U is also a variable in it; in fact, i:U��U cannot appear

anywhere without U . Similarly, T(u, v, w) is really T(U, V, W, u, v, w) . However, the

abbreviations used are systematic, and can be made into a formal feature. Also, w=w’ is an

atomic formula depending on all of the variables U, W, w, w’ ; it is written, more fully, as

w= w’ .A(U, W)

Many of the usual properties of categories, and of diagrams of objects and arrows in

categories, can be expressed in FOLDS over L . For instance, the definition of elementarycat
topos (with operations defined by universal properties up to isomorphism, not specified as

univalued operations) can be given as a finite set of sentences in FOLDS over L ; thecat
reader will find it easy to write down the axioms for elementary topos in the style of the above

axioms for category. As Freyd [F] and Blanc [B] have shown, and as we will see below, this is

closely related to the fact that the usual properties of categories, and of diagrams in categories,

are invariant under equivalence of categories.

Let us turn to the formal specification of the syntax of logic with dependent sorts. We fix a

DSV L . For a while, only the kinds in L will be used; let K be the full subcategory of L

on the objects the kinds; K is a simple category, the category of kinds of L ; it may regarded

as a DSV without relations.
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Note that kinds have been assigned a level in K ; levels range over the natural numbers less

than k , where k is the height of K . Recall that for any K∈K , we use the notation K�K

for the set of all proper arrows p:K��K with domain K . The set K�K will figure as thep
arity of the symbol K . In particular, the ones with empty arity are exactly the level-0 kinds.

We are going to define what sorts are, and what variables of a given sort are. These notions

are relative to a given L (actually, to the category K of kinds of L ), which is considered

fixed now.

When X is anything, we write x:X to mean that x = 〈2, X, a 〉 for some (any) a . When

we have defined sorts, and X is a sort, x:X is to be read as " x is a variable of sort X ".

By definition, a sort is an entity of the form

〈1, K, 〈x 〉 〉p p∈K�K

such that K is a kind, and for each p∈K�K , and for

X = 〈1, K , 〈x 〉 〉 ,p def p qp q∈K �Kp

we have x :X .p p

We will also write K( 〈x 〉 ) for 〈1, K, 〈x 〉 〉 ; thus, a sort is obtained byp p∈K�K p p∈K�K
filling in the " pth " place of a kind K , for any p in the arity K�K of K , by a suitable

variable x . The sort K( 〈x 〉 ) is said to be of the kind K .p p p∈K�K

When X is a sort, and x:X , that is, x= 〈2, X, a 〉 for some a , x is called a variable of

sort X ; a is called the parameter of the variable x . Usually, the notation x:X will imply

that X is a sort.

Note that every variable "carries" its own sort with it. This is in contrast with the practice of

most of the relevant literature (see e.g. [C]), where variables are "locally" declared to be of

certain definite sorts, but by themselves, they do not carry sort-information. For a sort

X = K( 〈x 〉 ) , Var(X) = {x :p∈K�K} ; and if x:X , Dep(x) = Var(X) ;p p∈K�K def p def
x depends on the variables in Dep(x) .
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Note also that any parameter gives rise to a variable of a given sort; for any sort X , and for

any a whatever, 〈2, X, a 〉 is a variable of sort X . In the "purely syntactic" contexts, it

suffices to restrict the parameters to be natural numbers (thereby ensuring a countable infinite

recursive set of variables of each sort). However, for the purposes of model-theory, it is

convenient to have a proper class of variables of each sort (as a consequence, we have a proper

class of sorts). Let us call a variable natural when its parameter, as well as that of each

variable it depends on, etc., is a natural number.

For a variable y , let's write X for the sort of y ( y:X ), and let's use the notationy y

y:X =K ( 〈x 〉 ) (1')y y y, p p∈K �Ly

displaying the ingredients of the sort X in dependence on y . Also, let's write a(y) fory
the parameter of y .

The first question arising concerning the definition of "sort" is whether the constituent entities

X are also sorts; the answer is "yes". Assume X = 〈1, K, 〈x 〉 〉 is a sort. Applyingp p p∈K�K
the definition of "sort" to X , for q∈K �K , we want that forp p

(X ) = 〈1, K , 〈x 〉 〉 ,p q q (rq)p r∈K �Kq

we have x :(X ) . But since K = K and (rq)p = r(qp) , we have (X ) =qp p q q qp p q
X ; and x :X , by X being a sort.qp qp qp

Although the definition unambiguously defines what sorts and variables are, it is not (quite)

clear, for instance, that for every K∈K , there are sorts of the kind K . We show that the sorts

of the kind K are in a bijective correspondence with families 〈a 〉 of arbitraryp p∈K�K
entities a ; the correspondence maps X = 〈1, K, 〈x 〉 〉 top p p∈K�K
a(X) = 〈a(x ) 〉 for which x = 〈2, X , a 〉 for a suitable X .def p p∈K�K p p p p

We want to prove that for any 〈a 〉 , there is a unique sort X of the kind K withp p∈K�K
a(X)= 〈a 〉 .p p∈K�K

Let K∈K and 〈a 〉 be given. By recursion on the level of K , for each p∈K�K ,p p∈K�K p
we define X (a sort, as it turns out), and the variable x :X . Let p∈K�K . We putp p p
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X = 〈1,K , 〈x 〉 〉 , and x = 〈2, X , a 〉 .p def p qp q∈K �K p def p pp

Since for each q∈K �K , K is of lower level than K , the entity x has been defined;p qp p qp
thus, X and x are defined for p as well. This defines X and x for all p .p p p p

Put X = 〈1, K, 〈x 〉 〉 . Then X formed for X as in the definition of "sort" isdef p p∈K�K p
the same as the X we just defined. Since x :X , X is a sort. Clearly,p p p
a(X) = 〈a 〉 .p p∈K�K

The uniqueness of X with this property is (also) easily seen.

Let us remark that for kinds K of level 0 , there is exactly one sort of the kind K , namely

K(∅) ; this can safely be identified with K itself.

Let us consider the case K = L . We have the level-0 sort O ; let us use the lettersgraph
U , V , W , ... for denoting variables of sort O ; U:O , etc. The level-1 sorts are of the

form A( 〈x 〉) with x , x :O , for which we write A(x , x ) . Thus, wep p∈{d,c} d c d c
have sorts A(U, V) , A(V, U) , A(U, U) , ... Let us use u , v , for variables of level 1 ; we

may have u:A(U, V) , which we paraphrase as u:U��V .

In the case of L , the ones listed are all the sorts and variables.graph

For K = L , we have the additional sorts of the kind A . Let us write d for the2-graph 1 10
arrow dd =dc , and c for cd =cc . A �K = {d ,c ,d ,c } . Writing1 1 10 1 1 1 10 10 1 1
A (x ,x ,x ,x ) for A( 〈x 〉 ) , we see that the sorts1 d c d c p p∈{d ,c ,d ,c }10 10 1 1 10 10 1 1
of level-2 are those

A(U, V, u, v)

for which U:O , V:O , u:U��V and v:U��V . Here, U and V , as well as u and v ,

may coincide. We would like to paraphrase A(U, V, u, v) as

u
�����A(U V) .
�����v
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Before we complete the definition of the syntax of logic with dependent sorts, let us discuss

the semantics of sorts. To begin with an example, let us take K = L . Now, we2-graph
know that the intended K-structures are the functors K��Set . But we may take a different

view. We may say that a K-structure M consists of

a set MO ,

for each A, B∈M(O) , a set MA(A, B) ,

and

for each A, B∈M(O) and f, g∈MA(A, B) , a set MA (A, B; f, g) .1
This way of thinking of a K-structure emphasizes that an "arrow" f cannot be conceived of

before its "domain and codomain" A, B, which have to be elements of MO , have been given;

there is a similar consideration for "2-cells". Also note that this kind of K-structure is not

literally the same as a functor K��Set . The main difference is that, in the new version of the

concept, we are not saying anything about the sets MA(A, B) being disjoint from each other

for distinct pairs (A, B) . Recall the two different styles of definition of "category" (or

"2-category"). The one in which arrows determine their domain and codomain is in the spirit

of our notion of structure in the original sense; the other in which we talk about a function

A, B��hom(A, B) assigning a hom-set to pairs of objects is related to the new concept.

The second version of the concept of K-structure has the following general form. A

K-structure M is given by specifying when, for K∈K , the entities MK( 〈a 〉 ) arep p∈K�K
defined, and when they are, what sets they are; such data are subject to the following

condition:

(2) MK( 〈a 〉 ) is defined iff for each p∈K�K , MK ( 〈a 〉 ) isp p∈K�K p qp q∈K �Kp
defined and a ∈ MK ( 〈a 〉 ) .p p qp q∈K �Kp

This formulation hides the recursive character of the concept. Once it is clarified, for all K of

level less than i , when MK( 〈a 〉 ) is defined, and if so, what set it is, then for anyp p∈K�K
K of level i , MK( 〈a 〉 ) is defined iff for all p∈K�K , MK ( 〈a 〉 ) isp p∈K�K p qp q∈K �Kp
defined, and a ∈ MK ( 〈a 〉 ) (note that each K is of level <i ), and in thatp p qp q∈K �K pp
case, MK( 〈a 〉 ) is any set.p p∈K�K

Any functor M:K��Set gives rise to a K-structure in the new sense. For any K∈K , define

M[K] as in (1) ; declare that MK( 〈a 〉 ) is defined iff 〈a 〉 ∈ M[K] , andp p∈K�K p p∈K�K
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in that case, put

MK( 〈a 〉 ) = {a∈MK: ��� (Mp)(a)=a } . (3)p p∈K�K def pp∈K�K

It is clear (using that M is a functor) that now, (2) is satisfied.

But conversely, "essentially all" K-structures in the second sense are obtained as functors

K��Set . The passage from a structure in the new sense to one in the old sense is as follows.

Given a K-structure M in the new sense, for any K∈K , M(K) is defined as the disjoint

union of all defined sets MK( 〈a 〉 ) , indexed by the tuples 〈a 〉 , and, forp p∈K�K p p∈K�K
p:K��K , M(p) is given by M(p)( 〈 〈a 〉 , a 〉)=a ; this defines a functorp p p∈K�K p
K��Set .

Making the statement that the two notions of K-structure are "essentially equivalent" precise

would require defining what we mean by an isomorphism of two K-structures M and N in

the new sense, and showing that the above two passages represent an equivalence of the

category of functors K��Set with natural isomorphisms as arrows on the one hand, and the

category of K-structures in the new sense, with isomorphisms in the new sense between them

as arrows on the other. We will not go through this exercise, and return to our original concept

of " K-structure" (" L-structure"). However, the concept of an M-sort as a set of the form (3)

will be used.

Let us now return to the full DS vocabulary L , and define what L-formulas in logic with

dependent sorts are. We will have two versions: logic with dependent sorts with (restricted)

equality, and logic with dependent sorts without equality. FOLDS with unrestricted equality

also makes sense; however, it turns out to be essentially the same as full multisorted logic with

equality over �L� (see Appendix C), hence, it is of no real interest.

Let us fix L .

Atomic formulas are defined very similarly to sorts. An atomic formula in logic with

dependent sorts without equality is an entity of the form

〈3, R, 〈x 〉 〉p p∈R�L
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such that R is a relation in L , and for each p∈R�L , and

X = 〈1,K , 〈x 〉 〉 ,p def p qp q∈K �Kp

we have x :X . Under these conditions, the X are sorts (just as with the definition ofp p p
"sort"). We write R( 〈x 〉 ) for 〈3, R, 〈x 〉 〉 .p p∈R�L p p∈R�L

In logic with (restricted) equality, we also have additional atomic formulas as follows. For any

maximal kind K (maximal object of K ), sort X=K( 〈x 〉 ) , and variables x , y ,p p∈K�K
both of sort X , we have that 〈4, X, x, y 〉 , written as

x = y ,X

is an atomic (equality) formula.

We define formulas ϕ and the set Var(ϕ) of the free variables of ϕ by a simultaneous

induction. Any atomic formula is a formula; if ϕ = R( 〈x 〉 ) , Var(ϕ) =p p∈R�L
{x :p∈R�L} ; if ϕ:=: x = y , Var(ϕ)=Var(X)∪{x, y} .p X

The sentential connectives t , f , � ,� , �� , ¬ ,��� can be applied in an unlimited manner;

Var( ) for the compound formulas formed using connectives is defined in the expected way;

e.g., Var(ϕ�ψ) = Var(ϕ)∪Var(ψ) .

Suppose ϕ is a formula, x is a variable such that there is no y∈Var(ϕ) with

x∈Dep(y) . Then ∀xϕ , ∃xϕ are (well-formed) formulas;

Var(∀xϕ) = Var(∃xϕ) = (Var(ϕ)-{x}) ∪ Dep(x) .def def

All formulas are obtained as described. (Of course, we have some determinations such as

∀xϕ = 〈∀, x, ϕ〉 , where ∀ = 7 (?), etc.)def

Let us make some remark on logic with (restricted) equality. Just as in ordinary first-order

logic, the syntax of logic with equality is the same as that of logic with equality, with the

equality-symbol understood as another relation symbol; it is only the semantics that makes the

difference.
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�Formally, for each maximal kind K , add to L an additional relation E , with morphismsK
eK0

������� eqE K subject to pe =pe , for all p∈K�L ; let us denote by L theK������� K0 K1eK1
extension of L by these additions. The equality formula x = y corresponds toX
E ( 〈z 〉 ) where z =x , z =y , z =z =x . Up to theK r r∈E �L e e pe pe pK K0 K1 K0 K1
exchange of these two formulas, for each maximal K , the syntax of FOLDS with (restricted)

eqequality over L , and the syntax of FOLDS without equality over L coincide.

A context is a finite set � of variables such that if y∈� , then Dep(y)⊂� . It is easy to see

that for any formula ϕ , Var(ϕ) is a context.

We explain the semantics of logic with dependent sorts. Let M be any L-structure. Let � be

a context. We define

M[�] = { 〈a 〉 : a ∈MK( 〈a 〉 ) for all y∈�} (4)def y y∈� y x p∈K �Ly, p y

(recall the notations (1') and (3)).

By recursion on the complexity of the formula ϕ , we define M[�:ϕ] , the interpretation of

ϕ in M in the context � , whenever � is a context such that Var(ϕ)⊂� ; we will have

that M[�:ϕ] ⊂ M[�] . For an atomic formula R( 〈x 〉 ) , we stipulate, for anyp p∈R�K
〈a 〉 ∈M[�] ,y y∈�

〈a 〉 ∈ M[�:R( 〈x 〉 )] ����� 〈a 〉 ∈ M(R)y y∈� p p∈R�K x p∈R�Kdef p

(recall that M(R) ⊂ M[R] ; clearly, 〈a 〉 ∈ M[R] automatically).x p∈R�Kp

In case of logic with equality,

〈a 〉 ∈ M[�:u= v] ����� a = a .y y∈� X u vdef

For the propositional connectives, the clauses are the expected ones; e.g.,
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〈a 〉 ∈ M[�:ψ�θ] �����y y∈� def
〈a 〉 ∈ M[�:ψ] and 〈a 〉 ∈ M[�:θ] .y y∈� y y∈�

Let us consider ∀xψ , and a context � such that Var(∀xψ)⊂� . Let x:K( 〈x 〉 ) .p p∈K�L
First, assume that x∉� ; this is the case in particular when

�=Var(∀xψ)=(Var(ϕ)-{x})∪Dep(x) .

⋅Let �’=� ∪{x} ; �’ is a context. When 〈a 〉 ∈M[�] and a∈MK( 〈a 〉 ) ,y y∈� x p∈K�Lp
let 〈a 〉 (a/x) denote 〈a’ 〉 for which a’=a for y∈� , and a’=a . We seey y∈� y y∈�’ y y x
that 〈a 〉 (a/x) ∈ M[�’] as follows. Note that for y∈� , we have x∉Dep(y)y y∈�
(since x∈Dep(y) would imply that x∈� ); as a consequence, a’∈MK ( 〈a’ 〉y y x p∈K �Ly, p y
is equivalent to a ∈MK ( 〈a 〉 for y∈� ; while for y=x , the same holds byy y x p∈K �Ly, p y
the assumption on a . We define

〈a 〉 ∈M[�:∀xψ] �����y y∈� def

for all a∈MK( 〈a 〉 ) , we have 〈a 〉 (a/x)∈M[�’:ψ] ;x p∈K�L y y∈�p

and

〈a 〉 ∈M[�:∃xψ] �����y y∈� def

there is a∈MK( 〈a 〉 ) such that 〈a 〉 (a/x)∈M[�’:ψ] .x p∈K�L y y∈�p

In the general case for � ⊃ Var(∀xψ) , define

�〈a 〉 ∈M[�:∀xψ] ��� 〈a 〉 � ∈M[�:∀xψ] ,y y∈� y y∈�
�〈a 〉 ∈M[�:∃xψ] ��� 〈a 〉 � ∈M[�:∃xψ] ,y y∈� y y∈�

�where � = Var(∀xψ) = Var(∃xψ) . It is clear that when x∉� , the second definition gives

the same answer as the first one.
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As usual, we also write M�ϕ[ 〈a 〉 ] for 〈a 〉 ∈M[�:ϕ] .y y∈� y y∈�

This completes the definition of the standard, Set-valued semantics of FOLDS.

�Let us note that when ϕ is a formula in logic with equality over L , and ϕ is the

eqcorresponding formula in logic without equality over L , obtained by exchanging the

�equality subformulas for E -formulas, and M is an L-structure, then M[�:ϕ] = M[�:ϕ] ;K
eqin the latter instance, M denotes the standard L -structure in which each E is interpretedK

as true equality. In short, the semantics of logic with equality over L coincides with the

eqsemantics of logic without equality over L when the latter is restricted to standard

structures.

Let us formulate a simple translation of logic with dependent sorts into ordinary multisorted

*logic. This amounts to a mapping ϕ��ϕ of L-formulas ϕ of FOLDS to �L�-formulas of

multisorted logic. Let us agree that every variable x:X , with X a sort of kind K , will be

regarded, in multisorted logic over L , a variable of sort K .

* *The mapping ϕ��ϕ will be so defined that the free variables of ϕ are exactly the same

as those of ϕ . Moreover, the essential property of the translation is that, for any L-structure

M ,

*M � ϕ[ 〈a 〉 ] ��� M � ϕ [ 〈a 〉 ] ;y y∈� y y∈�

here, in the second instance, we referred to the usual notion of truth for multisorted logic. The

definition is this:

for an atomic formula ϕ :=: R( 〈x 〉 ) ,p p∈R�K
* �ϕ = R( 〈x 〉 ) = ∃y∈R. �	
 p(y)= x ; (5)def p p∈R�K def K pp∈R�L p

for an equality formula ϕ :=: x= y ,X
*ϕ = x= ydef K

(here, X is a sort of the kind K ) ;

28



*( ) commutes with propositional connectives;

* *(∀xϕ) = ∀x( ��� p(x)= x ��� ϕ ) ;def K pp∈K�L p

* *(∃xϕ) = ∃x( ��� p(x)= x � ϕ )def K pp∈K�L p

(in the last two clauses, x:K( 〈x 〉 ) ).p p∈K�L

We have a straightforward extension of the semantics of logic with dependent sorts to

interpretations in categories so that the standard semantics will appear as the special when the

target category is Set . First of all notice that the notion of C-valued L-structure makes

sense for any category C ; it is that of a functor M:L��C such that for any R∈Rel(L) , the

family 〈M(p) 〉 of morphisms in C is jointly monomorphic. The use of the notationp∈R�L
M:L��C will imply that M is a C-valued L-structure. From now on, let us assume, at least,

that C has finite limits.

Let M:L��C . For any object A of L (kind or relation), we define M[A] as the limit (joint

Φ Mpullback) of the diagram A�(L-{1 })���L���C , with Φ the forgetful functor; M	ΦA
Mmaps p:A��K to M(K ) . Let us write π , or π , for the limit projectionp p p p

MM[A]��M(K ) , and let π =π :M(A)��M[A] be the canonical arrow for whichp A A
Mπ 	π =M(p) . When A is a relation R , then π is a monomorphism; we also write mp A R R

M Ufor π . When A is a kind K , then U[K] and π :U(K)��U[K] are defined for anyR p
U:K��C (formally, by using the above definition for K in place of L ); of course, when

U MU=M�K , then U[K]=M[K] , π = π .p p

Continuing, let � be a context; we will define M[�] . We construct a graph 〈� 〉 and a

diagram Φ : 〈� 〉���L as follows. The objects of 〈� 〉 are the elements of � ,
�

Ob 〈� 〉 = � . The arrows of 〈� 〉 are 〈y, z; p 〉:y��z , one for each p∈K �L such thaty
z=x . Φ maps y to K , 〈y, z; p 〉:y��z to p:K ��K (=K ) . M[�] is definedy, p � y y p z
as the limit of the composite MΦ : 〈� 〉���C ; let us denote the projections for this limit by

�
M Mπ =π =π :M[�]��M(K ) (y∈�) .y y �, y y
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We define M[�:ϕ] as a certain subobject of M[�] , by recursion on the complexity of ϕ .

Let ϕ be the atomic formula R( 〈x 〉 ) , and let � be a context such thatp p∈R�L
Var(ϕ)={x :p∈R�L} ⊂ � . Let f:M[�]��M[R] be the arrow, given by the universalp
property of the limit defining M[R] , for which π �f=π ( p∈R�L ). M[�:ϕ] is definedp xp
by the pullback

M[�:ϕ]������M(R)
M � � � Mm � � m�, ϕ � � R

M[�]�������M[R]f

M(that is, M[�:ϕ] as a subobject of M[�] is represented by the monomorphism m ).�, ϕ

For formulas built by a propositional connective from simpler formulas, the definition is the

expected one. E.g.,

M[�:ϕ��ψ] = M[�:ϕ]���M[�:ψ] ,

where on the right-hand-side, reference is made to the Heyting implication ��� in the

subobject lattice S(M[�]) ; of course, M[�:ϕ��ψ] is defined if and only if the

corresponding instance of Heyting implication is defined in S(M[�]) .

⋅Let x∉� , and Var(∀xϕ)⊂� . We have f:M[�∪{x}]��M[�] for which π �f=π’y y
M M ⋅( y∈� ; π =π , π’=π ⋅ ). Let ∃ , ∀ :S(M[�∪{x}]) ⊃�� S(M[�]) be they �, y y �∪{x}, y f f

* ⋅partial left and right adjoints to f :M[�]��M[�∪{x}] , the latter defined by pulling back

along f . We define

⋅M[�:∃xϕ] = ∃ (M[�∪{x}:ϕ]) ,f

⋅M[�:∀xϕ] = ∀ (M[�∪{x}:ϕ]) .f

For M[�:∃xϕ] or M[�:∀xϕ] to be defined, it is necessary and sufficient that the

corresponding instance of ∃ , respectively ∀ be defined.f f
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For the coherent part of the language (atomic formulas, t , f , � , � , ∃ ) to be interpretable in

the category, it suffices that C is a coherent category (see e.g. [MR1]). For the interpretation

of the full language, it is suffices to have that C is a Heyting category (see e.g. [MR2]).
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§§§2. Formal systems

In this section, a vocabulary L for logic with dependent sorts is assumed fixed. Relations,

formulas, etc., are all from/over L .

*For a formula ϕ , Var (ϕ) is "the set of all variables in ϕ , free or bound". More

* * * *precisely, Var (ϕ) = Var(ϕ) for atomic ϕ ; Var (ϕ�ψ) = Var (ϕ)∪Var (ψ) , and

similarly for the other connectives;

* * *Var (∀xϕ) = Var (∃xϕ) = {x}∪Dep(x)∪Var (ϕ) .

Let � , � be contexts. A map s:���� is called a specialization if whenever x∈� ,

x:K( 〈x 〉 ) , we have X=K( 〈s(x ) 〉 ) is a sort, and s(x):X .p p∈K�L p p∈K�L
The identity map ���� is a specialization, the composite of specializations is a

specialization. Moreover, if a specialization is a bijection, then its inverse is also a

specialization, and the restriction of a specialization to a subset of its domain which is a

context is also a specialization. A notation such as s:���� will refer to a specialization.

For a sort X , resp. a formula ϕ , and a specialization s:���� such that Var(X)⊂� , resp.

Var(ϕ)⊂� , we define X�s , resp. ϕ�s , "the result of substituting s(x) for all free

occurrences of x in X , resp. in ϕ , simultaneously for all x∈� ".

If X is the sort K( 〈x 〉 ) , and if ϕ is the atomic formula R( 〈x 〉 ) , wep p∈K�L p p∈R�L
put

X�s = K( 〈s(x ) 〉 ) , ϕ�s = R( 〈s(x ) 〉 ) .def p p∈K�L def p p∈R�L

For the equality formula ϕ:=: x= y , ϕ�s :=: s(x)= s(y) . The property of sX X�s
being a specialization ensures that X�s is a sort, and ϕ�s is a(n atomic) formula in both

cases.

(ϕ�ψ)�s = (ϕ�s)�(ψ�s) ,def

and similarly for the other connectives.
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Suppose ϕ = ∀xψ . Let us first assume that �=Var(∀xϕ) . Consider the sort X of x ,

*x:X ; let y be a variable of sort X�s which is new in the sense that y∉Var (ψ)∪�∪� .

Define t to be the function t:�∪{x}����∪{y} for which t�� = s , and t(x) = y

(note that x∉� ). Notice that Var(X)⊂� , Var(X�s)⊂� , thus �∪{x} and �∪{y} are

contexts, and t is a specialization. We put (∀xψ)�s = ∀y(ψ�t) . For a generaldef
s:���� , (∀xψ)�s is defined as (∀xψ)�s’ , with s’ = s�Var(∀xψ) . We make a

similar definition for ∃ in place of ∀ .

Since in the above description, y was not uniquely determined by the conditions given,

substitution is not quite well-defined. We may correct this by making a particular, but

artificial, choice of y . A better procedure is to identify the formulas obtained by different

choices of y ; this we do by defining the equivalence relation on formulas of one being an

alphabetic variant of the other. However, for defining "alphabetic variant" it is convenient to

use substitution. As long as substitution is not "well-defined", what we have is a relation

" ϕ�s = θ " of three variables ϕ, s, θ rather than an operation (ϕ, s)���ϕ�s .

Let ϕ be a formula, x and u variables of the same sort (for which we write x�u ), and

assume that for all v∈Var(ϕ) , x∉Dep(v) (that is, either x∉Var(ϕ) or it is a "top"

element in Var(ϕ) ). Then the mapping

s:Var(ϕ)∪{x}��Var(ϕ)∪{u} ,

defined by s(v)=v for v∈Var(ϕ)-{x} and s(x)=u , is a specialization. Under these

conditions, we put ϕ�(x��u) = ϕ�s [more precisely, " ϕ�(x��u) = θ " iffdef
" ϕ�s = θ " ].

The relation ϕ�ψ , " ϕ is an alphabetic variant of ψ ", is defined as follows.

If ϕ is atomic, then ϕ�ψ iff ϕ = ψ .

ϕ �ϕ � ψ iff ψ = ψ �ψ for some ψ with ϕ �ψ (i=1, 2) ; and similarly for1 2 1 2 i i i
the other connectives.

∀xϕ � ψ iff ψ = ∀x’ϕ’ for some x’�x and ϕ’ such that, for some u for which

* *u�x�x’ and u∉Var (ϕ)∪Var (ϕ') , we have that ϕ�(x��u) � ϕ’�(x’��u) .

Similarly for ∃ in place of ∀ . [More precisely, we should say, in place of

ϕ�(x��u) � ϕ’�(x’��u) , that for some σ and τ such that " ϕ�(x��u) = σ " and
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" ϕ�(x’��u) = τ ", we have σ � τ .]

One shows in a routine manner that � is an equivalence relation, ϕ�ψ implies that

Var(ϕ) = Var(ψ) , and � is compatible with substitution: if ϕ � ψ , " ϕ�s = ϕ’ ", and

" ψ�s = ψ’ " imply that ϕ’ � ψ’ . In particular, substitution ( )�s is an operation on

equivalence classes of � . Note that the logical operations are compatible with � ; ϕ�ψ
implies that ∀xϕ � ∀xψ , etc. Also, the semantics of alphabetic variants are identical.

Henceforth, we identify alphabetic variants. In other words, a formula is, strictly speaking, an

equivalence class of the "alphabetic variant" relation � .

When s:���� , Var(ϕ)⊂� , we have Var(ϕ�s)⊂� . If, in addition, t:���� , then

(ϕ�s)�t = ϕ�(ts) . Also, ϕ�1 = ϕ .�

An entailment is an entity of the form ϕ ��� ψ , where ϕ , ψ are formulas, � is a context,
�

and Var(ϕ) , Var(ψ) ⊂ � . We formulate rules of inference involving entailments. Each

rule is a relation �(ε , ..., ε ; ε ) between entailments ε , ..., ε , ε ;0 n-1 n 0 n-1 n
ε , ..., ε are the premises, ε is the conclusion of the respective instance of � . We0 n-1 n
display instances of � in the form

ε ε ε0 1 n-1� ����������������� .εn

n may be 0 , in which case we have a rule with no premises, an axiom schema.

I. Structural rules:

(Taut) ���������
ϕ ��� ϕ

�

ϕ ��� ψ ψ ��� σ
� �(Cut) �������������������

ϕ ��� σ
�
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ϕ ��� ψ
�(Subst) ������������� ( s:����� )

ϕ�s ��� ψ�s
�

II. Rules for the connectives

(t) ���������
ψ ��� t

�

(f) ���������
f ��� ψ

�

θ ��� ϕ θ ��� ψ
� �(�) �������������������

θ ��� ϕ�ψ
�

ϕ ��� θ ψ ��� θ
� �(�) �������������������

ϕ�ψ ��� θ
�

θ�ϕ ��� ψ
�(��) ��������������

θ ��� ϕ��ψ
�

(¬) ������������ ( ¬θ abbreviates θ��f )
t ��� θ�¬θ

�

(��) ������������������������
(ϕ�ψ)�θ ��� (ϕ�θ)�(ψ�θ)

�

III. Quantifier rules

θ ������� ϕ⋅
�∪{x}(∀) ��������������� ( x∉� )

θ ������� ∀xϕ
�
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ϕ ������� θ⋅�∪{x}(∃) ��������������� ( x∉� )
∃xϕ ������� θ

�

(�∃) ������������������ ( x∉Var(θ) )
θ�∃xϕ ��� ∃x(θ�ϕ)

�

IV. Equality axioms

(E ) ������������1 t ��� x= xX�

(E ) ���������������2 x= y ��� y= xX X�

(E ) �����������������������3 x= y � ϕ ��� ϕ�(x��y)X �

In the rules, ϕ , ψ , θ and σ ranges over formulas, x over variables, � and � over finite

contexts. An implicit condition is that each entailment shown has to be well-formed. E.g., in

(t) and (f) , Var(σ)⊂� . In (∀) and (∃) , Var(θ) ⊂ � ; since x∉� is explicitly

assumed, it follows that x∉Var(θ) . Note that, in the same rules, the condition for the

well-formedness of ∀xϕ , ∃xϕ is satisfied as a consequence of the other provisos. More

⋅precisely, if � is a context, Var(ϕ)⊂�∪{x} (in particular x∉� ), then ∀xϕ , ∃xϕ are

well-formed. Namely, for y∈Var(ϕ) , if y≠x , then y∈� , hence Dep(y)⊂� , and thus

x∉Dep(y) ; and if y=x , then x∉Dep(x) anyway.

For (E ) , note that since X is a sort of a maximal kind, ϕ�(x��y) is well-defined.3

The double-lined "rules" contain more than one rule. The double line indicates that inference

can proceed in both directions. E.g., in (�) , three rules are contained: the one that infers the

entailment below �� from the two above �� , and the ones allowing to infer either of the

two entailments above �� from the one below �� .

We have coherent, classical and intuitionistic logic with dependent sorts, each with or without
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equality. Coherent logic involves the (coherent) operators t , f , � , � , ∃ ; classical and

intuitionistic logics involve the remaining two, �� and ∀ . Coherent logic without equality

has the rules all those not mentioning �� and ∀ in their names; intuitionistic logic also has

the additional rules (��) and (∀) (and then (��) , (�∃) become superfluous);

classical logic has also the remaining rule (¬) . The versions with equality also have the

rules (E ) , (E ) and (E ) .1 2 3

A coherent formula is one built up by the coherent operators starting with the atomic formulas;

an entailment ϕ ��� ψ is coherent if both ϕ , ψ are coherent formulas. A coherent theory in
�

logic with dependent logic is a pair T=(L, Σ) of a DS vocabulary L and a set Σ of

coherent entailments over L . Cons (T) is the least set of coherent L-entailments thatcoh
contains Σ as a subset, and is closed under the rules for coherent logic; we write T � ε , or

T � ε , and say that ε is deducible from T in coherent logic with dependent sorts, forcoh
ε∈Cons (T) . Again, we have the versions with or without equality.coh

A theory in intuitionistic logic , or in classical logic (with dependent sorts) is defined similarly,

mutatis mutandis. Again, we have logic with or without equality. Aside the exclusion of

equality in the logics without equality, all formulas are used, in contrast to coherent logic. We

have the concept T � ε of deducibility for each of these logics with dependent sorts.

We have completeness theorems for the various logics (coherent, intuitionistic, classical) with

dependent sorts. What these completeness theorems show is that logic with dependent sorts is

"self-contained". The initial view of logic with dependent sorts is that it is a fragment of

ordinary multi-sorted logic. The fact that truths in the fragment can be deduced by deductions

using only formulas also in the fragment is a sign, indeed, a necessary sign, that the fragment

deserves the designation "logic".

To formulate completeness, let us fix a semantic category C (in the first instance,

C = Set ). Let M be a C-valued L-structure. Let us write M� ϕ ���ψ for
�

M[�:ϕ] ≤ M[�:ψ] , and say that M satisfies the entailment ϕ ���ψ . A model of aM[�]
�

theory T=(L, Σ) is a C-valued L-structure that satisfies all entailments in Σ . For a theory

T , and an entailment ε , let us write T � ε , and say that the entailment ε is aC
C-consequence of T , to mean that all C-valued models M of T satisfy ε . For a class �

of categories, T � ε means that T � ε for all C∈� .
� C
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Mod (T) is the category of all C-valued models of T ; it is a full subcategory ofC
Fun(L,C) . We write Mod(T) when C = Set .

The completeness theorem for coherent logic, as well as for classical logic, with dependent

sorts, with or without equality, is expressed by the equivalence

T � ε ��� T � εSet

(of course, the symbol � is to be taken in any one of the four distinct senses corresponding to

the four logics listed; ε accordingly ranges over the entailments of the corresponding logic).

The completeness theorem for intuitionistic logic with dependent sorts, with or without

equality, is

T � ε ��� T � ε ,Kr

Pwhere Kr (for Kripke) denotes the class of categories of the form Set , with P any poset.

As usual (see e.g. [MR2]), the completeness theorem for intuitionistic logic with dependent

sorts may be formulated in the style of Kripke's semantics.

We will prove of the completeness theorems in §4.
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§§§3. Quantificational fibrations

The notation and terminology of [M3] is used. The particular kinds of fibrations introduced

here do not appear in loc.cit., but most of the needed ingredients do.

EE �
Let �� = �� be a fibration; let � be a class of arrows in B . Assume:

B B
�

B has a terminal object, and pullbacks ( B is left exact) .

� is closed under pullbacks: when

qA���������B
� �� � (1)� �� � �q’A’��������B’

is a pullback, then q∈� implies q’∈� .

AEach fiber � ( A∈B ) is a poset; in fact, it is a lattice (with top and bottom elements,

denoted t , f ; the meet and join operations are written as � , � , or more simply asA A A A
� , � if no confusion may arise).

* B A A BFor each (q:A��B)∈� , q :� ���� has a left adjoint ∃ :� ���� , whichq
satisfies the Beck-Chevalley condition with respect to all pullback squares (1), and which

satisfies Frobenius reciprocity (see pp. 342 and 343 in [M3]).

(Note that a fibration with posetal fibers (the only ones we are interested in here) is the same

as a functor

*op f B f AB ���Poset : A���B ��� � �����

to the category Poset of posets and order-preserving maps. )

The data � , � as described make the pair (�, �) a ��∃-fibration. We may denote

(�, �) by � ; we may write � for � . Dropping the references to f and � results in
� A A
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the notion of �∃-fibration.

A morphism M:���� of ��∃-fibrations is a morphism of fibrations (among others,

E ����E
� �

M=(M , M ) , M :B ��B , M :E ��E , � � � ; in practice, we omit the1 2 1 � � 2 � � B ����B
� �

subscripts 1 and 2 , and write M(A) for M (A) , etc.) that takes � -arrows to1 �
� -arrows, induces lattice homomorphisms on the fibers, and preserves all instances of each
�

∃ ( q∈� ). M is conservative with respect to a pair (X, Y) of predicates over the sameq �
base-object A if MX≤ MY implies X≤ Y ; M is conservative if it is conservative for allMA A
such (X, Y) .

The ��∃-fibrations and their morphisms form a category ��∃ . In fact, we can make ��∃
into a 2-category, by making ��∃(�,�) into a category; the latter is a full subcategory of

[�, �] (see p. 348 in [M3]). An arrow

M
�������
� �h �
�������N

Ais a natural transformation h:M ���N satisfying MP ≤ NP for all A∈B , P∈� ( for1 1 h �A
*the notation X ≤ Y , see p. 349 in [M3]; X≤ Y ��	 X≤f Y ).f f

For a category C with pullbacks, �(C) , the fibration of predicates of C , is the fibration �

Awith base-category C for which � =S(A) , the �-semi-lattice of subobjects of A , and for

*f:A��B , f :S(B)��S(A) is the usual pullback-mapping. To say that �(C) is a

��∃-fibration, with � the class of all arrows in C , is the same as to say that C is a

coherent category (see, e.g., [MR2]).

Consider �(Set) as a ��∃-fibration, with � the class of all arrows in Set . A model of

� is a morphism ����(Set) . Mod(�) is the category of models of � ; Mod(�) =

��∃(�,�(Set)) . More generally, let us write Mod (�) for ��∃(�,�) .
�

E
Until further notice, fix � = (��,�) , a small ��∃-fibration. Proposition (5) below is the

B
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completeness theorem for ��∃-fibrations, the fact that there are enough models of � to

distinguish between any pair of different predicates in a fiber. The ones preceding (5) are used

for the proof of (5).

Let us write 1 for 1 , the terminal object of B ; and t for t , f for f . � has theB 1 1
1disjunction property if for any X, Y ∈ � , if X�Y = t , then either X = t , or Y = t . � has

Athe existence property if whenever (! :A��1)∈� and X∈� , we have that ∃ (X) = tA !A
*implies the existence of some c:1��A such that c (X) = t .

(1) Suppose � has the disjunction and the existence properties, and that t ≠ f

(consistency). Then Mod(�) has an initial object ; in fact, M=(M , M ) given by1 2
A *M =hom (1,-) and for X∈� , M (X) = {c:1��A : c (X)=t} is an initial object.1 B 2

( M may be called the global-sections model ����(Set) ; we say c:1��A belongs to X

*over A if c (X)=t .)

The proof is identical to that of 2.2, p. 351 in [M3], although the statement of the latter does

not include that of the present proposition.

AFor a fibration � , X∈B and X∈� , the "slice" fibration �/(A, X) was described in [M3].

fThe base-category of �/(A, X) is B/A ; the fiber over (B���A)∈B/A is

B B{Y∈� : Y≤ X} , ordered as � is. We have a canonical morphismf
π’ B ⋅δ=δ :����/(A, X) that takes B∈B to (B×A����A) , and Y∈� to Y�X =A, X def

* *π Y�π’ X ( ≤ X ; π:B×A���B is the other projection).π’

For a ��∃-fibration � , we define the ��∃-fibration � = �/(A, X) by also putting

fB�����C( � � � ) ∈ � �	
 f∈� .
� � � defA
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(2) �/(A, X) is a ��∃-fibration, and δ :����/(A, X) is a map ofA, X
��∃-fibrations.

The proof is essentially contained in Section 2 of [M3]. It is helpful to add to 2.4(i) and (ii) of

[M3] that the forgetful functor B/A��B creates pullbacks; with this, the required instances of

the Beck-Chevalley and Frobenius reciprocity conditions become clear.

A(3) If (! :A��1)∈� and X∈� such that ∃ (X) = t , then δ isA ! A, XA
Bconservative. If X �X = t , and Y, Z∈� , then either δ or δ is conservative1 2 t t, X t, X1 2

with respect to (Y, Z) .

See 2.7 in [M3].

By a straightforward transfinite iteration of the construction of �/(A, X) (compare 2.8 in

[M3]), we conclude from (2) and (3) that

A *(4) For any given A∈B , X, Y∈� , there are a ��∃-fibration � having the

*disjunction and existence properties, and a map ���� of ��∃-fibrations which is

conservative with respect to (X, Y) .

A(5) For any given A∈B , X, Y∈� , there is M:����(Set) , a map of

��∃-fibrations, which is conservative with respect to (X, Y) .

Proof. In �/(A, X) , with 1=1 and δ=δ , we have the global element
�/(A, X) A, X

d :1���δ(A) : A�������A×AA � �
� �1 � 	 π’A A
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that belongs to δ(X) ; moreover, d belongs to δ(Y) over A iff X≤Y . Now, start withA
X, Y over A in � such that X�Y ; pass to �’=�/(A, X) ; in �’ ,

* * *t=d δ(X) � d δ(Y)=Y’ . By (4), there is Φ:�’��� which is conservative with respectA A
*to (t, Y’) such that � has the disjunction and existence properties. By (1), we have the

*global-sections model N:� ���(Set) . The global-sections model is automatically

conservative with respect to any pair (t, Z) over 1 in its domain. We conclude that, for

P=N�Φ : �’���(Set) , P is conservative with respect to (t, Y’) , that is,

* *P(d δ(X)) � P(d δ(Y)) .A A

It follows that

P(δ(X)) � P(δ(Y)) .

For M = P�δ : ����(Set) , this means that M(X) � M(Y) .

A ����∃∀-fibration is a ��∃-fibration � such that

A * B Aevery fiber � is a Heyting algebra, and for all f:A��B , f :� ��� is a

homomorphism of Heyting algebra; and

*for each q∈� , q (also) has a right adjoint which satisfies the Beck-Chevalley
�

condition with respect to all (relevant) pullback squares.

For a category C with pullbacks, to say that �(C) is a ����∃∀-fibration, with � the

class of all arrows in C , is the same as what we usually express by saying that C is a

Heyting category (see [MR2]). Of course, Set is a Heyting category; more, for any (not

Anecessarily small) category A , Set is a Heyting category. See e.g. [MR2]. The coherent

A Astructure in Set (the ��∃-fibration structure in �(Set ) ), although not the full

AHeyting-structure, is "computed pointwise"; that is, the projections π :�(Set )���(Set)A
( A∈A ) are morphisms of ��∃-fibrations.
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E Mod(�)Given any small ��∃-fibration �� , we may form �(Set ) , and we have the
B

evaluation morphism

Mod(�)e : ���������������(Set )
�

X ��������� [M���M(X)]� ����������� �� �
� �
A ��������� [M���M(A)]

of ��∃-fibrations.

Mod(�)(6) For a small ����∃∀-fibration � , e :�����(Set ) is a morphism of
�

����∃∀-fibrations.

Proof. The proof is a variant of that of 5.1 in [M3]. The fact that e is conservative follows

from (5). We need to show that e preserves Heyting implications in the fibers, and ∀ 's;
� f

we limit ourselves to the second task. By using the way the ∀ 's are computed in anyf
A

�(Set ) , our task is as follows.

A BAssume M:���Set , a morphism of ��∃-fibrations; (f:A��B)∈� , X∈� , ∀ X∈�f
and b∈M(B)-M(∀ X) . We want the existence of N∈Mod(�) , a homomorphism h:M��Nf
and a∈N(A)-N(X) such that h (b) = (Nf)(a) .A

Let us use ordinary multisorted first-order logic to talk about models of � and

homomorphisms between them. Consider the language L=L(�) whose sorts are the objects

of B , operation-symbols are the arrows of B , and relation-symbols are all unary, and they

Acorrespond to the predicates P∈� ; P is sorted P⊂A . It is clear that every M∈Mod(�)

may be regarded an L-structure; morphisms in Mod(�) are exactly the morphisms of

L-structures. Moreover, there is a (coherent) theory T=T(�) over L such that

Mod(�) = Mod(T) .

For a given L-structure M , homomorphisms h:M��N with varying N are in a 1-1
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+correspondence with models of Diag (M) , the positive diagram of M , which is a set of

atomic sentences in the diagram language L(�M�) in which an individual constant a of
�

+sort A has been added to L for each sort and a∈M(A) ; the elements Diag (M) are

+those atomic sentences that are true in (M, a) . We may also define Diag (M) as
� a∈�M�

D (M) ∪ D (M) , where D (M) contains all f(a)= b for which f:A��B in B ,b p b � B�
a∈M(A) , b∈M(B) and (Mf)(a)=(b) ; and D (M) contains all P(a) where A∈B ,p �

AP∈� and a∈M(P)⊂M(A) .

Returning to our task, let a be a new individual constant of sort A ; under the assumptions,�
we need the satisfiability of the set

T ∪ D (M) ∪ D (M) ∪ {¬X(a)} ∪ {b= f(a)} .b p � � B �

Assume this fails. By compactness, there are finite subsets D⊂D (M) , D’⊂D (M) such thatb p

T ∪ D ∪ D’ � b= f(a) ��� X(a) .
� B � �

Let 〈c 〉 be distinct elements of M , c ∈M(C ) , each distinct from b , such thati i<n i i
every c that occurs in D∪D’ is one of the c , or is b . Let z be distinct variables, z

� �i � i i
of sort C ; y a variable of sort B , x one of sort A , all distinct. Let us replace c byi i

� �z , b by y ; we obtain D from D , D’ from D’, and we get thati

� �T � ∀〈z 〉 ∀y∀x(���D	���D’	y= f(x) ��� X(x)) . (7)i i<n B

Working inside the category B with finite limits, we can construct as an appropriate finite

limit an object C together with morphisms π :C��C , π:C��B such that for anyi i
� � � �L-structure N , N�(���D)[ 〈c 〉 b/ 〈z 〉 y] iff there is c∈N(C) withi i<n i i<n

� � � � �N(π )(c) = c , N(π)(c) = b (actually, c is then uniquely given). In particular, therei i
�is an element c∈M(C) such that M(π )(c) = c , M(π)(c) = b . For any α∈D’ , leti i

* * *α be the element of the fiber over C given as follows: if α :=: P(z ) , α = π (P) ;i def i
* * * � Cif α :=: P(y) , α = π (P) . Let Q = ���{α : α∈D’} ∈ � . Notice that c∈M(Q) .def

Consider the pullback-square
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ρA× C�������AB �g� �f� �� �
C ������� Bπ

We claim that

* *g (Q) ≤ a (X) . (8)

By (5), it suffices to check that this holds in each model N∈Mod(�) . Assume

� * � � � � � �N∈Mod(�)=Mod(T) , d∈N(g (Q)) , c=(Ng)d , a=(Nρ)d , c =(Nπ )c ,i i
� � � � � � �b=(Nπ)c ; we have b=(Nf)a , N�(���D)[ 〈c 〉 b/ 〈z 〉 y] by the definingi i<n i i<n

� � �property of (C, 〈 π 〉 , π) and N�(���D’)[ 〈c 〉 b/ 〈z 〉 y] by the definitioni i i i<n i i<n
� � *of Q . Since N satisfies the sentence in (7), it follows that a∈NX , and thus d∈N(a (X)) ,

which shows the claim.

* *Since f∈� , also g∈� . By (8), Q ≤ ∀ ρ (X) = π ∀ (X) . However, in M , c∈M(Q) ,g f
*but c∉π ∀ (X) , since b∉∀ (X) ; this is a contradiction.f f

A �	¬∃-fibration is a �	∃-fibration in which every fiber is a Boolean algebra. Every

�	¬∃-fibration is a �	��∃∀-fibration.

Without essentially changing the concepts, in each of the various kinds of fibrations introduced

above, the class � of "quantifiable" arrows may be required, in addition, to be closed under

composition. If (�, �) is a "quantificational" fibration (of one of the four kinds introduced


 
above), then, with � the closure of � under composition, (�, � ) is again one of the

same kind as the reader will readily see. Also, any morphism f:(�, �)��(�’, �’) of one


 
of the four kinds is a morphism f:(�, � )��(�’, �’ ) of the same kind.
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§§§4. The syntax of first–order logic with dependent sorts as a fibration

Let L be a DSV; let K be the full subcategory of the kinds. Consider the category B=BK
which is the free finite-limit completion of K : i:K��B , and for any category S with finite

*limits, i :Lex(B,S)���Fun(K,S) is an equivalence of categories ( Lex(B,S) is the

Kcategory of left exact functors B��S , Fun(K,S) = S the category of all functors K��S ,

*i is defined as composition with i ).

K opIt is well-known that for any (small) category K , B can be given as (Fp(Set ))K
( Fp(M) is the full subcategory of finitely presentable objects of M ), with i:K⊂B the

K opfunctor i:K��(Fp(Set )) induced by Yoneda. (The small-colimit completion of A is

op op(A ) (A )Y:A��Set ; the finite-colimit completion of A is Y:A��Fp(Set ) ;

opop op (A ) optherefore, the finite limit completion of A is Y:A ��(Fp(Set )) ).

KNow, for any simple category K , Fp(Set ) is the category of finite functors K��Set ; a

functor F:K��Set is finite if El(F)={(K, a): K∈Ob(K), a∈FK} is a finite set.

Namely, each finite functor is finitely presentable, the finite functors are closed under finite

Kcolimits in Set , and every functor is the filtered colimit of the collection of its finite

subfunctors (the latter uses that K has finite fan-out); this suffices.

KThus, B can be taken to be the opposite of the category Fin(Set ) of finite functors

K��Set ; the canonical functor i:K��B is (induced by) Yoneda.

Let Con[K] be the category whose objects are the contexts (of variables over K ), and

whose arrows are the specializations. I claim that

KCon[K] � Fin(Set ) .

Let F:K���Set be a finite functor. I define a mapping
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F(K, a) ���� y : El(F)����VARK, a

into the class VAR of variables as follows:

F Fy = 〈2,Y , a 〉K, a def K, a

where

F FY = K( 〈y 〉 ) .K, a K , (Fp)(a) p∈K�Kp

FThis is a legitimate definition by recursion on the level of K . Y is a type; this requiresK, a
that

F FK ( 〈y 〉 ) = Y ,p K , (F(qp))(a) q∈K �K K , (Fp)(a)qp p p

Fwhich is true since (F(qp))(a) = (Fq)((Fp)(a)) . Hence, y is a variable.K, a

FWe let � = {y : (K, a)∈El(F)} . It is immediate that � is a context. We have aF def K, a F
bijection

F ≅(K, a)���y : El(F)���� .K, a F

If h:F���G is a natural transformation, we let s=s :� ��� be defined byh F G
F G F Gs(y )=y . s is a specialization: this requires that Y �s = Y ,K, a K, h (a) K, a K, h (a)K K

which is the same as h ((Fp)(a)) = (Gp)(h a) ( p:K��K ) , which holds by theK K pp
naturality of h . It is immediate that we have a bijection

≅h ��� s : Nat(F, G)�����Spec(� , � ) .h F G

h kAlso, if F���G���H , then s = s �s , and s =1 .kh k h 1 �F F
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Thus far, we have seen that we have the full and faithful functor

F �F K�h ���� s : Fin(Set )����Con[K] (1)
� h�
G �G

Now, given a context � , define F=F :K��Set by FK = {z∈�: K =K} , and� z
Fp:FK��FK by (Fp)(z)=x ; F is a finite functor. Moreover, we have the mapp z, p

Fs : z ��� y : ����� ;K , z Fz

s is a specialization since

F Fz : K ( 〈x 〉 ) , y : K { 〈y 〉 ,z z, p p∈K�K K , z z K , (Fp)(z) p∈K �Kz p z

F Fand s(x ) = y = y , by the definition of F .z, p K , x K , (Fp)(z)z z, p p

It is clear that s is a bijection, i.e., an isomorphism in Con[K] .

We have verified that (1) is an equivalence of categories, thus our claim.

It is easy to see that the image of (1) consists of those contexts � for which

z∈� �� (K , a(z)) is a 1-1 function.z

KIt is clear that although the categories Fin(Set ) , Con[K] are large, they are essentially

small.

Thus, B , the free finite-limit completion of K , can be taken to be the opposite of the

category Con[K] of contexts with specializations as arrows. To describe the canonical

embedding i:K��B under the latest construal of the completion B , let us define, for any

K∈K , the context

K� = {x :p∈K�K} (2)K def p
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Kfor which X = X = K( 〈x 〉 ) is a sort, and a(X)= 〈p 〉 . In theK def p p∈K�K p∈K�K
Kdefinition of � , the only essential points are that K( 〈x 〉 ) is a sort, and that theK p p∈K�K

Kmapping p��x is 1-1. X is "the most general sort" of the kind K ; every other such sortp K
is of the form X �s for some specialization s with domain � . Further, letK K

* ⋅� = � ∪ {x } ,K def K K

where x :X , and, for the sake of definiteness, x is taken to be the specific variable forK K K
which a(x )=1 . Note that under the equivalence F��� between finite functors andK K F

*contexts, � is the context that corresponds to the representable functor K(K, -):K��Set .K

opWhen a context � is considered an object of B = (Con[K]) , it is written as [�] .

Arrows s:���� of Con[K] correspond to arrows [s]:[�]��[�] .

The canonical embedding i:K��B (having the universal property of the finite limit

*completion) has i(K) = [� ] .K

The morphism p:K��K is taken by i to the arrowp

* *[s ]:[� ]���[� ]p K Kp

for the specialization

K* * p s K s Ks :� ��� : x ��� x (q:K ��K ) , x ��� x . (3)p K K q qp p q K pp p

Note that in the category B , the object [� ] is the same as i[K] for the " B-valuedK
Φ iK-structure i:K��B ", that is, the limit of the composite K�(K-{K})���K���B .

We single out four classes of arrows in Con[K] , � ⊂� ⊂� ⊂� . � consists of the0 1 2 3 0
*inclusion-arrows incl:� ��� , where K ranges over the kinds. � consists of theK K 1

⋅inclusion-arrows of the form incl:����∪{x} , where � is any (finite) context, and
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⋅
�∪{x} is also a context (for this, it is necessary and sufficient that x∉� and Dep(x)⊂� ).

� is the class of all 1-1 arrows i:���� where card(�)=card(�)+1 . Finally, � is2 3
the class of all 1-1 arrows ���� .

⋅ ⋅Every time s:���� is a specialization, and t:�∪{y}���∪{x} extends s , with

t(y)=x , we have the pushout diagram

incl ⋅
������������∪{y}
� �s� �t (4)� �
� � ⋅
������������∪{x}incl

in Con[K] . All arrows in � are pushouts of ones in � . To see this, for a given1 0
incl ⋅ incl * incl ⋅

��������∪{x} , apply (4) to � ������� as ��������∪{y} , and s:� ���K K Kx x x
Kxgiven by s(x ) = x .p x, p

It is clear that � is the closure of � under isomorphisms (meaning that q:A��B∈� iff2 1 2
there is q’:A’��B’∈� with some commutative1

qA������B
� �≅� � �≅
� �
A’�����B’ ).q’

(4) shows that any arrow q:A��B in � has a pushout along any a:A��A’ that is again1
in � . Thus, � is closed under pushout, and in fact it is the closure of � under pushout.1 2 0

� is the closure of � under composition. Indeed, given any inclusion i:���� , there is a3 2
finite sequence �=� ⊂� ⊂...⊂� ⊂� =� of contexts0 1 n-1 n

nsuch that card(� )=card(� )+1 ; enumerate �-� as 〈y 〉 such that the level ofi+1 i i 1
K is non-increasing, and put � =�∪{x , ...x } . This shows that every inclusiony i 1 ii
i:���� is the composite of arrows in � ; since every 1-1 arrow is isomorphic to an1
inclusion, the assertion follows.
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Without talking about syntax, [� ] = {[q]: q∈� } may be described as the class of0 0
K oparrows of the form q:iK��[K] , where K∈K , i:K��B=(Fin(Set )) is induced by

Φ iYoneda, and [K] is the limit of the composite K�(K-{1 })���K���B . [� ] is theK 2
closure of [� ] under pullback. [� ] is the class of all epimorphisms; also, it is the0 3
closure of [� ] under composition.2

≠For the purposes for logic without equality, we let the class � of arrows in B be either

[� ] ( = {[q]:q∈� } or [� ] ; both [� ] and [� ] are closed under pullback, and2 2 3 2 3
the second class is the closure of the first under composition. (According the remarks at the

end of the last section, the two possible choices are essentially equivalent).

= ≠Corresponding to logic with equality, we have � , which is obtained by adding to � all

⋅ ⋅isomorphic copies of arrows of the form [p] for p of the form p:�∪{x, y}���∪{x}

such that x and y are distinct variables of the same type, their kind is a maximal one, and

p is defined so that p�� is the identity and p(x)=p(y)=x . Categorically, if we put

⋅A=[�] , B=[�∪{x}] , and q:B��A , q=[incl] , we have [p]=δ=B��B× B , theA
diagonal.

⋅If s:�∪{x, y}���� , then for x’=s(x) , y’=s(y) and �’=�-{x’, y’} , �’ is a

context, since no variable z can have x’∈Dep(z) or y’∈Dep(z) , by the maximality

⋅assumption on the kind of x and y ; � = �’∪{x’, y’} . We have a pushout

⋅ p ⋅
�∪{x, y}��������∪{x}

� �s� �t� �
� �

⋅ ⋅
�’∪{x’, y’}������’∪{x’}p’

=with the evident p’ and t . It follows that all pullbacks of the additional arrows in � are

=again of the same form, thus � is closed under pullback. Also, all the additional arrows in

=
� are pullbacks of the specific ones [p ] where K is a maximal kind,K

⋅ ⋅ ⋅ *p :� ∪{x , y}���� ∪{x } ; here, � ∪{x }=� defined above, etc.K K K K K K K K
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Suppose T=(L, Σ) is a theory; there are six possibilities for the logic: coherent,

intuitionistic, or classical, each with or without equality. We define a fibration

E
� = [T] = �� , with a set �=� of distinguished (quantifiable) arrows in B . B has been�B

≠ =given in the foregoing; we use � when we exclude equality, � otherwise, as � .

A formula-in-a-context is an ordered pair (�, ϕ) , written as [�:ϕ] , such that � is a

context, and ϕ is a formula with Var(ϕ)⊂� . With a given � , [�:ϕ] is called a

formula-over � .

E [�]To define �� , for [�]∈B , the fiber � is given as the set of equivalence classes
B

[�:ϕ]/� of formulas-over � under the equivalence relation�

[�:ϕ] � [�:ψ] ���� T � ϕ���ψ and T � ψ���ϕ� � �

(the range of the formulas ϕ , ψ , and the deducibility relation � is understood according to

[�]the logic in question). In what follows, we will write [�:ϕ] for [�:ϕ]/� . � is�
partially ordered by

[�:ϕ] ≤ [�:ψ] ���� T � ϕ���ψ ;� �

by the rules (Taut) and (Cut) this is well-defined and it is a partial order. Finally, for

*s:���� in Con[K] , that is, [s]:[�]���[�] , [s] ([�:ϕ]) = [�:ϕ�s] . Bydef
* � �the rule (Subst) , [s] :� ���� is a map of posets.

XSince (ϕ�s)�t = ϕ�ts , and ϕ�id = ϕ , we have a (pseudo)functor ���� ,

[s] *([�]�����[�]) �� [s] ; thus, we have a fibration. The rules for connectives (not

counting the last two) make sure that each fiber has the necessary (propositional) structure,

where each operation is given by the corresponding syntactic operation on formulas; e.g.,

[�:ϕ] 	 [�:ψ] = [�:ϕ	ψ] .[�]

⋅ ⋅For [i]:[�∪{x}]����[�] ( i:������∪{x} the inclusion) in [� ] and1
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⋅⋅ [�∪{x}] ⋅ [�][�∪{x}:ϕ]∈� , we have ∃ ([�∪{x}:ϕ]) = [�:∃xϕ] ∈� , and[i]
similarly for ∀ in place of ∃ . This follows from the rules (∃) and (∀) . As we pointed out

⋅in Section 2 , if Var(ϕ)⊂�∪{x} , then ∀xϕ , ∃xϕ are well-formed. Since every arrow q

in [� ] is an isomorphic copy of a composite of arrows in [� ] , the operation ∃ , or3 1 q
∀ , will be well-defined, and can be expressed in terms of ∃ , or ∀ , for r∈[� ] .q r r 1

In the case of logic with equality, we have, for

⋅ [p] ⋅δ:[�∪{x}]�����[�∪{x, y}] ,

= ⋅an additional arrow in � , ∃ (t ⋅ ) = [�∪{x, y}:x= y] , and more generally,δ [�∪{x}] �
⋅ ⋅∃ ([�∪{x}:ϕ]) = [�∪{x, y}: x= y � ϕ] . This is F. W. Lawvere's observation on[δ] �

the definition of equality in hyperdoctrines [L2]. The claimed equality can be deduced by

using the rules of equality. We also have that

⋅ ⋅∀ ([�∪{x}:ϕ]) = [�∪{x, y}: x= y���ϕ] .[δ] �

The fact that substitution is compatible with the logical operations gives that for any

* � �specialization s:���� , [s] :� ���� preserves the (propositional) structure, and that

the Beck-Chevalley conditions are fulfilled. We obtain a ��∃-fibration, a ����∃∀-fibration

and a ��¬∃-fibration in the respective cases of coherent logic, intuitionistic logic and

classical logic; the presence of the rules (��) , (�∃) ensures this in the coherent case, and

that of (¬) in the classical case.

The construction [T] has the universal property of the fibration of the appropriate kind that

is freely generated by T . In what follows, we describe this universal property in a somewhat

incomplete way, namely, for "target" fibrations of the form �(C) , rather than arbitrary

(suitably structured) fibrations.

For a relation R∈Rel(L) , we make a definition of the context � analogously to � inR K
R � R(2) : � = {x :p∈R�L} such that R = R( 〈x 〉 ) is a well-formed atomicR def p def p p∈R�L

�formula, and α(X)= 〈p 〉 . R is the "most general" atomic formula using the relationp∈R�L
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R . Moreover, for p∈R�L , we let

K* * p R Rs :� ��� : x ��� x (q:K ��K ) , x ��� x .p K R q qp p q K pp p

Changing the meaning of the symbol Mod (�) , let us use the notation now in the variable�
sense of either of ��∃(�,�) , ����∃∀(�,�) , ��¬∃(�,�) as the context requires it,

according to which logic we are dealing with. In what follows, C is a category having enough

structure for the logic at hand: it is a coherent, a Heyting or a Boolean category in the three

respective cases.

We have a "forgetful" functor

-( ) : Mod ([T])���Mod (T) (5)�(C) C

-defined as follows. Given P=(P , P )∈Mod ([T]) , we define P :L��C ,1 2 �(C)
- - * -P ∈Mod (T) , by P (K) = P ([� ]) ; for p:K��K , P (p)=P ([s ]) (see (3))C 1 K p 1 p

-(more briefly, P �K=P �i , for the canonical embedding i:K��B ); for R∈Rel(L) ,1
- �P (R) the domain of a monomorphism m representing the subobject P ([� :R]) of2 R

-P ([� ]) ; and for p:R��K , P (p) = P ([s ])�m .1 R p 1 p

-For h:P��Q in Mod ([T]) (that is, h:P ��Q with properties), h = h�i ; it is�(C) 1 1
- - -easy to see that h is an arrow P ��Q .

In the case of coherent logic, the functor (5) is full and faithful, and in the case of intuitionistic

and classical logics,

- iso iso( ) : Mod ([T])���Mod (T) , (6)�(C) C

with both categories restricted to have only isomorphisms as arrows (thus, they are groupoids),

is full and faithful. The faithfulness is obvious; the fullness requires an easy proof by induction

on the complexity of formulas.
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In fact, in the case of coherent logic, (5), and in the other two cases, (6), is an equivalence of

categories. Indeed, if M:L��C is a model of T , we define

[M] : [T] ���� �(C)

by [M] ([�]) = M[�] , [M] ([�:ϕ]) = M[�:ϕ] . The fact that M is a model ensures1 2
that [M] is well-defined (on equivalence classes); the rules of the logic, built into the

definition of [T] , ensure that [M] is a morphism of fibrations with the appropriate

-preservation properties. Finally, we have j :[M] �K ≅ M�K whose components areM
*canonical isomorphisms M([� ])≅M(K) , and j is in fact an isomorphismK M

-j :[M] ≅ M .M

The completeness theorem

T � ε ��� T � εSet

for coherent logic with dependent sorts, with or without equality, is now an immediate

consequence of 3.(5). Indeed,

T � ϕ ���ψ ���� [�:ϕ] ≤ [�:ψ] in [T]
�

�

by the construction of [T] ;

���� for all P:[T]���(Set) , P[�:ϕ] ≤ P[�:ψ]

by 3.(5) ;

���� for all M�T , M� ϕ ���ψ
�

by the above description of the equivalence Mod (T) � Mod ([T]) ,C �(�)
���� T � ϕ ���ψSet

�

by definition.

3.(6) gives a proof of the completeness theorem for intuitionistic logic. 3.(6) says that there is

a category K , namely Mod(T) , such that T has a conservative Heyting morphism into

KSet ; changing here K into a small category, and then into a poset is an easy matter; see

[MR2], [M3].
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As it is well-known, completeness for classical logic follows from that for coherent logic

directly.

In summary, it is worth emphasizing that the study of first-order logic with dependent sorts

E
without equality is the same as the study of "quantificational" fibrations (��, �) where the

B
K opbase category is B=((Set ) ) for a simple category K , with � being the class offin

all epimorphisms in B . This is a remarkably simple algebraic description of the objects of our

interest, even though it is not one that is conjured up immediately by the idea of "first-order

logic with dependent sorts".
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§§§5. Equivalence

Let L be a fixed DSV, K the full subcategory of its kinds.

We have defined what an L-structure is; even, what a C-valued L-structure is, for any C

with finite limits. In what follows, we will make the minimal assumption that C is a regular

category (which is equivalent to saying that �(C) , with "total" � , is a �∃-fibration: just

ignore f and � in the definition of ��∃-fibration).

The category of C-valued L-structures, Str (L) , has objects the C-valued L-structures,C
Land morphisms natural transformations; Str (L) is a full subcategory of C (with L inC

its last occurrence understood as a mere category). We write Str(L) for Str (L) .Set

Given M∈Str (L) , we have M�K:K���C , its K-reduct, the structure of kinds associatedC
to M . For any R∈Rel(L) , we have the canonical monomorphism m :M(R)���M[R] =R

K(M�K)[R] (see §1). For a natural transformation (f:U���V) ∈ C , we have the

canonical arrow f :U[R]���V[R] for which[R]

f[R]U[R] ���������� V[R]
U� � Vπ � �πp� � � p� �
U(K )���������� V(K )p h pKp

for all p∈R�L . If (h:M���N) ∈ Str(L) , then

hRM(R)������������N(R)
� �M� Nm � �mR� � � R� �� �

(M�K)[R]��������(N�K)[R]h[R]

which shows that h�K:M�K���N�K determines h (if any).
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KWe have the forgetful functor � =�:Str (L)���C ; � is faithful, by the last remark.C,L C
K

� is a fibration. Indeed, given f:U��V in C , and N over V (that is, N�K=V ), then the

Cartesian arrow h:M��N over f is obtained by defining M and h such that M�K = U ,

h�K = f and, for all R∈Rel(L) ,

hRM(R)������������N(R)
� �M� � Nm � �mR� � R� �� �

U[R]������������V[R]f[R]

is a pullback (it is immediate to see that h so defined is Cartesian). As usual with fibrations,

* *let us denote M so defined by f (N) , and the Cartesian arrow h by θ :f (N)��N .f

� is a fibration with fibers that are preorders.

When in particular C = Set (which is the most important case), a functor U:K��Set is

called separated if U(K)∩U(K’) = ∅ whenever K , K’ are distinct objects of K . For a

separated U , we define �U�=�	
U(K) ; for a general U , we would put �U�= � U(K) =
K∈K K∈K

{(K, a):k∈K, a∈U(K)} . Of course, every functor is isomorphic to a separated one. When

f:U��V , and U is separated, for a∈�U� we may write h(a) without ambiguity for

h (a) for which a∈U(K) . For notational simplicity, we will restrict attention to separatedK
functors K��Set .

KI will now isolate a property of a natural transformation f:U��V in C . Let first

C = Set . We say that f is very surjective if whenever K∈K , 〈a 〉 ∈U[K] , the�� p p∈K�K
mapping

f : UK( 〈a 〉 )����VK( 〈fa 〉 ) : a���f(a)〈a 〉 p p∈K�K p p∈K�Kp p∈K�K

(see (3) in §1) is surjective.

KFor a general C (assumed to be regular), f:U��V in C is very surjective if for every
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K∈K , the canonical map p:U(K)��P=U[K]× V(K) from the diagram below isV[K]
surjective (a regular epimorphism):

fKU(K)����������������V(K)�� ���� � �	U� p �� �	 � Vπ � 
 � πK� � P � K� �	 � �� �	 ��	U[K]����������������V[K] .f[K]

KIt is clear that if f is an isomorphism (in C ), then it is very surjective. It is easy to see (by

induction on the level of K∈K ) that very surjective implies surjective (being a regular

Kepimorphism in C ), but not necessarily conversely.

In this section, we consider logic with dependent sorts only without equality; all L-formulas

are without equality.

K(1) Let f:U��V in C be very surjective, and any N∈Str (L) over V . LetC
*h=θ :M=f (N)��N .f

(a) Let first C =Set . h is elementary with respect to logic without equality in the

sense that for any context � and L-formula ϕ (in logic with dependent sorts and without

equality) with Var(ϕ)⊂� , and any 〈a 〉 ∈M[�] ,x x∈�

M � ϕ[ 〈a 〉 ] ���� N � ϕ[ 〈ha 〉 ] .x x∈� x x∈�

(b) For a general C which is a Heyting category (to interpret all L-formulas), for any

ϕ and � as above, there is a pullback

M[�:ϕ]������N[�:ϕ]
� �� � �� � (1b)� �

U[�]��������V[�]f
�
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(the vertical monomorphisms are representatives for the subobjects M[�:ϕ]∈S(U[�]) ,

*N[�:ϕ]∈S(V[�]) ; in other words, (1b) says M[�:ϕ] = (f ) N[�:ϕ] ).
�

here, f is the canonical map determined through by the definition of U[�] , V[�] as
�

limits in C .

Obviously, (b) generalizes (a).

The proof for (a) can be given as a straightforward induction on the complexity of ϕ . The

clause for atomic formulas is essentially the definition of M . For the propositional

connectives, the induction step is automatic. By the duality in Set between ∃ and ∀ , it is

enough to handle the inductive step involving ∃ , which is done using the "very surjective"

assumption. In Appendix B, I will take a "fibrational" view of the notion of equivalence, and

give a detailed proof of the more general form (b) .

Let M , N be C-valued L-structures. We say that they are L-equivalent, and we write

M � N , if there is a diagramL

� P� �m ��� �� n�� ��� 	M N

� � � �in Str (L) such that m�K , n�K are very surjective, and m and n are Cartesian arrowsC
Kin the fibration � . Paraphrased, this means that there exists a functor W∈C and veryC, L

* *surjective maps m:W
�M�K , n:W
�N�K such that m (M) = n (N) , that is, for all

R∈Rel(L) ,

M(R)��M(R)× W[R] = N(R)× W[R]
�N(R)M[R] N[R]� �� � � � � (1')� � �� � �
M[R]�� W[R] 
�N[R]m n[R] [R]

(where the equality means equality of subobjects of W[R] ). In case C =Set , (1') means that

if R∈Rel(L) , 〈c 〉 ∈W[R] , thenp p∈R�K
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〈mc 〉 ∈M(R) ��� 〈nc 〉 ∈N(R) . (1")p p∈R�K p p∈R�K

The data (W, m, n) are said to form an L-equivalence of M and N ; in notation,

(W, m, n):M���N .L

It is easy to see that the relation � is an equivalence relation (for a proof, see Appendix B).L
It is also clear that isomorphism of L-structures implies L-equivalence.

Let us write M ≡ N for: M�σ ��� N�σ for all L-sentences in logic with dependent sortsL
and without equality. We have

(2)(a) M � N ��� M ≡ N .L L

This immediately follows from (1).

The word "equivalence" is used in " L-equivalence" because of the relationship to the various

notions of "equivalence" used in category theory; see later.

At this point, the reader may want to look at Appendix C, which may help understand the

concept of L-equivalence.

We now will exploit the fact that we have specified variables "with arbitrary parameters". In

what follows, a context is a, not necessarily finite, set � of variables such that y∈� ,

x∈Dep(y) imply that x∈� . When we want to refer to the previous sense of "context", we

will say "finite context". A specialization is a map of contexts whose restriction to all finite

subcontexts of the domain is a specialization in the original sense. Just as in case of finite

contexts, there is a correspondence between contexts and functors F:K��Set which is an

Kequivalence of the categories Set and Con [K] , the category of all (small) contexts and∞
specializations.

Given a context � and an K-structure M , the set M[�] is defined by the formula (1), §1
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(which was the definition of M[�] for finite � ). Given a formula ϕ with Var(ϕ)⊂� ,

M[�:ϕ] is the subset of M[�] for which, for any 〈a 〉 ∈M[�] ,y y∈�

〈a 〉 ∈ M[�:ϕ] ���� 〈a 〉 ∈ M[�’:ϕ]y y∈� y y∈�’

for any (equivalently, some) finite context �’ with Var(ϕ)⊂�’⊂� . As before, we write

also M�ϕ[ 〈a 〉 ] for 〈a 〉 ∈ M[�:ϕ] .y y∈� y y∈�

� �Suppose � is a context, M, N L-structures, a= 〈a 〉 ∈ M[�] , b= 〈b 〉 ∈ N[�] .x x∈� x x∈�
We write

� �(W, m, n):(M, a)�����(N, b) (3)L

if (W, m, n):M�����N and there is 〈s 〉 ∈W[�] such that ms =a and ns =bL x x∈� x x x x
� �for all x∈� . We write (M, a) � (N, b) if there is (W, m, n) such that (3) holds.L

� � � �With M, N, �, a, b as above, we write (M, a) ≡ (N, b) for: for all L-formulas ϕ withL
Var(ϕ)⊂� , we have M�ϕ[ 〈a 〉 ] ��� N�ϕ[ 〈b 〉 ] .x x∈� x x∈�

We have the following generalization of (2)(a) :

� � � �(2)(b) (M, a) � (N, b) ��� (M, a) ≡ (N, b) ;L L

this also follows immediately from (1) .

⋅Let � be a context, x a variable such that x∉� but �∪{x} is a context (thus, x ∈�x, p
for all p∈K �K ), and let Φ be a set of formulas in logic with dependent sorts over L suchx

⋅that Var(Φ)=���Var(ϕ) ⊂ �∪{x} ; such Φ is called a �-set (of formulas; with x any
ϕ∈Φ

variable as described with respect to � ). Let M be an L-structure, and

� �a= 〈a 〉 ∈M[�] . We say that Φ is satisfiable in (M, a) if there is a∈	M
 (morey y∈�
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� �precisely, a∈MK [ 〈a 〉 ] ) such that M�ϕ[a, a/x] (of course, a, a/xx x p∈K �Kx, p x
stands for 〈a’ 〉 ⋅ for which a’=a for y∈� , and a’=a ). Φ is finitelyy y∈�∪{x} y y x

� �satisfiable in (M, a) if every finite subset of Φ is satisfiable in (M, a) . M is said to be

��-L-saturated if for every a∈M[�] and every �-set Φ , if Φ is finitely satisfiable in

� �(M, a) , then Φ is satisfiable in (M, a) .

Let κ be an infinite cardinal. We say that M is κ, L-saturated if it is �-L-saturated for

every context � with cardinality smaller than κ .

For saturated models for ordinary first order logic, see [CK]. In [MR2], one can find a detailed

introduction to saturated and special models for multisorted logic; the basic facts and their

proofs in the multisorted context do not essentially differ from the original one-sorted versions.

κ, L-saturation is κ-saturation with respect to L-formulas. Since L-formulas form a part of

the multisorted formulas over �L� , it is clear that if M , an L-structure, is κ-saturated as a

structure for the similarity type �L� , then M is κ, L-saturated. More generally, suppose that

we have "interpreted" L in a theory S in ordinary multisorted first-order logic; that is, we

have a C-valued L-structure I:L���C , for C the Lindenbaum-Tarski category [S] of S

(see [MR]; [S] is a Boolean category). Then if M is a model of S , or equivalently,

M:C��Set is a coherent functor, and M is κ-saturated in the ordinary sense, then the

L-structure M�L=MI:L��Set is κ, L-saturated.

By the cardinality of the structure M , #M , we mean the cardinality of its underlying set

�M� .

(4) Suppose the L-structures M , N are κ, L-saturated, and both are of cardinality ≤κ .

Then the converses of (2)(a) and (2)(b) hold:

M ≡ N ��� M � N ;L L

� 	and more generally, if � is a context of size < κ , a∈M[�] , b∈N[�] , then
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� � � �(M, a) ≡ (N, b) ��� (M, a) � (N, b) .L L

Proof.

For a given infinite cardinal κ , and a given context � of cardinality less than κ , let

�=�[κ, �] be a context such that #� = κ , �⊂� , and for every sort X with Var(X)⊂� ,

the cardinality of the set of variables x∈� with x:X is equal to κ . It is easy to see that

such an � exists; we define contexts � by recursion on i≤k for k the height of K ; leti
� =∅ ; if � has been defined, pick, for every sort X whose kind is of level i and for0 i
which Var(X) ⊂ � , a set V of variables v:X such that #V =κ , and let � be thei X X i+1
union of � and all the V for all such X ; if k=ω , let � =���� ; let �=� .i X ω i ki<ω

Next, enumerate � as a sequence 〈u 〉 in such a way that for each β<κ , 〈u 〉α α<κ α α<β
is a context; equivalently, such that for each β<κ , Dep(u )⊂{u :α<β} . Note first of allβ α
that for any finite context � , there is an enumeration �={y :i<n} such that 〈y 〉 isi i i<j
a context for all j<n ; enumerate first the level-0 variables, next the level-1 ones, etc. Call

such an enumeration of � "good". Now, take first an arbitrary enumeration 〈v 〉 ofα α<κ
� ; define the increasing sequence 〈 β 〉 of ordinals and the partial enumerationα α<κ
〈u 〉 by induction on α as follows. For a limit ordinal α , β =limβ . Forγ γ<β α δα δ<α
α=δ+1 , let 〈u 〉 be a good enumeration of Dep(v )∪{v } , and letβ +i i<n δ δδ
β =β +n .α δ

For every sort X such that Var(X)⊂� , let 〈u 〉 be an enumeration in increasingα ν<κX, ν
order of all u of sort X for which u ∉� . Finally, for any α<κ , let ν[α] be the ordinalα α
ν for which α = α where X is the sort of u .X, ν α

�Assume � is a context of size < κ , #M,#N ≤ κ , a= 〈a 〉 ∈M[�] ,x x∈�
� � � �b= 〈b 〉 ∈N[�] , and (M, a) ≡ (N, b) . For any M-sort MK( 〈c 〉 )=MK(c) ,x x∈� L p p∈K�K

�let us fix an enumeration 〈e 〉 = 〈e � 〉 of the set MK(c) ; here, λ �ξ ξ<λ K, c, ξ ξ<λ � K, cK, c
≤ κ .

Consider �=�[κ, �] constructed above.
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We define a context � , a subset of � , by deciding, recursively on α<κ , whether uα
belongs to � or not; furthermore, we also define, for each u ∈� , elements c ∈�M� andα α

�d ∈�N� . Let � denote the set of all u with β<α for which u ∈� , and c[α] be theα α β β
sequence 〈c 〉 ∈M[�∪� ] for which c =a ( x∈� ) and c =c ( u ∈� ).z z∈�∪� α x x u β β αα β

�Similarly, we have d[α] ∈ ν[�∪� ] . The induction hypothesis of the construction is thatα

� �(M, c[α+1]) ≡ (M, d[α+1]) . (5)L

� �Suppose α < κ , and � , c[α] , d[α] have been defined so that, for all β<α ,α
� �(M, c[β+1]) ≡ (M, d[β+1]) . Since in the definition of " ≡ ", formulas with finitelyL L

many free variables are involved, we can conclude that

� �(M, c[α]) ≡ (M, d[α]) . (6)L

Look at the variable u and its sort X . If u ∈� , we let u ∈� , c =a , d =b . (5)α α α α u α uα α
is now an automatic consequence of (6).

If not all the variables in X (which are u ’s for β<α ) are in � , then u ∉� , and we areβ α
finished with the stage α .

Assume that u ∉� and all the variables in X are in � . Look at the ordinal ν = ν[α] ;α
write ν in the form ν=2 ⋅ μ or ν=2 ⋅ μ+1 as the case may be. Let first ν=2 ⋅ μ . With

�X = K( 〈u 〉 ) , consider the M-sort MK( 〈c 〉 ) = MK(c) and itsβ p∈K�K β p∈K�Kp p
previously fixed enumeration 〈e 〉 ( = 〈e � 〉 ). If μ≥λ , then againξ ξ<λ K, c, ξ ξ<λ �K, c
u ∉� . If, however, μ<λ , then u ∈� . Moreover, c = e .α α α def μ

⋅Let Φ be the �∪� -set of all formulas ϕ with Var(ϕ)⊂�∪� ∪{u } for whichα α α
� �M�ϕ[c[α], e /u ] . I claim that Φ is finitely satisfiable in (N, d[α]) . Let Ψ be aμ α

�finite subset of Φ . For ϕ=���Ψ , we have M�ϕ[c[α], e /u] , hence,μ
�M�(∃u ϕ)[c[α]] (note that ∃u ϕ is well-formed, since for every z∈Var(ϕ) , z≠u ,α α α

we have z∈�∪� , hence Dep(z)⊂�∪� , and u ∉Dep(z) ). As a consequence, by (6),α α α
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� �N�(∃uϕ)[d[α]] . This means that Ψ is satisfiable in (N, d[α]) as desired.

�Since #(�∪� ) < κ , and N is κ, L-saturated, Φ is satisfiable in (N, d[α]) , byα
d ∈NK( 〈d 〉 ) , say. The choice of Φ ensures that (5) holds.α β p∈K�Kp

In case ν=2 ⋅ μ+1 , we proceed similarly, with the roles of M and N interchanged.

With the construction completed, we put � = ���� . We let W be the functorαα<κ
F :K��Set associated with the context � (see §4). m:W��M�K , n:W��N�K are defined�
by m(u ) = c , n(u ) = d ( u ∈� ) . The definition ensures that �⊂� andα α α α α
m(x) = a , n(x) = b ( x∈� ) .x x

Let us see that m is very surjective. Let K∈K . W[K] is the set of all tuples 〈z 〉p p∈K�K
for which each z ∈� , and X=K( 〈z 〉 ) is a (well-formed) sort; WK( 〈z 〉 )p p p∈K�K p p∈K�K
is the set of all z∈� such that z:X . So, assume that

X=K( 〈z 〉 )=K( 〈u 〉 ) is a sort, andp p∈K�K β p∈K�Kp

�a∈MK( 〈mz 〉 ) = MK( 〈c 〉 ) = MK(c) .p p∈K�K β p∈K�Kp

Then a=e � for some μ<λ � , and for α = α , the construction at stage αK, c, μ K, c X, 2 ⋅ μ
puts u :X into � ; that is, u ∈WK( 〈z 〉 ) , with a=c =mu as desired.α α p p∈K�K α α

The fact that n is very surjective is seen analogously.

We have that (W, m, n):M�����N , since (1") is a consequence of (5) being true for allL
α<κ ; one has to apply (5) to atomic formulas.

This completes the proof of (4).

Let C be a small Boolean category. By a model of C we mean a functor M:C��Set

preserving the Boolean structure (that is, M is a coherent functor). We write M�C to say that

M is a model of C .
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There is a theory T = (L ,Σ ) in multisorted first-order logic, with L the underlyingC C C C
graph of C , such that the models of C are the same as the models of T (note that both theC
models of C and the models of T are particular diagrams L ��Set ). Moreover, for anyC C
subobject ϕ∈S (A) , A∈C , there is a (simply defined) L -formula ϕ(x) with a singleC C �

free variable x:A such that for every M�C and a∈M(A) , M�ϕ[a] (��� M�ϕ[a/x] ) iff
� �

a∈M(ϕ) ( ⊂M(A) ). See [MR].

For σ∈S(1 ) , a subobject of the terminal object in C , we write M�σ for M(σ)=1 inC
Set . We will call a subobject of 1 a sentence in C .C

Let I:L��C a C-valued L-structure (in particular, I:L��C is a functor from L as a

category). When C is the Lindenbaum-Tarski category [S] of a theory S=(L , Σ ) inS S
ordinary multisorted logic (see [MR] or [M?]), then such an I is what we should consider an

interpretation of the DS vocabulary L in the theory S . An example is obtained by taking

S=(�L�, Σ[L]) (for Σ[L] , see §1), and for I:L��[S] the [S]-structure defined by

I(A)=[a:t] for A∈L where a:A , and for f:A��B ,

I(f)= 〈a��b:fa=b 〉:[a:t]��[b:t] . I:L��[S] is the canonical interpretation of

logic with dependent types in multisorted logic. In this case, for any formula ϕ of FOLDS

* *over L , with Var(ϕ)⊂� , we have I[�:ϕ] = m [�:ϕ ] ; here,

*m:I[�:ϕ]�	�{�} = 
 K is the canonical monomorphism, m denotes pulling backdef xx∈�
*along m ; ϕ was defined in §1.

For a general I:L��C , and for an L-sentence θ , let us write I(θ) for the sentence

I[∅:θ] of C . In case C=[S] , I(θ) also stands for any one of the S-equivalent

L -sentences which are the representatives of the C-subobject I(θ) .S

When M�C , the composite MI:L��Set is an L-structure. We also write M�L for MI ;

M�L is the L-reduct of M (via I ).

Let C and D be small Boolean categories, I:L��C and J:L��D . Notational conventions

introduced above for I:L��C are valid for J:L��D , mutatis mutandis.

(7)(a) Assume that σ is a sentence of C , τ a sentence of D , and for all M�C , N�D ,
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M � σ & M�L � N�L ���� N � τ .L

Then there is an L-sentence θ in logic with dependent sorts without equality such that for all

M�C , N�D , we have

M � σ ��� M�L � θ and N�L � θ ��� N � τ .

For a more general formulation, consider a finite L-context � , and the object I[�]∈C .

I[�] is defined as a finite limit in C ; see the end of §1; let π :I[�]��I(K ) be the[x] x
limit projections ( x∈� ). Given any M�C , we have similar projections

ρ :(M�L)[�]��MI(K ) in Set , and a canonical isomorphism[x] x
≅μ:(M�L)[�]���M(I[�]) making each diagram

μ(M�L)[�]��������������������� M(I[�])
�	 ≅ 
��
�	 � 
�ρ �	 
� M(π ) (7')[x]  � [x]MI(K )x

� � �commute. If a= 〈a 〉 ∈(M�L)[�] , we write 〈a 〉 for μ(a)∈M(I[�]) . Once again,x x∈�
similar conventions apply in the context of J:L��D .

(7)(b) Assume that � is a finite L-context, σ∈S (I[�]) , τ∈S (J[�]) ,C D
� �and for all M�C , N�D , a∈(M�L)[�] , b∈(N�L)[�] ,

� � � �〈a 〉∈M(σ) & (M�L, a) � (N�L, b) ���� 〈b 〉∈N(τ) . (8)L

Then there is an L-formula θ in logic with dependent sorts without equality with

Var(ϕ)⊂� such that

σ ≤ I[�:θ] , J[�:θ] ≤ τ . (8')I[�] J[�]

Note that (8') may be written equivalently as
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� �for all M�C , N�D , a∈(M�L)[�] and b∈(N�L)[�] ,

� � � �〈a 〉∈M(σ) ��� M�I�θ[a] and N�J�θ[b] ��� 〈b 〉∈N(τ) .

Proof. Let us extend the vocabulary L to L (c) by adding a single new individualC C
constant c of sort A = I[�] . For any ϕ∈S (A) , let ϕ(c) denote ϕ(c/x) , thedef C �

result of substituting c for x in ϕ(x) . For an L-formula θ with Var(θ)⊂� , let θ(c)
�

stand for (I[�:θ])(c) . Similarly, we introduce d:B = J[�] ; for ψ∈S (B) , ψ(d)def D
and for θ as before, θ(d) .

Let Θ be the set of all L-formulas θ with Var(θ)⊂� such that σ ≤ I[�:θ] . ConsiderA
the set Σ = Σ ∪{θ(d):θ∈Θ} of L (d)-sentences. I claim thatdef D D

(L (d), Σ) � τ(d) . (9)D

Once the claim is proved, by compactness there are finitely many θ ∈Θ ( i<n ) such thati
(L (d), Σ ∪{θ (d):i<n}) � τ(d) , which means, for θ=���θ ∈ Θ thatD D i ii<n
(L (d), Σ ) � θ(d)��τ(d) , that is, (L (d), Σ ) � ∀x:B.(θ(x)��τ(x)) , whichD D D D � �

means J[�:θ] ≤ τ ; thus, it is enough to see the claim.B

+ λAssume that there is an infinite cardinal λ≥#L such that λ =2 (see below for theC
+legitimacy of this assumption). Let κ=λ . According to the existence theorem for saturated

models (see [CK], [MR2]), any L (d)-structure is elementarily equivalent to a κ-saturatedD
structure of cardinality ≤ κ . Therefore, to show (9), take (N, b/d) , a κ-saturated model of

cardinality ≤κ of (L (d), Σ) , to show (N, b/d) � τ(d) .D

Let Φ be the set of L-formulas ϕ with Var(ϕ)⊂� such that b∈N(I[�:ϕ]) ⊂ NB ; for

every L-formula ϕ with Var(ϕ)⊂� , exactly one of ϕ , ¬ϕ belongs to Φ . Since

(N, b/d) is a model of (L (d), Σ) , with Σ defined as it is, we have Θ ⊂ Φ . I make theD
subclaim that the theory

(L (c), Σ ∪{σ(c)}∪{ϕ(c):ϕ∈Φ}) (10)C C

is consistent. Consider a finite subset {ϕ :i<n} of Φ . Ifi
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(L (c), Σ ∪{σ(c)}∪{ϕ (c):i<n}) were not consistent, then we would have, forC C i
ϕ=���ϕ ∈Φ , that σ ≤ I[�:¬ϕ] , which would mean that ¬ϕ∈Θ ⊂ Φ , contradictingi Ai<n
ϕ∈Φ . This shows the subclaim.

�Now, let (M, a/c) be a κ-saturated model of (10) of cardinality ≤ κ . Let a∈(M�L)[�]

� � �such that a= 〈a 〉 (see (7') ) and b∈(N�L)[�] such that b= 〈b 〉 . Then, for any

�L-formula θ with Var(θ)⊂� such that M�L�θ[a] , we have ¬θ∉Φ , hence θ∈Φ , hence

� � � � �N�L�θ[b] . This says that (M�L, a) ≡ (N�L, b) . By (4), (M�L, a) � (N�L, b) , andL L
� �by the (8), the assumption of the proposition, 〈b 〉∈N(τ) , that is, N�τ[ 〈b 〉 /x] , that is,

�

(N, b/d) � τ(d) as promised.

The set-theoretic assumption used in the proof is redundant, by a general absoluteness theorem

(arithmetic statements are absolute with respect to the constructible universe, in which the

Generalized Continuum Hypothesis (GCH) holds; see [J]). On the other hand, one may use

"special" models in place of saturated ones, and avoid the use of GCH; see [CK], [MR2].

(11)(a) Assume that S is a theory in multisorted logic, and I:L��[S] is an interpretation

of the DSV L in S . Suppose that the class Mod(S) of models of S is invariant under

L-equivalence in the sense that for any L -structures M and N , M∈Mod(S) andS
M�L � N�L imply that N∈Mod(S) . Then S is L-axiomatizable; that is, for a set Θ ofL
L-sentences, Con ({I(θ):θ∈Θ}) = Con (Σ ) ; here, Con (Φ) is the set ofL L S LS S
L-sentences that are consequences of the theory (L, Φ) .

Note that the conclusion can also be expressed by saying that for any L -structure M , M�ΣS S
iff M�L�Θ .

(11)(b) More generally, assume, in addition to S and I:L��[S] , a theory T in a

language extending that of S ( L ⊂L ) such thatS T

for any M, N∈Mod(T), M�L ∈Mod(S) and M�L � N�L imply thatS L

71



N�L ∈Mod(S) .S

Then, there is a set Θ of L-sentences such that, for any M�T , M�Σ iff M�L�Θ .S

(11)(a) is the special case when T=(L , ∅) .S

Proof of (11)(b). For any τ∈Σ , M�T and N�T , we haveS

M�Σ & M�L� N�L ��� N�τ .S L

By appropriately coding the condition M�L� N�L in first order logic with suitable additionalL
primitives, and by applying compactness, we can find σ[τ] , a finite conjunction of elements

of Σ , such that for any M�T and N�T ,S

M�σ[τ] & M�L� N�L ��� N�τ .L

I inclThen by (7)(a), applied to C=D=[T] , and I=J:L���[S]������[T] , we can find

θ[τ] , an L-sentence, such that T�σ[τ]���I(θ[τ]) , T�I(θ[τ])���τ . Clearly,

Θ={θ[τ]: τ∈Σ } is then appropriate for the assertion.S

We leave it to the reader to formulate a version of (11) with formulas in a given context �

instead of sentences.

The following, which is a special case of (7)(b), says that a first-order property invariant under

L-equivalence is expressible in logic with dependent types over L .

(12) Let I:L��C be as before. Assume that � is a finite L-context, σ∈S(I[�]) , and

� �for all M, N�C and a∈(M�L)[�] , b∈(N�L)[�] ,

� � � �〈a 〉∈M(σ) & (M�L, a) � (N�L, b) ���� 〈b 〉∈N(σ) .L

Then there is an L-formula θ in logic with dependent sorts without equality with

Var(θ)⊂� such that σ = I[�:θ] .I[�]
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The notion of L-equivalence as defined is relevant to FOLDS without equality. However,

frequently we deal with FOLDS with restricted equality. As explained in §1, when M is an

eqL-structure, it can be considered as an L -structure, with the additional relations EK
eqinterpreted as true equality; let us write M for the resulting "standard" L -structure as well.

What does it mean to have an equivalence (W, m, n):M�����N for L-structures M , N ?eqL
�Clearly, this is to say that (W, m, n):M���N and, for any maximal kind K , and c∈W[K] ,L

� ≈c , c ∈WK(mc) , we have that mc =mc iff nc =nc . Let us write (W, m, n):M���N1 2 1 2 1 2 L
for (W, m, n):M�����N , and let us call such (W, m, n) an L, ≈-equivalence; also, writeeqL
M ≈ N for M � N ; note that throughout, M and N are L-structures.L eqL

Let us define M ≡ N as we did M ≡ N above, except that we refer to logic with equality.= LL
�Then, using the translation ϕ��ϕ mentioned in §1, we obviously have M≡ N ���=L

M≡ N . Thus, by (2)(a) we haveeqL

(13) For L-structures M and N , M ≈ N ��� M ≡ N .L =L

L,≈-equivalences can be "normalized" in a certain way, which will be useful for us later.

KLet U, V∈Set . A very surjective morphism f:U��V is normal if for any maximal kind

� � �K , and any a∈U[K] , " f is 1-1 in the fiber over a ", that is, if b, c∈UK(a) , then

f(b)=f(c) implies b=c . Together with the very surjective condition, this says that f

� ≅ �induces a bijection UK(a)���VK(fa) .

≈Let M , N be L-structures. A normal L,≈-equivalence (W, m, n):M���N is anL
L,≈-equivalence in which both m and n are normal. We have the fact

(14) For any L-structures M , N , if M≈ N , then there is a normal L,≈-equivalenceL
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≈(W, m, n):M���N .L

≈The argument is as follows. Start with any L,≈-equivalence (W, m, n):M���N . DefineL
KW’∈Set by setting W’K=WK for all K∈K except the maximal ones; for a maximal K ,

W’K = WK/� , where � is the equivalence relation on WK for which b�c iff b and cdef
�are over the same a∈W[K] , and m(b)=m(c) . When in this definition, we replace m by

n , the result is the same; this is because (W, m, n) being an L,≈-equivalence, m(b)=m(c)

iff n(b)=n(c) for b , c over the same element in W[K] . For an arrow p:K��K ,p
W’(p)=W(p) when K is not maximal (in which case K is not maximal either); and for Kp
maximal, (W’p)(b/�)=(Wp)(b) ; the latter is well-defined, since by the definition of � ,

if b�c , then (Wp)(b)=(Wp)(c) . Clearly, W’:K��Set is well-defined, and we have

obvious maps p:W��W’ , m’:W’��M�K , n’:W’��N�K such that

W� �� �m� � �n� � �� � ��M�K � p� � N�K� � 	� � �� � �m’ � � � n’� 
 ��
W’

≈I claim that (W’, m’, n’):M���N ; the normality condition is clearly satisfied. Consider aL
relation R in L . In the commutative diagram

* q *(m M)R�������(m’ M)R��������� MR
  � � �� � �
 
 


W[R]���������W’[R]����������M[R]p m’[R] [R]

the outside rectangle and the right-hand square are pullbacks. It follows that the left-hand

square is a pullback too. Obviously, p is surjective. It follows that q is surjective. This[R]
* *determines the subobject (m’ M)R���W’[R] as the image of (m M)R���W[R] under

* *p . Switching to N from M , (n’ N)R���W’[R] is the image of (n N)R���W[R][R]
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* *under p . Since (m M)R = (n N)R , it follows that[R] W[R]
* *(m’ M)R = (n’ N)R as desired. The additional condition concerning equality isW’[R]

clearly satisfied.

Notice that the above proof works for an essentially arbitrary C in place of Set .

* eqNote that if m:W��M�K is normal, then m M formed from M as a standard L -structure

eqis a standard L -structure too. Put in another way, the standard fiberwise equality relations

*on the maximal kinds in m M are formed by the same pullback operation from the

corresponding relation on M as any primitive L-relation.

We have the following variant of (12).

(15) Let C be a small Boolean category, I:L��C . Assume that � is a finite L-context,

� �σ∈S(I[�]) , and for all M, N�C and a∈(M�L)[�] , b∈(N�L)[�] ,

� � � �〈a 〉∈M(σ) & (M�L, a) ≈ (N�L, b) ���� 〈b 〉∈N(σ) .L

Then there is an L-formula θ in logic with dependent sorts with equality with Var(θ)⊂�
such that σ = I[�:θ] .I[�]

Proof. By definition, for each maximal K , I[E ]=I(K)× I(K) . Let us formK I[K]
eq eq eqI :L ���C extending I:L��C by specifying that, I (E ) = I[E ] , withK K
eq eq eq eqI (e )=I (e )=1 . We apply (12) to I :L ��C . For M�C ,K0 K1 I[E ]K

eq eq eqM�L =M�I is, clearly, the same as M�L as a standard L -structure. Thus,

eq � eq � � �(M�L , a) � (N�L , b) 	�� (M�L, a) ≈ (N�L, b) .eq LL
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Thus, from the hypothesis of (15), that of (12) follows. By (12), we have some θ in FOLDS

eq eqwithout equality over L such that σ = I [�:θ] ; but clearly, for θ’ in FOLDSI[�]
� eqwith equality over L such that θ’ = θ , we have I[�:θ’] = I [�:θ] ; thus σ =I[�]

I[�:θ’] as required.
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§§§6. Equivalence of categories, and of diagrams of categories

The simplest application of the results of the last section is to invariance under equivalence of

categories of first order properties of diagrams of objects and arrows in a category. In what

follows, until further notice, L stands for L , the DSV for categories introduced in §1; acat
category A may be regarded an L-structure. A context of variables for L is essentially a

functor K=L ��Set , that is, a graph; we are mainly interested in finite contexts,graph
although for the notions to be introduced next, there is no need to confine attention to finite

contexts.

�For a context � , an augmented category of type � is a pair (A, a) , with A a category,

� �and a∈A[�] (that is, a a diagram of type the graph � ). Until further notice, notations

� �such as (A, a) , (B, b) denote augmented categories. Mere categories are considered

special cases of augmented categories of type ∅ ; A , B etc. denote categories.

� �For augmented categories (A, a) , (B, b) of the same type, we write

� � �(A, a)���(B, b)

�if there is an equivalence functor F:A���B ( F is full and faithful, and essentially

� � � � �surjective on objects) that maps a to b ; we may also write (B, b)���(A, a) for the

�same. Note that the relation ��� is reflexive and transitive but not symmetric (an

�equivalence functor A���B may take two different objects A≠A’ in A to the same B in

�B ; then (A, 〈A, A’ 〉)���(B, 〈B, B 〉) but not vice versa). The special case when the type

� �
� is ∅ , is, however, symmetric; A���B implies A���B since every equivalence functor

�has a quasi-inverse (by the Axiom of Choice); A���B is the same as equivalence of

categories, A � B .

� �The equivalence relation generated by the relation ��� is only "one step away" from ��� ;

�it is ��� defined as
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� � � � � � � � � -(A, a)���(B, b) ��� there is (C, c) such that (A, a)���(C, c)���(B, b) .(1 )def

� � � � � �To see the transitivity of the relation ��� , assume (A, a)���(D, d)���(B, b) and

� � � � �(B, b)���(E, e)���(C, c) , and consider the diagram

F
� �σ � � τ

� �
� 	

D E

 � � �
� �ϕ ψ� �
� � � �
� 	 � 	

A B C

where the quadrangle has F the "isomorphism-comma" category, with objects

≅(D, E, ϕD��ψE) , and arrows the usual commutative squares, with σ:F�D , τ:F�E

the forgetful functors. Since ϕ , ψ are equivalence functors, so are σ , τ . Let

�f= 〈f 〉 ∈F[�] be defined as follows. For x∈� , x:O , letx x∈�
≅f =(d , e ,id:ϕd ��ψe ) ; note that ϕd =ψe by assumption. For x∈� ,x x x x x x x

x:A(y, z) , let f =(d :d �d , e :e �e ):f �f ; note that ϕd =ψe byx x y z x y z y z x x
� � � � � �assumption. We have that (F, f)���(D, d) , (F, f)���(E, e) . Using the composites

� � �F�A , F�C , we obtain (A, a)���(B, b) as desired.

Recall the relation ≈ of the last section; ≈ is, in particular, a relation between augmentedL L
�categories. We have that ≈ is the same as ��� .L

� � � � �(1) (a) (A, a)���(B, b) ���� (A, a)≈ (B, b) ;L
(b) A � B ���� A ≈ B .L

� �Proof. Assume (A, a)≈ (B, b) . By §5, there is a normal L,≈-equivalenceL
� ≈ � * *(W, u, v):(A, a)���(B, b) . Then, C = u (A) = v (B) is a category, since, by 5.(1), asL

a standard L-structure, C satisfies all the axioms of category which are formulated in FOLDS
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(see 5.(2)(a)). Furthermore, clearly, θ :C���A , θ :C���B are surjective equivalenceu v
functors. This shows the right-to-left direction in (a). For the proof of the other direction, we

prove the implication

� � � � �(A, a)���(B, b) ��� (A, a)� (B, b) ;L

to this end, we "saturate" the given equivalence appropriately; we will do this proof in a more

general situation below.

�Knowing the transitivity of the relation � , the transitivity of ��� also follows from (1)(a).L

(b) is a special case of (a).

*Recall the translation ϕ��ϕ in §1; this is just to say that any formula ϕ of FOLDS over L

*may be regarded a formula ( ϕ ) over �L	 in ordinary multisorted logic.

Let T =(�L	,Σ ) the theory of categories in ordinary multisorted logic ( Σ cancat cat cat
*be taken to be Σ[L ]∪{θ :θ∈Θ} ; Σ[L] for any DSV L was defined in §1 ; Θ iscat

the set of axioms in FOLDS for categories as given in §1.). When T is a theory extending

T ( �L	⊂L , Σ ⊂Σ ), and M�T , we write �M	 for M�L , the underlyingcat T cat T
category of M .

(2)(a) Let T be a theory extending T . Let � be a finite context over L , σ ancat cat
L -formula such that Var(σ)⊂� . IfT

� � �for any M, N �T and diagrams a∈�M	[�] , b∈�N	[�] , M�σ[a] and

� � � �(�M	, a)���(�N	, b) imply N�σ[b] ,

then

there is θ in FOLDS with restricted equality over L with Var(θ)⊂� such thatcat
� � * �for all M�T and diagrams a∈�M	[�] , we have M�σ[a] iff M�θ [a] .

(b) In particular, if σ is a sentence over L , and for any M, N �T , M�σ andT
�M	 � �N	 imply N�σ , then there is a sentence θ of FOLDS over L such that forcat
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*any M�T , M�σ iff M�θ .

Proof. We apply 5.(15) to C=[T] , with I:L��C the composite of I:L��[T ]cat
defined in §5 before (7)(a) and the inclusion [T ]��[T] ; moreover, we take σ incat

*5.(15) to be m ([�:σ])���I[�] ( m:I[�]���{�} ; see §5 before (7)(a)). By (1)(a),

the assumption implies that

� � � �M�σ[a] & (�M�, a)≈ (�N�, b) ��	 N�σ[b] .L

The conclusion of 5.(15) is what we want. (b) is a special case of (a).

We say that a theory T extending T is normal if for any M�T and any category A , ifcat
A � �M� , then there is a model N�T such that A=�N� . In other words, normality of T

says that the property of being the L -reduct of a model of T is invariant undercat
equivalence of categories. Most theories of categories (possibly) with additional structure are

normal. E.g., so is the theory of monoidal categories, or the theory of categories with specified

finite limits. Of course, T itself is normal.cat

Let � be a finite context, and σ be a formula over L with Var(σ)⊂� . Let us say thatT
σ is preserved along equivalence functors between models of T if the following holds:

� � � � 
 �whenever M, N�T , a∈M[�] , b∈N[�] , then M�σ[a] and (�M�, a)���(�N�, b)

� � 
 �imply N�σ[b] . When in this definition, (�M�, a)���(�N�, b) is replaced by

� 
 �(�M�, a)���(�N�, b) , we obtain the notion of being reflected along equivalence functors.

Now, notice that for T a normal theory, the hypothesis of (2)(a) holds iff σ is preserved and

reflected along equivalence functors of models of T (the point is that, in case T is normal,

-in (1 ), when A (and B ) are reducts of models of T , C can also be expanded to a model of

T ). Thus, we obtain the following variant of (2)(a):

(3) Let T be a normal theory of categories (possibly) with additional structure. Let � be a

finite context over L . Suppose that the first-order formula σ over L with freecat T
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variables all in � is preserved and reflected along equivalence functors of models of T .

Then there is a formula ϕ in FOLDS with restricted equality over L with Var(ϕ)⊂�cat
*such that σ is equivalent to ϕ in models of T .

Freyd's and Blanc's characterization (see [F], [FS], [B]) of first order properties of finite

diagrams invariant under equivalence is (3) for T=T . In fact, the general result (3) cancat
also be obtained by their methods, which is very different from the methods of this paper (we

will comment on this in Appendix C). It seems however that the more general result (2), in

particular, (2)(b), cannot be obtained by the Freyd's and Blanc's methods (although I should

concede that the added generality in (2)(b) consisting in a reference to not-necessarily normal

theories does not seem very important).

The results of §5 that are more general than 5.(15) (e.g., the "interpolation-style" result (7)(b))

will also have consequences for equivalences of categories; we leave their formulation to the

reader.

Extending the Freyd-Blanc result to more complex categorical structures will involve a new

element. For instance, in the case of structures consisting of two categories and a functor

between them (an example of which is a fibration), the first-order properties invariant under

equivalence (in the appropriate standard sense; see also below) are not those expressible in

FOLDS directly, but rather, those that are expressible in FOLDS in the language of the

so-called saturated anafunctor associated with the given functor. Anafunctors are treated in

[M2]; explanations will be given presently.

We now proceed to giving the framework for dealing with structures consisting of several

(possibly infinitely many) categories, functors between them, and natural transformations

between the latter. We will return to the simplest special case of two categories and a functor

between them afterwards.

Let I be a small 2-graph; I:L ��Set . We associate the graph L [I] with2-graph diag
I ; L [I] serves as a similarity type for diagrams I��Cat of (small) categories,diag
functors and natural transformations. The objects of L [I] are as follows:diag
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O , A , I , T ( I∈Ob(I) )I I I I
O , A ( i∈Arr(I) )i i
O ( α∈2-Cell(I) )α

The arrows of L [I] are shown in the following three diagrams:diag

T II I
t � �t �t �iI0 I1 I2 I� � � �

(3)
AI
� �d � �cI� � I� �
OI

displaying the arrows associated with an object I ;

a ai0 i1A ������� A 	������
 AI i J
� � � � � �d � �c d � �c d � �cI� � I i� � i J� � J� � � � � �
O ������� O 	������
 OI o i o Ji0 i1

which displays the arrows associated with an arrow i:I	
J in I ; and

o ι2O 	������������
Aι Jo � � oι0 � ι1 � d ��� � J��cO � O Ji �� ��� j ��� ����o �� � o � ��i0� �� �� j1�� o �� � ��� �� j0 o ��� i1 �O OI J

i	���
which displays the ones associated with the 2-cell ι:i	
j ( I � ι J ).	���
j

Given a I-diagram
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D:I��Cat : ( 〈C 〉 , 〈F :C ��C 〉 , 〈h :F ��F 〉 i ) (4)I I∈I i I J i:I��J ι i j �����I � ι J�����j

of categories, functors and natural transformations, we construe D as an

L [I]-structure as follows. (3) is interpreted as the category C . When i:I��J ,diag I
oi0O is the set of pairs (X, F X) with X∈Ob(C ) , with (X, F X)�����X ,i i I i

o F fi1 f i(X, F X)�����F X . A is the set of pairs (f, F f)=(X���Y, F X�����F Y) , withi i i i i i
d c ai i i0(f, F f)����(X, F X) , (f, F f)����(Y, F Y) , (f, F f)�����f ,i i i i i
a i hi1 ����� ιX(f, F f)�����F f . For I � ι J , O is the set of pairs (X, F X�����F X) . Thei i ����� ι i jj

effect of the remaining arrows, as well as the corresponding commutativities, are shown by the

following picture:

h hιX ιX(X, F X�����F X) ������������� F X�����F Xi j o i j� ι2o oι0� ι1� � �� �� 	 d � �J� �c� � J(X, F X)
 �� (X, F X)
 � �i � �� j � � �� �� � �o �� � � � o �i0� �� � � �j1 ��� o � � �� �� j0 o �� i1 �X F X F Xi j

Let L [I] be the DSV defined as follows. The underlying simple category ofanadiag
L [I] is generated by the graph L [I] , subject to the following equalitiesanadiag diag
between arrows:

the ones ensuring that (3) generates a copy of L (see §1);cat
o d = d a , o d = d a , o c = c a , o c = c a ,i0 i I i0 i1 i J i1 i0 i I i0 i1 i J i1

o o = o o , d o = o 0 , c o = o 0 . (5)i0 ι0 j0 ι1 J ι2 i1 ι0 J ι2 j1 ι1

The relations of L are exactly its top-level objects; that is, T , I , A , O , for I, iI I i ι
and ι ranging over the 0-cells, 1-cells and 2-cells of I , respectively.
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The equalities on arrows are suggested by what is true for I-diagrams as structures. In fact,

every I-diagram is a functor D:L [I]���Set , that is, the equalities listed areanadiag
true in it (as identities). Also, the relations of L [I] are interpreted in Danadiag
relationally (the corresponding family of functions is monomorphic). In summary, every

I-diagram is an L [I]-structure.anadiag

L [I] is the similarity type of what we call the "anadiagrams" of type I . Ananadiag
aanadiagram M:I���Cat is an L [I]-structure satisfying the following axiomsanadiag

i
���(A0) to (A6) in FOLDS with equality ( I � ιJ range over objects, arrows and 2-cells in I
���j

as shown; the unique existential quantifiers in (A2) and (A5) are abbreviations in the usual

way, and they refer to equality on the sorts A ( ⋅ , ⋅) ).J

(A0): axioms expressing that for each I∈Ob(I) , the part of M referring to I is a

category .

(A1) ∀X:O .∃A:O .∃s:O (X, A). t .I J i

(A2) ∀X, Y:O .∀A, B:O ∀s:O (X, A).∀t:O (Y, B).∀f:A (X, Y).I J i i I
∃!g:A (A, B).A (s ,t , f , g ) .J i d c a ai i i0 i1

�(A3) ∀X:O .∀A:O .∀s:O (X, A).∀α:A (X, X).∀α:A (A, A)I J i I J
� �[A (s, s, α, α)���(I ( X , α )���I (A, α))] .i I Jd i iI I I

(A4) ∀X, Y, Z:O .∀A, B, C:O .∀s:O (X, A).∀t:O (Y, B).∀u:O (Z, C)I J i i i
∀f:A (X, Y).∀g:A (Y, Z).∀h:A (X, Z)I I I
� � �∀f:A (A, B).∀g:A (B, C).∀h:A (A, C)I I I

� � �[((A (s, t, f, f)�A (t, u, g, g)�A (s, u, h, h))���i i i
� � �(T (f, g, h)���T (f, g, h))] .I J

(A5) ∀X:O .∀A:O .∀B:O .∀s:O (X, A).∀t:O (X, B)I J J i j
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∃!f:A (A, B).O ( s , t , f ) .J ι o o oι0 ι1 ι2

(A6) ∀X, Y:O .∀A, B, C, G:OI J
∀s:O (X, A)∀t:O (Y, B).∀u:O (X, C).∀v:O (Y, G)i i j j
∀f:A (X, Y).∀g:A (A, B).∀k:A (C.G)I J J
∀ �:A (A, C).∀m:A (B, G)J J
[(O (s, t, f, g)�O (u, v, f, k)�O (s, u, �)�O (t, v, m))���i j ι ι

∃n:A (B, C).(T (g, m, n)�T ( � , k, n))] .J J J

For a less formal explanation of the notion of anadiagram, I refer to [M2]. In that paper, I

introduce the notion of anafunctor between categories, a generalization of the notion of

functor. An anafunctor defines its values on objects only up to isomorphism. Formally, the

definition of anafunctor is obtained by specializing the definition of "anadiagram" to the case

〈0, 1 〉when I is the (2-)graph 0�������1 (without 2-cells). Anadiagrams have anafunctors

instead of functors as 1-cells, and natural transformations of anafunctors as 2-cells.

Note that any I-diagram D:I��Cat is an anadiagram; all the axioms for "anadiagram" are

satisfied in D (as an L [I]-structure). In fact, the diagrams are essentially the sameanadiag
as those anadiagrams M in which the sorts O ( i∈Arr(I) ) are interpreted relationally,i
that is, the family 〈Mp 〉 is jointly monomorphic.p:O ��Ki p

On the other hand, any anadiagram gives rise to a diagram, obtained by making some

anon-canonical choices. Let M be an anadiagram M:I���Cat ; we construct D:I���Cat ;

we use the notation (4) for the ingredients of D . For I∈Ob(I) , the category C is givenI
directly by the data in M corresponding to I (see (A0)). By (A1), for any i:I��J in I

i iand X∈Ob(C )=MO , we make a choice of A =A ∈MO and s =s ∈MO (X, A) ; weI I X X J x X i
put F X=A . Starting with f:X��Y , and using (A2) with A=A , B=A , s=s ,i X X Y X
t=s , we let F f=g whose unique existence (A2) states. (A3) and (A4) assure that F soY i i

i j i jdefined is a functor F :C ��C . Using (A5) with A=A , B=A , s=s , t=s , we puti I J X X X X
h =f for the f whose existence (5) asserts. (A6) ensures that h is a naturalιX ι
transformation h :F ��F . Let us refer D as the diagram obtained from M by cleavageι i j
(in analogy to the terminology used with fibration); of course, it is not uniquely determined.
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#Next, we describe the saturation D of a diagram D:I��Cat , an anadiagram canonically

associated with D . (As a matter of fact, the components corresponding to the 1-cells

#i:I��J will be the "saturated anafunctors" F associated with the given functors F , ini i
the sense of [M2].)

#In D , the interpretation of each part of L [I] as in (3) is the same as in D .anadiag

# ≅For i:I��J , a 1-cell in I , D O is the set of triples μ=(X, A, F X���A) withi i μ
o oi0 i1 #X∈C , A∈C and μ an isomorphism as shown; μ�����X , μ�����A . D A is the setI J i

of all entities

≅
μX F X�������Ai(�f , �F f � �g)iY F Y�������Bi ν
≅

with the displayed entity mapped to (X, A, μ) by d , to (Y, B, ν) by c , to f byi i
i

����� #a , and to g by a . For I � ι J , D O consists of alli0 i1 ����� ιj

μF X�������Ai ≅
� �(X, h � � �g) ,ιX� �
� �≅F X�������Bj ρ

and the displayed item is mapped to (X, A, μ) by o , to (X, B, ρ) by o , and to gι0 ι1
by o .ι2

#We leave it to the reader to verify that D so defined is an anadiagram.

#D satisfies a property that distinguishes it from diagrams; it is saturated, by which we mean

that it satisfies, for each i:I��J in I , the FOLDS sentence

86



(A7) ∀X:O .∀A, B:O .∀s:O (X, A).∀f:A (A, B)I J i J
(Iso(f)���∃!t:O (X, B).∃g:A (X, X).(I (g)�A (s, t, g, f)) ;i I I i

here, Iso(f) abbreviates

∃h:A (B, A)∃k:A (A, A)∃ �:A (B, B).(I (k)�I ( �)�T (f, h, k)�T (h, f, �))J J J J J J J
.

In fact, it can be proved (although we will not need this result) that, up to isomorphism as

L [I]-structures, the saturated I-anadiagrams are precisely the ones of the formanadiag
#D , for some diagram D .

Given D as in (5), and another I-type diagram

� � � � � � � �D:I��Cat : ( 〈C 〉 , 〈F :C ��C 〉 , 〈h :F ��F 〉 i ) , (6)I I∈I i I J i:I��J ι i j �����I � ι J�����j

� �we say that D and D are equivalent, and write D � D , if there exist a family

� �〈E :C ���C 〉 of equivalence functors, and a family 〈e 〉 of naturalI I I I∈I i i:I��J
isomorphisms as in

EI �C �������CI I
� �� � ≅F � ≅ �� �F e :F 	E �����E 	F ,i� 
 � i i i I J iei �C �������CJ E JJ

satisfying the additional naturality condition:

ei �E 	F ������F 	EJ i i I
� ��E 	h � � �h 	EJ ι� � ι I� ��E 	F ������F 	EJ j e j Ij
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i
�����for every I � ι J in I . The data E=( 〈E 〉 , 〈e 〉 ) form an
����� I I∈I i i∈Arr(I)j

�equivalence of D and D , in notation,

� �E = ( 〈E 〉 , 〈e 〉 ):D�����D . (7)I I∈I i i∈Arr(I)

This notion of equivalence is a "bicategorical" notion; it is the equivalence in the internal

sense of the bicategory (actually, 2-category) Hom( 〈I 〉,Cat) of homomorphisms of

bicategories, pseudo-natural transformations and modifications, with 〈I 〉 the 2-category

generated by the 2-graph I . (The main part of the fact that the "one-way" formulation of

equivalence given above as the definition, and the "internal" concept just mentioned coincide,

is the symmetry of the relation � ; an outline of the proof of the symmetry of � is given

below.) It is the "good" notion of equivalence, the one that comes up in practice. For instance,

in Chapter 4 of [MP], diagrams of sketches, and diagrams of accessible categories are dealt

with, and the present notion of equivalence is the one which is operative. Specifically, the

Uniform Sketchability Theorem, one of the main results of [MP] (4.4.1 in [MP]) says that a

small diagram of accessible categories is equivalent to one obtained from a diagram of

sketches by taking the categories of models of the sketches involved.

�Although the fact is well-known, I outline the proof that the relation D � D is symmetric.

Since it is easily seen to be transitive and reflexive, � is an equivalence relation.

� � �Assume data as in (7); see also (4) and (6). We define E:D���D . With I∈Ob(I) ,

� I I ≅ � �A∈Ob(C ) , choose X =X ∈Ob(C ) and ε =ε :E X ���A ∈ Arr(C ) . Put E A =I A A I A A I A I I
� �X . For f:A��B ∈ Arr(C ) , E f is the arrow that makes the squareA I I

εAE X ���������AI A ≅
� � �E f � � �fI � �

� �≅E X ���������BI B εB

� � �commute. E so defined is a functor E :C ���C ; it is an equivalence functor; it is aI I I I
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� ≅ Iquasi-inverse of E : we have ε :E E ���1� with components the ε , andI I I I C AI
≅ � I -1η :1 ���E E with components η for which E (η ) = (ε ) . ForI C I I I, X I I, X E XI I

� � ≅ � �i:I��J in I , we define e :F E ���E F as the compositei i J J i

� � -1� �η F E E e E E F ε
� J i J � � J i I � � � J i I � �F E ��������E E F E ���������E F E E ��������E F .i J ≅ J J i J ≅ J i I J ≅ J i

� � � �〈e 〉 will be compatible with the h , and give E:D���D as desired.i i∈Arr(I) ι

Let K be the full subcategory of L [I] consisting of the objects O and A0 anadiag I I
#for all I∈Ob(I) . A restricted context is a context over K . We have D�K = D �K ,0 0 0

#and hence, for a restricted context � , D[�] = D [�] .

�With � a restricted context, an augmented I-diagram of type � is a pair (D, a) where

� � � �D:I��Cat , and a∈D[�] ; notations such as (D, a) , (D, b) denote augmented

� � � � � �I-diagrams. We write E:(D, a)���(D, b) for the following: E:D���D with E as in (7)

� � �such that E(a)=b in the obvious sense that E (a )=b . The relation ��� betweenI x x
augmented diagrams is defined thus:

� � � � � � � �(D, a)���(D, b) �		
 there exists E:(D, a)���(D, b) .

� � � � � �We write (D, a)���(D, b) for: there exists (D, c) such that

� � � � � � � �(D, a)��(D, c)���(D, b) . The relation ��� is the equivalence relation generated by

�
��� ; this can be seen directly, but it also follows from (8) below. In particular, when �=∅ ,

�the relation ��� coincides with � for I-diagrams (since � is an equivalence relation).

� � �(8) For augmented I-diagrams (D, a) , (D, b) of the same type, we have
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� � � � # � �# �(D, a)���(D, b) ���� (D , a) ≈ (D , b) ;L

here, L = L [I] .anadiag

�As a special case, for (mere) I-diagrams D and D ,

� # �#D � D ���� D ≈ D .L

# � �# �Proof. (A)(���:) Let (�, r , r ):(D , a)���(D , b) be a normal L, ≈-equivalence0 1 L
� # � �# � � �(see 5.(2")). Let c∈�[�] ( � the type of (D , a) , (D , b) ) for which r (c)=a ,0

� �r (c)=b .1

* # * �# #Let M=r (D )=r (D ) , a standard L-structure. Since D is an anadiagram, and the0 1
concept of "anadiagram" is elementary in FOLDS over L , by 5.(1)(a), M is an anadiagram.

� � �Let D be obtained from M by cleavage. We show that there is an equivalence E:D�	
D

which extends

� #m�K =θ �K :M�K =D�K �
D �K =D�K0 m 0 0 0 0 0

(that is, E =(θ ) for all I∈Ob(I) ; here, we used the notation (7) for E ), and similarly,I m I
� � � � � � � � �there is E:D�	
D extending n�K . In particular, it will follow that E(c)=a , E(c)=b0
� � � � � � �and (D, a)���(D, c)���(D, b) as desired.

� �We use a notation for D that is analogous to (6). The functor E :C �	
C is defined byI I I
the effect m and m ; since θ :M�
D preserves the relations I and T , E is aO A m I I II I
functor. By the normality of r , E induces bijections on hom-sets, and by the surjectivity0 I
of r on O , E is a surjective equivalence.0 I I

� �Let i:I�
J . Looking back at how the cleavage D was defined, we see that F X = A ,i X
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# # �with s ∈MO (X, A ) . Then m(s )∈D O (mX, mA )=D O (E X, E F X) . By theX i X X i X i I J i
# ≅ �definition of D , this means that ms :F E X���E F X . We put e =ms . To see thatX i I J i iX X

≅ � �e = 〈e 〉 is a natural transformation e :F E ���E F , let f:X��Y ∈ C .i iX X∈Ob(C ) i i I J i II
� �We see that F f is defined by the property that M(A )(s , s , f, F f) should hold. Buti i X Y i

# �θ preserves A ; hence, D (A )(e , e , E f, E F f) , which, by the definition ofm i i iX iY I J i
#D , means

eiX �F E X���������E F Xi I J i
� � �F E f� � �E F fi I � � J i
� �

�F E Y���������E F Y ,i I e J iiY

which is the naturality of e .i

i
�����Let I � ι J be given. The naturality condition on (e , e ) with respect to ι:i��j is
����� i jj

� � � �seen as follows. Let X∈Ob(C ) . The definition of the component h :F X��F X isI ιX i j
i j �defined (in the process of cleavage) by the condition MO (s , s , h ) . The mapι X X ιX

# # i j �θ :M��D preserves the relation O . It follows that D O (ms , ms , mh ) holds; thatm ι ι X X ιX
# � #is, D O (e , e , E h ) holds. Considering the definition of D O , this says thatι iX jX J ιX ι

e
� iXE F X������F E XJ i i I

� � �E h � � �hJ ιX� � ιE X
� � I
�E F X������F E XJ j e j IjX

which is what we wanted.

� � 	 
 � 	 
(B)("only if") We show that (D, a)���(D, b) implies (D, a)≈ (D, b) . Since ≈ isL L
an equivalence relation, the desired assertion will follow.
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� � � �Suppose that E:(D, a)���(D, b) ; E is taken in the notation in (7) ; we construct

# � ≈ �# �(�, r , r ):(D , a)���(D , b) . The kinds of L are as in0 1 L

A AI J
� � � �d � �c d � �cI� � I J� � J
� � � �
O ������� O �������� OI o i o Ji0 i1

with i:I��J in I ; we have to define � on these kinds.

r
� � � ≅ � � 0We put �O = {(X, X, σ): X∈DO , X∈DO , σ:E X���X} , with (X, X, σ)����X ,I I I I

r
� 1 �(X, X, σ)����X . The "very surjective" condition on r , r at O holds by the essential0 1 I

surjectivity of E .I

�X X
� � � ��

�A = {((X, X, σ), (Y, Y, τ), f�, f�) :I def � �
Y �Y

σ �E X�����XI �
� � �f(X, X, σ), (Y, Y, τ)∈�O , E f� � � } ,I I �

�E Y�����YI τ

� �with the displayed item being mapped to (X, X, σ) by �d , to (Y, Y, τ) by �c , to fI I
�by r , and to f by r . The mapping0 1

� # �# � �f����f : D A(X, Y)����D A(X, Y)

� �so defined, with fixed (X, X, σ), (Y, Y, τ)∈�O , is a bijection; this holds since E is anI I
equivalence of categories. This shows the "very surjective" condition for r , r at A , as0 1 I

�well as the preservation of E .AI

� � � � ≅
�O = {((X, X, σ), (A, A, α), μ): (X, X, σ)∈�O , (A, A, α)∈�O , μ:F X���A} ,i def I J i
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� �with the displayed item being mapped to (X, X, σ) by �o , to (A, A, α) by �o , toi0 i1
� � � � �(X, A, μ)∈DO by r , and to (X, A, μ)∈DO by r where μ is determined by thei 0 i 1

following commutativity:

� σ � �F E X�������F Xi I ≅ i
� �e �≅ �iX� �
� ��� �E F X � � μ (9)J i ��� �E μ�≅ �J � �
� �

≅ �E A ������� A .J α

�Note that since all given arrows are isomorphisms, μ is uniquely determined, and it is an

isomorphism. Moreover, since E is an equivalence of categories, the mappingJ

� # �# � �μ��μ : D O (X, A)����D O (X, A)i i

so defined (with the rest of the data fixed) is a bijection, which shows the "very surjective"

�condition at O , and the preservation of E .i Oi

This completes the data for (�, r , r ) ; it remains to verify the necessary properties.0 1

Let us consider the preservation of the relation A by (�, r , r ) . What we have to do isi 0 1
this. We take four items

x ∈�O , x ∈�O , x ∈�A , x ∈�Ad i c i a I a Ji i i0 i1

such that (x , x , x , x )∈�[A ] , that is,d c a a ii i i0 i1

(10) �o (x ) = �d (x ) , �o (x ) = �d (x ) ,i0 d I a i1 d J ai i0 i i1
�o (x ) = �c (x ) , �o (x ) = �c (x ) ;i0 c I a i1 c J ai i0 i i1
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we consider their r and r -projections; and we have to show that0 1
#(r x , r x 〉 , r x , r x ) ∈ D A (11)0 d 0 c 0 a 0 a ii i i0 i1

if and only if

�#(r x , r x , r x , r x ) ∈ D A . (12)1 d 1 c 1 a 1 a ii i i0 i1

� �Let x = ((X, X, σ), (A, A, α), μ)di
≅ � ≅ � ≅with σ:E X���X , α:E A���A , μ:F X���A ;I J i

� �x = ((Y, Y, τ), (B, B, β), ν)ci
≅ � ≅ � ≅with τ:E Y���Y , β:E B���B , ν:F Y���B ;I J i

o o o oi0 i1 i0 i1note that x �����σ , x �����α , x �����τ , x �����β .d d c ci i i i

The first and third of the above conditions (10) force the first two components of x to beai0
� �(X, X, σ) and (Y, Y, τ) , respectively. Let

� � � � �x = ((X, X, σ), (Y, Y, τ), f:X��Y, f:X��Y) ;ai0

we have

σ �E X�����XI ��fE f� � � . (13)I �
�E Y�����YI τ

Similarly,

� � � � �x = ((A, A, α), (B, B, β), g:A��B, g:A��B)ai1

with
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α �E A�����AJ ��gE g� � � . (14)J � �E B�����BJ β

(11) means

μF X�������Ai�F f � �g , (15)iF Y�������Bi ν

whereas (12) means

�� � μ �F X�������Ai � � ��F f � �g (16)i� � �F Y�������Bi �ν

� � �where μ and ν are defined as μ is in (9); we want to see that (15) iff (16). Consider the

following diagram:

�� � μ �F X ��������������������������������� Ai � � �	 F σ 1 α
	 i 
 �� � e E μ 
 �� � iX J �� F E X�������E F X�������E A �� 2 i I J i J �� 3 4 5 �� �� � � � � ��F f� F E f� E F f� E g� �gi � i I � J i � J � �� �� � �� F E Y�������E F Y�������E B �� 
 i I e J i E ν J 	 �� 
 iY J 	 �� 
 � 	 �� F τ 6 β � � i �F Y ��������������������������������� B .i �ν

� �The cells 1 and 6 commute, by the definitions of μ and ν (see (9)). 2 commutes by

(13), 3 by the naturality of e , and 5 by (14). Note that all arrows except the verticali
ones are isomorphisms. If (15) commutes, then so does 4 ; the resulting commutativity of the

outside square is (16) as desired. Conversely, if (16) commutes, then so does 4 (using the

isomorphisms in the diagram), and since E is faithful, so does (15).J
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i
�����Let us look at the similar verification of preservation of O ; I � ι J . We takeι �����j

(x , x , x )∈�[O ] , that is,o o o ιι0 ι1 ι2

� �x = ((X, X, σ), (A, A, α), μ) ∈ �Oo iι0
≅ � ≅ � ≅with σ:E X���X , α:E A���A , μ:F X���A ;I J i

� �x = ((X, X, σ), (B, B, β), ρ) ∈ �Oo jι1
≅ � ≅with the same σ as above, and β:E B���B , ρ:F X���BJ i

(since we must have �o (x ) = �o (x ) (see the first equation in (4)), the firsti0 o j0 oι0 ι1
components of x and x have to agree);o oι0 ι1

� � � � �x = ((A, A, α), (B, B, β), g:A��B, g:A��B)o ι2

#with (9) holding (see the other two equations in (4)). Looking at the definition of D O ,ι
�#D O , what we have to see is thatι

�μ � � μ �F X�������A F X�������Ai ≅ i ≅
� � � � ��h � � �g iff h � � �g . (17)ιX� � ιX� �
� � � �≅F X�������B � � ≅ �j ρ F X�������Bj ρ

Consider
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�� � μ �F X ��������������������������������� Ai � � �� F σ 1 α	� i 	 �� 
 e E μ 	 �� � iX J �� 2 F E X�������E F X�������E A �� i I J i J �� � 4 5 �� � h � 3 E h � � ��h �� ιE X� J ιX� E g� �gιX� I � � J � �� �� � �� F E X�������E F X�������E B �� 	 j I e J j E ρ J � �� 	 jX J � �� 	 � � �� F τ 6 β � � j �F X ��������������������������������� B .j �ρ

The cells 1 and 6 commute for reasons as before. 2 commutes because of the naturality of

�h , 3 because of the naturality of (e , e ) with respect to ι:i��j , 5 because ofι i j
(14). 4 is the antecedent of (17) with E applied to it, the outer square is the succedent ofJ
(17). The assertion in (17) follows.

The remaining properties are the preservation of the T , I , and of the equalities on theI I
A , O . These are immediately seen.I i

� �We need that (�, r , r ) "relates a to b ". For � the restricted context involved,0 1
� � � � � �a= 〈a 〉 , b= 〈b 〉 ; we want c= 〈c 〉 ∈D[�] such that r (c)=a ,x x∈� x x∈� x x∈� 0

� � ≅r (c)=b . For x∈� , K =O , define c =1 :E a ���b ∈ �O ; we have1 x I x E a I x X II x
r c =a , r c =b . For x∈� , x:A (y, z) , define c =(c , c , a , b )∈�A ;0 x x 1 x x I x y z x x I
c ∈�A indeed holds since this meansx I

cyE (a )����bI y y
� �E (a )� � �bI x � � x

E (a )����bI z c zz

and this holds since E (a )=b ; also, r (c )=a , r (c )=b .I x x 0 x x 1 x x

This completes the proof of (8).
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Let T [I] = (L [I],Σ [I]) be the theory of I-diagrams of categories,diag diag diag
functors, and natural transformations. T [I] is a theory in ordinary multisorted logicdiag
with equality. The models of T [I] are those L [I]-structures that arediag diag
isomorphic to some D:I��Cat as an L [I]-structure (see above). Indeed, we candiag
easily write down a set of axioms Σ [I] over L [I] whose models are, up todiag diag

#isomorphism, precisely the D’s. Now, the construction D��D is related to an interpretation

Φ:L [I]�������[T [I]] (19)anadiag diag

# �of the DSV L [I] in the theory T [I] ; namely, D ≅ D�Φ ; here,anadiag diag
�D:[T [I]]���Set is the coherent functor induced by D:L [I]��Set .diag diag

To describe Φ , I first introduce certain specific formulas over the language L [I] . Wediag
i

���refer to the (arbitrary) objects, arrows and 2-cell I � ιJ in I .
���j

�I (κ) = ∃x∈I .i (x)=κ ( κ:A )I def I I I
� �I (X, κ) = I (κ)�d (κ)=X ( X:O , κ:A )I def I I I I
�T (f, g, h) = ∃x∈T .t (x)=f�t (x)=g�t (x)=h ( f, g, h:A )I def I I0 I1 I0 I
�T (X, Y, Z, f, g, h) =I def

�d (f)=X�c (f)=Y�d (g)=Y�c (g)=Z�d (h)=X�c (h)=Z � T (f, g, h)I I I I I I I
( X, Y, Z:O ; f, g, h:A )I I

� � � �Iso (μ) = ∃ν,κ,λ∈A .I (κ)�I (λ)�T (μ,ν,κ)�T (ν,μ,λ)I def I I I I I
( μ:A )I

�O (X, A, μ) = Iso (μ)�c (x)=A�∃x∈O .o (x)=X�d (μ)=o (x).i def J J i i0 J i1
( X:O , A:O , μ:A )I J J

� �Comm (μ, g, h, ν) = ∃k∈A .T (μ, g, k)�T (h, ν, k)J def J J J
( μ, g, h, ν:A )J

�A (X, Y, A, B, μ, ν, f, g) =i def
� �O (X, A, μ)�O (Y, B, ν)�∃x∈A .a (x)=f�Comm (μ, g, a (x), ν).i i i i0 J i1

( X, Y:O , A, B:O , f:A , μ, ν, g:A )I J I J
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�O (X, A, B, μ, ν, h) =ι def

� �O (X, A, μ)�O (X, B, ν)�∃x∈O .o o (x)=X�Comm (μ, h, o (x), ν).i j ι i0 ι0 J ι2
( X:O , A, B:O , μ, ν, h:A )I J J

This is the description of the effect of Φ on objects:

Φ(O ) = [X∈O : t]I I
Φ(A ) = [X∈A : t]I I

�Φ(I ) = [X∈O , κ∈A : I (X, κ)]I I I I
�Φ(T ) = [X, Y, Z∈O ;f, g, h∈A : T (X, Y, Z,f, g, h)]I I I I

�Φ(O ) = [X∈O , A∈O , μ∈A : O (X, A, μ)]i I J J i
�Φ(A ) = [X, Y∈O ; A, B∈O ; f∈A ; μ, ν, g∈A : A (X, Y, A, B, μ, ν, f, g)]i I J I J i

�Φ(O ) = [X∈O ; A, B∈O ; μ, ν, h∈A : O (X, A, B, μ, ν, h)]ι I J J ι

To complete the definition of Φ as in (19), we should also specify the effect of Φ on arrows;

this is done in the way straightforwardly suggested by our intentions with Φ .

# � �The fact mentioned above that D ≅ D�Φ holds will be seen directly. In fact, if we define D

in the standard way (among the possibilities that differ by isomorphisms only), we obtain an

# �equality D = D�Φ .

Next, we explain a translation of formulas to formulas induced by Φ . Temporarily, let us call

a FOLDS variable μ special if μ:O (X, A) for (unique) suitable i:I��J∈Arr(I) andi
* *X:O , A:O . Let us fix a 1-1 mapping μ��μ of special variables μ to variables μ inI J

*ordinary multisorted logic over L [I] such that, when μ is as above, μ :A . Thediag J
non-special variables over L [I] are considered variables over L [I] ; ifanadiag diag
x:O , x:O in the sense of multisorted logic, and if x:A (y, z) , then x:A in theI I I I
sense of multisorted logic.

� *For a special variable μ as above, we have the formula ϕ = O (X, A, μ ) , with the[μ] def i
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*latter formula introduced above. For a finite context � , we let � =�-{μ∈�: μ
* *special}∪{μ ∈�: μ special} (exchange every special variable μ for μ ), and consider the

*formula ϕ = ���{ϕ :μ∈� special} ; Var(ϕ )=� . For a finite set � of[�] def [μ] [�]
variables over L [I] , we write {�} for the product-object [�:t]= � [y∈K : t] indiag yy∈�
[T [I]] , where y:K .diag ��� y

Recall that, with Φ as in (19), for any finite context � , we have the object Φ[�] defined as

*a certain pullback. Inspection shows that Φ[�] can be taken to be �[� :ϕ ]� , the[�]
* *domain of the subobject [� :ϕ ] of {� } ; we have a canonical monomorphism[�]

*m:Φ[�]��	{� } . Thus, for any θ in FOLDS with restricted equality, with Var(θ)⊂� ,

m * *Φ[�:θ]��	Φ[�] may be regarded a subobject Φ[�:θ]��	Φ[�]��	{� } of {� } .

* * *We can produce a formula θ such that Var(θ )=Var(θ) and

* *Φ[�:θ] = [� :θ ]*{� }

*(equality of subobjects of {� } ) as follows. We have, for atomic formulas

* �(I (X, κ)) ≡ I (X, κ)I I
( X:O , κ:A )I I

* �(T (X, Y, Z, f, g, h)) ≡ T (X, Y, Z, f, g, h)I I
( X, Y, Z:O ; f:A (X, Y); g:A (Y, Z); h:A (X, Z) )I I I I

* � * *(A (X, Y, A, B, μ, ν, f, g)) ≡ A (X, Y, A, B, μ , ν , f, g)i i
( X, Y:O ; A, B:O ; μ:O (X, A), ν:O (Y, B), f:A (X, Y), g:A (A, B) )I J i i I J

* � * *(O (X, A, B, μ, ν, h)) ≡ O (X, A, B, μ , ν , h)ι ι
( X:O , A, B:O ; μ:O (X, A), ν:O (Y, B), h:A (A, B) )I J i i J

*(f= g) ≡ d (f)=d (g)=X
c (f)=c (g)=Y
f= gA (X, Y) I I I I AI I
( X, Y:O ; f:A (X, Y), g:A (X, Y) )I I I

* � � * *(μ= ν) ≡ O (X, A, μ)
O (X, A, ν)
μ = νO (X, A) i i Ai J
( X:O ; A:O ; μ, ν:O (X, A) ) ;I J i
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for connectives

*t ≡ t

*f ≡ f

* * *(θ�ρ) ≡ θ �ρ
* * *(θ�ρ) ≡ θ �ρ
* * *(θ��ρ) ≡ ϕ �(θ ��ρ ) ( � = Var(θ��ρ) )[�]

and for quantifiers

* *(∀xθ) ≡ ∀x∈O .θ ( x:O )I I
* *(∀xθ) ≡ ∀x∈A .((d (x)=y�c (x)=z)���θ ) ( x:A (y, z) )I I I I
* * � * *(∀xθ) ≡ ∀x ∈A .(O (y, z, x )���θ ) ( i:I��J , x:O (y, z) ) ;J i i

the existential quantifier is dealt with correspondingly.

*Notice that if Var(θ) is a restricted context, then Var(θ )=Var(θ) .

#The upshot of all this as follows. For an I-diagram D:I��Cat , and its saturation D , if �

is a finite restricted context over L [I] , θ is a FOLDS formula withanadiag
�Var(θ)⊂� , and a∈D[�] , then

# � * �D � θ[a] ���� D � θ [a] .

For a structure M over a language extending L [I] , �M	 denotes its reduct todiag
L [I] ; �M	 is the underlying I-diagram of M .diag

(20)(a) Let T be a theory extending T [I] . Let � be a finite restricted context overdiag
L [I] , σ an L -formula such that Var(σ)⊂� . The following two conditions (i),anadiag T
(ii) are equivalent.
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� � �(i) For any M, N �T and tuples a∈�M�[�] , b∈�N�[�] , M�σ[a] and

� � � �(�M�, a)���(�N�, b) imply N�σ[b] .

(ii) There is θ in FOLDS over L [I] with Var(θ)⊂� such that for allanadiag
� � * �M�T and tuples a∈�M�[�] , we have M�σ[a] iff M�θ [a] .

(b) In particular, if σ is a sentence over L , and for any M, N �T , M�σ andT
�M� � �N� imply N�σ , then there is a sentence θ of FOLDS over L [I] suchanadiag

*that for any M�T , M�σ iff M�θ .

Proof. ((ii)���(i)) Given θ as (ii), we have

� * � * � # �M�σ[a] ��� M�θ [a] ��� �M��θ [a] ��� �M� �θ[a]

and similarly,

� # �N�σ[b] ��� �N� �θ[b] .

� � �Assume the hypotheses of (i), in particular, (�M�, a)���(�N�, b) . By (8), for

# � # �L=L [I] , (�M� , a)≈ (�N� , b) , hence, by 5.(2)(b),anadiag L
# � # � � �

�M� �θ[a]����N� �θ[b] . By what we saw above, this means M�σ[a] ��� N�σ[b]

as desired.

� *((i)���(ii)) Assume (i). We apply 5.(15) with σ=m ([�:σ] ∈ S(Φ[�]) in place of σ ;

� � � �m:Φ[�]�	
{�} as above. The condition M�σ[a] translates into 〈a 〉∈M[σ] ; now,

� � � � #〈a 〉=a . Recall that M�L=M�Φ = �M� . Thus, also using (8), we have

� � � �for all M, N�T , a∈(M�L)[�] , b∈(N�L)[�] ,

� � � � � � � � � �〈a 〉∈M[σ] , (M�L, a) ≈ (N�L, b) ��� 〈b 〉∈N[σ] .
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�Since every P�C is isomorphic to one of the form M , with M�T , we have the hypothesis of

�5.(12). The conclusion gives θ in FOLDS over L such that σ= Φ[�:θ] , whichΦ[�]
suffices.

The result of (20) can be paraphrased by saying that a first-order property of a diagram of

categories, functors and natural transformations is invariant under equivalence iff the property

is expressible in FOLDS with restricted equality as a property of the saturated anadiagram

canonically associated with the diagram.

It is left to the reader to formulate stronger versions of (20), based on results of §5.

A normal theory for I-diagrams is a theory T extending T [I] such that if M�T anddiag
D��M� , then there is N�T such that �N�=D . For a restricted context � , and formula σ
of L [I] with Var(σ)⊂� , we define the concepts " σ is preserved/reflected alongdiag
equivalences of models of T " in the obvious way, in analogy to the case of a single category

(see above). We have the following analog of (3).

(20') Let T be a normal theory of I-diagrams of categories, functors and natural

transformations. Let � be a finite restricted context over L [I] . Suppose that theanadiag
first-order formula σ over L [I] with free variables all in � is preserved anddiag
reflected along equivalences of models of T . Then there is a formula ϕ in FOLDS over

*L [I] such that σ is equivalent to ϕ (defined above) in models of T .anadiag

〈0,1 〉Let us discuss the special case of I = ( 0�������1 ) consisting of two objects and an

arrow between them; there are no 2-cells. The intended structures for

〈0,1 〉L =L [(0�������1)] are functors; more precisely, structures consisting of twofun diag
categories connected by a functor. Fibrations are such structures. There are many first-order

conditions on fibrations and on objects and morphisms in fibrations that are of interest. On the

other hand, in [MR2], several elementary (first-order definable) classes of L -structuresfun
were introduced as categorical formulations of modal logic; these "modal categories" are not in

general fibrations.
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Let me restate the basic concepts for L . L is the following graph:fun fun

T I T I0 0 1 1
t � �t �t �i t � �t �t �i00 01 02 0 10 11 12 1� � � � � � � �

a a0 1A ����������� A ����������	 A0 1
� � � � � �d � �c d� �c d � �c0� � 0 � � 1� � 1
 
 
 
 
 

O ����������� O ����������	 O .0 o o 10 1

〈0,1 〉L = L [(0������	1)] is generated by L , subject to appropriateanafun anadiag fun
equalities of composite arrows. A functor F:X��	A is regarded an L -structure in such afun
way that the interpretation of the relations O and A are the graphs of the object-function and

of the arrow-function of F , respectively.

Given functors F:X��	A and G:Y��	B , an equivalence between them is a triple

(E , E , e) as in0 1

FX������	A
� � ≅E � �E : e:E F����	GE0
 e��
 1 1 0Y������	BG

in which E and E are equivalence functors. This notion of equivalence of functors can be0 1
motivated by saying that it is the combination of two simpler notions: one is the isomorphism

of two parallel functors

F������	X ≅
e A ,������	G

EF 0 Fand the other is the relation between X��	A and the composites Y���	X��	A ,

EF 1X��	A���	B where E , E are equivalence functors. Since the second notion only0 1
involves changing a category to an equivalent one, the change affected on the functor should

be an "inessential" one; the resulting composites should be "equivalent" to F ; they are,
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according to our definition. It is clear that the equivalence relation generated by the two

special cases of "equivalence" is the full notion of "equivalence".

#For F:X��A as an L -structure, F , the saturation of F , an L -structure, has,fun anafun
among others,

# ≅F O = {(X, A, μ): X∈X, A∈A, μ:FX���A} ,

and

#F A = {(X, A, μ, Y, B, ν, f, g) :

μFX�����Af g ≅ ≅(X���Y)∈X, (A���B)∈A, μ:FX���A, ν:FY���B such that Ff� � �g } .
FY�����Bν

# #In the spirit of [M2] , within the notation for F A , the object A is also written as F (X) ,μ
#and g = F (f) .μ, ν

The various kinds of modal categories of [MR2] are each defined by a finite set of first-order

axioms, and each kind of modal category is invariant under equivalence: if F:X��A belongs

to the given kind, and G:Y��B is equivalent to F:X��A , then so does G:Y��B . It

follows by our invariance theorem (15) that the axioms can be formulated in FOLDS, although

not as statements about the functor itself, but as statements about its saturation. However, it is

not necessary to use the invariance theorem (which is anyway proved in a non-constructive

way) to obtain the individual FOLDS-statements; in each case, one can find them directly,

rather easily. I will give an example of an axiom thus reformulated in FOLDS.

Suppose the functor F:X��A preserves monomorphisms, and consider the following

condition on F :

(21) For any X∈X , the induced map F :S (X)����S (FX) of posets has a rightX X A
adjoint (denoted Y���Y , the necessity operator).

#I want to show that the (21) can be equivalently written as a statement about F . The simple
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≅observation is that if (21) holds, and μ:FX���A , then the map

r μ�Frϕ=ϕ[μ]:S (X)����S (A) defined by ϕ([Z���X]) = [FZ������A] also has a rightX A
radjoint ( [Z���X] is the subobject of X given by r ); it is this latter, more general,

#statement that we can (almost) directly formulate in FOLDS about F .

For variables U, V:O , u:A (U, V) , let M (U, V, u) , abbreviated as M (u) , and0 0 0 0
intended to say that u is a monomorphism, be the L -formulaanafun

∀W:O .∀v, w:A (W, U)(∃z∈A (W, V).T (v, u, z)�T (w, u, z).���v= w) .0 0 0 0 0 A (W, U)0

Changing all subscripts 0 to 1 , we get the formula M (u) . Here is the sentence θ for1
#which F �θ is equivalent to (21):

∀X:O ∀A:O ∀μ:O(X, A)∀B:O ∀m:A (B, A){M (m) ���0 1 1 1 1
∃Y:O ∃n:A (Y, X)[M (n)�∀Z:O ∀C:O ∀ν:O(Z, C)∀r:A (Z, X)∀s:A (C, A)0 0 0 0 1 0 1
(M (r)�M (s)�A(ν, μ, r, s ) ���0 0 d c a a0 1
∃t:A (Z, Y).T (Z, Y, X, t, n, r) ��� ∃u:A (C, B).T (C, B, A, u, m, s))]} .0 0 1 1

#To help reading the sentence interpreted in F , here is a display of the data involved:

X A

n m μY���������X B���������A=F X FX�����A
� � � � μ ≅
	 � 
 	 � 
 � �t 	 
 r u 	 
 s=F (r) Fr� � �s

	 
 	 
 νμ � �≅Z C=F Z FZ�����Cν ν
≅FX���Aμ μ�Fr s[FZ������A] = [C���A] .≅ AFZ���Cν

Let us discuss fibrations. The first thing to say is that the concept of fibration is not invariant

under equivalence of functors. An equivalence functor is, clearly, not necessarily a fibration;

an identity functor is one, however; it follows that the concept of fibration is not invariant
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under equivalences of the form (E , Id, id) .0

On the other hand, once we know that F:X��A and G:Y��B are fibrations, then the

usually considered additional properties of F , and of diagrams in the fibration F , are

� �inherited along arbitrary equivalences F���G . The reason is that any equivalence F���G

gives rise to a "strong" equivalence from F to G ; and the usually considered properties are

invariant under the strong equivalences. In fact, the notion of strong equivalence is related to

looking at a fibration as a structure for a new DS vocabulary L . Let me explain.fib

Consider the following DSV L :fib

� �T I0 0
t � �t �t �i00 01 02 0 � �� � � � T I1 1

t � �t �t �iA � 10 11 12 10 	 
��� � � � �
���� � a A����d � �c 0 
���0� � 0 a � A� � 1 1
O ���� � �0 
��� d � �c
��� 1� � 1o 
��� � �
�� ;� O1

here, besides the two obvious copies of L , we have the equalitiescat

od a = d a , oc a = c a .0 0 1 1 0 0 1 1

(The simpler version that has an arrow A ��A in place of A ���A���A is not suitable;0 1 0 1
we need equality on A to express fully the properties of the arrows of the base category;1
with the version indicated, A would not be a top kind, therefore would not be eligible for1
carrying an equality predicate in the language.)

Among the L -structures, we find the functors; given F:X��A , it is understood as anfib
L -structure in the natural way in which the 0-copy of L is X , the 1-copy A , ofib cat
is the object-function of F , and the relation A is the graph of the arrow-function of F . Note

that whereas L is a simplification of L , its height is 4 , and that of L is 3 .fib fun fun
Here is an axiom in FOLDS over L that formulates the existence of (strongly) Cartesianfib
arrows:
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�∀A:O ∀B:O ∀f:A (A, B)∀Y:O (B)∃u:A (A, B, X, Y){A(u, f)�1 1 1 0 0
� �∀C:O ∀g:A (C, A)∃h:A (C, B)[T (g, f, h)�∀Z:O ∀v:A (C, A, Z, Y)(A(v, h)��1 1 1 1 0 0

� �∃!w:A (C, A, Z, X)(A(w, g)�T (w, u, v)))]} .0 0

Here is a diagram to accompany the sentence:

Z��������� ���� v� ����w � ����� ���u 	X
���������������� Y

fA
���������������� B���� ���g� ���� ���� ��� h����C

We have employed the usual abbreviations in writing the atomic formulas; the unique

existential quantifier ∃! may be expanded in the expected way. Adding further axioms that

are easily obtained, we get a sentence in FOLDS over L that axiomatizes the notion offib
fibration. This would not be possible to do over L .anafun

Let us call functors F:X
�A and G:Y
�B strongly equivalent, F� G , if there is ans
equivalence (E , E , id):F�G (in the previous sense), with an identity in the third0 1
component;

FX
������A
� �E � � �E (22)0� � 1
Y
������BG

(23) For functors F and G , F� G iff F ≈ G . As a consequence, a first orders Lfib
property of objects and arrows in a prefibration (functor), in particular, in a fibration, is

invariant under strong equivalence iff the property is expressible in FOLDS over L .fib

I only outline the proof. Of course, the second statement is obtained
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as a consequence of the first by §5. Given (�, r, s):F������G , for anyLfib
� �A∈FO =Ob(A) , let us pick A∈�O by the Axiom of Choice such that r(A)=A , and put1 1

�E (A)=s(A) . For X∈Ob(X) , let A=F(X) ; thus, X∈FO (A) . By the very surjectivity of1 0
� � � �r , there is X∈�O (A) such that r(X)=X ; we let E (X)=s(X) . We have defined the0 0

object-functions of equivalence functors E :A��B , E :X��Y , and note (the main point)1 0
that, at least as far as the effect on objects is concerned, the diagram (22) commutes (and not

just up to an isomorphism). The rest of the verification is left to the reader.

Note that the treatment of fibrations did not require a passage to an "anafunctor". The usually

considered properties of fibrations are invariant under strong equivalence. On the other hand,

there is a simple, and well-known, "transfer property" for morphisms of fibrations which

ensures that for fibrations F and G , F � G iff F � G ; in fact if (E , E , e):F � G ,s 0 1
there is E’:X��Y such that E’ ≅ E and (E’, E , id):F � G .0 0 0 0 1
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§§§7. Equivalence of bicategories

For 2-categories and bicategories, see [M L], [Be], [S].

In this section, I discuss invariance of properties of bicategories, and of diagrams in

bicategories, under biequivalence (however, I will call "biequivalence" "equivalence of

bicategories"). To mention just two examples, the property of a bicategory having finite

weighted (indexed) limits (see [S]) is a first-order property invariant under (bi)equivalence; but

the property of a 2-category having finite 2-limits is not so invariant. The main result of this

section (see the Corollary at the end) implies that the first-mentioned property can be

expressed in FOLDS, although not quite in the language of the bicategory itself, but in a

modification of it. In fact, the formulation of the said property in FOLDS can be done directly,

quite easily.

One possible choice of a similarity type for 2-categories is the following graph L :2-cat

h0�������������T H1 �������������h1t ��t �t h ��h �h10�� 11� 12 2�� 3� 4�� � �� ��� � �� � tc �� � c �� � 2010 20 ������������������������ ���������� ��������������C C C t T0 ���������� 1 ���������� 2 21 2c c ��������������11 � 21 � t�i �i 22� 1 � 2

I I1 2

The following explains the meaning of these symbols in the case of a 2-category:

C : (the set of all) objects (0-cells),0
C : arrows (1-cells),1
C : 2-cells;2
c , c : domain,10 20
c , c : codomain,11 21
T : commutative triangles1
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�t τ ��� �� t τ10�� ��11τ = �� ���	











�t τ12

of 1-cells,

T : commutative (for vertical composition) triangles2

	


















��t θ �� 20 �t θθ = 	











� 22 

��t θ �� 21 �	


















�

of 2-cells,

H : commutative (for horizontal composition) triangles

� ���� ��t h η �� c t h η �� t h η10 0 �� 11 10 0 �� 11 0�� � ���� �� ����	







��� ��





� ���� h η �� �� h η ���� 2 �� �� 3 ���� �� t h η t h η �� ��� �� 10 1 11 1� � t h η12 1	


























��η = c t h η �h η c t h η10 10 0 � 4 11 10 0	


























�t h η12 0

of 2-cells;

I : identity 1-cells,1
I : identity 2-cells.2

A 2-category is the same as a structure for L satisfying certain axioms Σ in2-cat 2-cat
multisorted first order logic with equality(ies) over L .2-cat

For the concept of bicategory we need, in addition, the sorts A , L and R , accommodating

associativity isomorphisms, and left and right identity isomorphisms, respectively. More

precisely, we introduce, besides these three new objects, the arrows
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a0�������������������� aa 4T 1 A ���������� C ,1 ���������� 2a2����������a3

C C2 2
� �� �� � �r� 2 � 2

� � � r � r0 1 0 1T ���������� L ���������� I , T ���������� R ���������� I ;1 1 1 1

with these additions to L , we obtain L .2-cat bicat

In a bicategory, the symbols of L are interpreted as expected (as in a 2-category). A2-cat
stands for the set of 5-tuples α = (a α, a α, a α, a α, a α) where the a α0 1 2 3 4 i
(i=0, 1, 2, 3) are commutative triangles of 1-cells (elements of T ), and a α is a 2-cell,1 4
fitting together as in

��� �g=01=20 a α = � � a α = � 	0 �
 1 ������������������ �� �� � � ���� ��� 02=10 � a α = � � a α = � �f=00=30� ��� �h=11=21 2 � 	 3 ��� � �22=31 �� � �� 	� 32��������������a α� 4�������������12

with ij standing for t (a α) , and a α is the associativity isomorphism1j i 4
≅α :h(gf)���(hg)f . L is the set of triples λ = ( � λ, � λ, � λ) as inf, g, h 0 1 2

c t � λ10 10 0 ��� ���� ���� ��� �� ��� t � λ �� � λ �� f=t � λf=t � λ� 12 0 ��2��� �� 10 010 0 � �� ��� �� ��	 �� �����B=c � λ ������������������� B=c � λ ,10 1 1 =i � λ=t � λ 10 1B 1 1 11 0

≅and � λ is the identity isomorphism λ :1 �f���f . R is similar, mutatis mutandis.2 f B
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Bicategories are L -structures satisfying a set Σ of axioms, in multisortedbicat bicat
first-order logic with equality over L . Of course, 2-categories are those bicategoriesbicat
for which each α , λ , ρ are identity 2-cells. We write T for the theoryf, g, h f f bicat
(L ,Σ ) .bicat bicat

Now, we introduce the DSV L . The underlying simple category is generated byanabicat
the graph L , subject to the following equalities:bicat

c c = c c , c c = c c ,10 20 10 21 11 20 11 21
c t = c t , c t = c t , c t = c t ,11 10 10 11 10 10 10 12 11 11 11 12
c i = c i ,10 1 11 1
c t = c t , c t = c t , c t = c t ,21 20 20 21 20 20 20 22 21 21 21 22
c i = c i ,20 2 21 2
t h = c h , t h = c h , t h = c h , t h = c h ,10 0 20 2 10 1 21 2 11 0 20 3 11 1 21 3
t h = c h , t h = c h .12 0 20 4 12 1 21 4

t a = t a , t a = t a , t a = t a , t a = t a ,10 0 10 3 11 0 10 2 12 2 11 3 12 0 10 1
t a = t a ,11 1 11 2
c a = t a , c a = t a ,20 4 12 1 21 4 12 3
i � = t � , c � = t � , c � = t � ,1 1 11 0 20 2 12 0 21 2 10 0
i r = t r , c r = t r , c r = t r .1 1 10 0 20 2 12 0 21 2 11 0

The relations of L are exactly its maximal objects, that is, its level-3 objects,anabicat
� � � � � �I , T , H , A , L and R .2 2

The equalities between composites arise naturally; they hold in a bicategory (as a

L -structure); also, the relations of L are interpreted in a bicategorybicat anabicat
"relationally"; in brief, every bicategory is an L -structure.anabicat

In [M2], the concepts of anabicategory, and saturated anabicategory were introduced.

Although these concepts implicitly underlie all that follows, they will not be relied on

explicitly.

An anabicategory is an L -structure satisfying certain axioms Σ inanabicat anabicat
FOLDS (with restricted equality) over L ; a saturated anabicategory is one thatanabicat
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satisfies a larger set Σ of axioms in FOLDS over L (these facts willsanabicat anabicat
be seen upon inspecting the definitions in [M2] ). An anabicategory is like a bicategory, with

the composition functors replaced by composition anafunctors.

For the reader who has a copy of [M2], I now point out some details, which, however, are not

needed later.

Let � be an anabicategory as in [M2]. In explaining in what way � is an

L -structure, we will write T for �T , etc. For a diagramanabicat 1 1

B�f �� �� g�� �� (1)�A	








�C ,h

T (f, g, h) (short for T (A, B, C, f, g, h) ) is the set � �((f, g), h) , the set1 1 A, B, C
of specifications s for h being the composite of f and g , h = g f (see 3.1.(iv) ins
[M2]). For f:A	�A ∈ C , I (A, f) is �1 �(*, f) , the set of specifications i for f1 1 A
being the identity 1-cell on A , f = 1 (see 3.1.(iii) in [M2]). ForA, i

gB	











�C� ���� ��� �� �� i �f� �� �h (2)� �� ��k �� �� �� �� ��
�A 	










�D�α	










�j

in � , and

a∈T (f, g, i) , b∈T (i, h, j) , c∈T (g, h, k) , d∈T (f, j, �) , (3)1 1 1 1

and α:j	� � ,we have

A(a, b, c, d; α) ��� α = αa, b, c, d

(see 3.1.(vi) in [M2]). (According to our conventions in logic with dependent sorts,

A(a, b, c, d; α) is short for A(A, B, C, D; f, g, h, i, j, k, � ; a, b, c, d; α) ) .
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Every bicategory (as an L -structure) is an anabicategory, although not necessarilyanabicat
saturated.

Whereas the interpretation of T in a bicategory, the notion of "commutative triangle of1
1-cells", is a relation on triangles of 1-cells (where a triangle of 1-cells is three objects and

three arrows (1-cells) appropriately related via the domain/codomain functions), in an

anabicategory, we have a sort of entity that may be called "specification for a commutative

triangle of 1-cells". Such a specification does specify a unique triangle (via the maps t );1i
however, the property "commutative" does not figure separately. You may say that a triangle is

commutative if there is a specification for it to be commutative, but in the concept of

anabicategory, we do not work with this notion, we only work with the specifications. In an

anabicategory, the expression "commutative triangle (of 1-cells)" should always be interpreted

as "specification for a commutative triangle".

Next, we define a translation of the language L into the theory T ; that is,anabicat bicat
a [T ]-bicat structure I:L ������[T ] . Via this translation, everybicat anabicat bicat

# #bicategory � gives rise to � = ��I , an L -structure. � is in fact a saturatedanabicat
anabicategory; however, for the main result, we will not need this fact; we will use the actual

# #construction of � as an L -structure only. (In [M2], � was defined for theanabicat
special case of a monoidal category (one-object bicategory) � only.) We define the passage

#
���� ; this will describe the said interpretation as well.

#In � , the interpretation of the part

tc c 2010 20 �������
������ ������ �������C C C t T0������ 1������ 2 21 2c c �������11 21 � t� 22�

I2

of L is the same as in � .anabicat

#Under (1) (0-cells and 1-cells in � as well as in � ),
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# �
� T (f, g, h) = Iso (gf, h)1 def

≅= the set of all isomorphism 2-cells gf���h .

���� �	�� B �	�� � �	f �� ��� �	 �	 h�� �� �	 �	�������� �
�����	�� β�� g �	δ �	�� �� i �	 ���� �� �	  ��If k�����������������������������������εA � C����������������������������������j

# #and s∈� T (f, h, j) , t∈� T (g, i, k) , then1 1

shf�����j
#� � �

� H(s, t; β, δ, ε) ����� δ ⋅ β � � �ε .� �def � �
ig�����kt

#Under (2) and (3) in � ,

αf, g, hh(gf)����������(hg)f

� ��ha cf�� �
#�

� A(a, b, c, d; α) ����� hi � kf ; (4)
def � ��b d�� �

αj ����������� �

here a reference is made to the associativity isomorphism α given with � .f, g, h

#For a 1-cell f:A��A , � I (A; f) = Iso(1 , f) .1 A

For
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A���� �� h� ��f� ��� ��
B�����������B ,g

#a∈� T (A, B, B; f, g, h) , i∈I (B; g) , λ:C (h, f) ,1 1 2

if1 f������gfB#� �
� L(a, i, λ) 	


� λ � � �a ,def f � �� �

f�������hλ

where a reference is made to the identity isomorphism λ given with � . The definition off
#�

� R is a straightforward variant.

In a bicategory � , a 1-cell f:B��A is an equivalence if there is f’:A��B such that

f�f’ ≅ 1 , f’�f ≅ 1 ; this is equivalent to saying that for any C∈� , the induced functorA B
*f :�(C, B)����(C, A) is an equivalence of categories.

We have the notion of functor of bicategories; this is just a different expression for

"homomorphism of bicategories" (see [Be], [S]). A functor F:����� of bicategories is an

�equivalence (of bicategories) [instead of "biequivalence"], in notation F:����� , if

�(i) for every A∈� , there is X∈� and an equivalence f:FX���A ;

and

(ii) for X, Y∈� , F induces an equivalence of categories �(X, Y)����(FX, FY) .

See [S].

We say that the bicategories � , � are equivalent [instead of "biequivalent"] if there is an

�equivalence ����� . Equivalence of bicategories is an equivalence relation (this requires the

Axiom of Choice; the fact is well-known, but it also follows from (5) below).
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Let L = L .anabicat

(5) For any bicategories � , � , � � � iff � ≈ � .L

# ≈ # �Proof. (A) ("if") Let (�, r , r ): � ���� . We construct F:����� .0 1 L

* # * #We write 〈 ε 〉 for r (ε) , and [ε] for r (ε) . We will write � for r � =r �0 1 0 1
too.

� � �Given any X∈�C , we pick (by Choice) X∈�C such that 〈X 〉=X . We put FX = [X] .0 0 def
� � � �For any f:X��Y in � , pick (by Choice) f∈�C (X, Y) such that 〈f 〉=f , and for1

f
����� � � � � � �X �β Y , β∈C (f, g) with 〈 β 〉=β ( β is uniquely determined); define Ff = [f] ,
����� 2g

�Fβ = [β] .

f g # � � � ��For X���Y���Z in � , a = 1 ∈� T (f, g, gf) ; let a∈�T (f, g, gf) such thatdef gf 1 1
� � � ≅〈a 〉=a ; then [a]∈�T (Ff, Fg, F(gf)) , that is, [a]:Fg�Ff�����F(gf) . Therefore,1

�we may define F = [a] .f, g def

The coherence condition that the F have to satisfy (the sense in which F preserves thef, g
associativity isomorphisms) reads as follows: given

f g hX�����Y�����Z�����W ,

we have
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αFf, Fg, FhFh(FgFf)�����������������(FhFg)Ff

� �FhF � �F Fff, g� � g, h� �
� �

FhF(gf) �? F(hg)Ff

� �F � �Fgf, h� � f, hg� �
� �

F(h(gf))�����������������F((hg)f) .F(α )f, g, h

Writing a=1 , b=1 , c=1 , d=1 , this amounts to the same asgf h(gf) hg (hg)f

α � � �� � � [f], [g], [h] � � �[h]([g][f])�����������������([h][g])[f]

� � � � � �[h][a]� �[c][f]� �
� �

� �� �� �[h][gf] �? [hg][f]

� � � �[b]� �[d]� �
� �

����� �� �[h(gf)] ����������������� [hg][f] .������[α ]f, g, h

But by (4), the last commutativity is equivalent to saying that

# � � � � �����
� A([a], [b], [c], [d]; [α ]) holds. The latter is a consequence off, g, h

� � � � ����� #
�A(a, b, c, d; α ) , which in turn follows from � A(a, b, c, d; α ) , which,f, g, h f, g, h
finally, holds by (4) since a, b, c and d are identities.

The preservation by F of identity isomorphisms, and that of horizontal composition (see

[MP], §4.1, (2)(v) and (2)(iv)) are similar, and use L , R and H , respectively.

The facts that F preserves identity 2-cells and vertical composition of 2-cells are immediate.

�We claim that for any A∈�C , there is X∈�C such that FX � A . Given A , pick X∈�C0 0 0
� �with [X]=A , and let X= 〈X 〉 . (Picture:
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4
�X
���� ��� �� �� X 2 �� � �� � � �� � ��� � �

X A FX .)
3 1 5

� � � �Consider 1 ∈�C (X, X) , and let i∈�C (X, X) , j∈�C (X, X) such thatX 1 1 1
〈i 〉= 〈j 〉=1 . We haveX

[i]:FX�	
A , [j]:A�	
FX

� � � � � �in � . Let f=1 �1 ∈�C (X, X) , and f∈�C (X, X) , f∈�C (X, X) such thatX X 1 1 1
� � #〈f 〉= 〈f 〉=f . Consider 1 ∈�C (1 �1 , f) ; then 1 ∈� T (X, X, X; 1 , 1 , f) . Letf 2 X X f 1 X X

� � � � � � � �ι∈T (X, X, X; i, j, f) , ι'∈T (X, X, X; j, i, f) such that 〈 ι 〉= 〈 ι’ 〉=1 . Then1 1 f
# �[ ι]∈� T (FX, A, FX; [i], [j], [f]) , and thus1

≅ �[ ι]:[j]�[i]�			
[f] ; (6)

similarly,

≅ �[ ι’]:[i]�[j]�			
[f] .

≅ # � � �But, ϕ = λ :f�	
1 , that is, ϕ∈� I (X, f) . Thus, there is ϕ∈�I (X, f) (suchdef 1 X 1 1X
� � # � � ≅ �that 〈ϕ 〉=ϕ ). Then, [ϕ]∈� I (FX, [f]) , i.e., [ϕ]:1 �	
[f] . Combined with (6),1 FX

we get [j]�[i] ≅ 1 . Similarly, [i]�[j] ≅ 1 . The data [i], [j] provide anFX A
equivalence of FX and A as claimed.

Let us see that F :�(X, Y)�	
�(FX, FY) is an equivalence of categories. That it is aX, Y
bijection on hom-sets is a consequence of the fact that (�, r , r ) respects the equalities0 1
on C -sorts. To see essential surjectivity on objects, let g:FX�
FY , that is,2

# � � � � � � �g∈� C ([X], [Y]) . There is f∈�C (X, Y) such that [f]=g ; let f= 〈f 〉 . We now1 1
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� � � � � �have f, f both in �C (X, Y) , and both "over" f . There are i∈�C (f, f) ,1 2
� � � � � � � � � �j∈�C (f, f) , �∈�C (f, f) , �∈�C (f, f) such that 〈i 〉= 〈j 〉= 〈 � 〉= 〈 � 〉=1 . We2 2 2 f

# � � # � �have � I (f; 1 ) , hence, �I (f; �) and � I (Ff; [ �]) ; that is, [ �]=1 .2 f 2 2 Ff
� # � � � �Similarly, [ �]=1 . Since � T (f, f, f; 1 , 1 , 1 ) , we have �T (f, f, f; i, j, �)g 2 f f f 2

� � � � #and �T (f, f, f; j, i, �) , and as a consequence, � T (Ff, g, Ff; [i], [j], 1 )2 2 Ff
#and � T (g, Ff, g; [j], [i], 1 ) ; that is, [j][i]=1 , [i][j]=1 . This shows2 g Ff g

that g ≅ Ff as desired.

� # #(B) ("only if") Let F:����� , we construct (� , r , r ):� ������ . We will again0 1 L
write 〈 ε 〉 for r (ε) , [ε] for r (ε) .0 1

�We put �C = {(X, A, x): X∈�C , A∈�C , x is an equivalence x:FX���A} ;0 def 0 0
〈(X, A, x) 〉 = X , [(X, A, x)] = A .def def

Let us introduce a helpful notation. For any object D of L , any d ∈�D andanabicat 1
d ∈�D , �D[d , d ] stands for {d∈�D: 〈d 〉=d , [d]=d } , "the fiber of �D over2 1 2 1 2
(d , d ) ". We extend this definition to any sort �D(e, e’, ...) in � , in place of �D ;1 2

�D(e, e’, ...)[d , d ] = {d∈�D(e, e’, ...): 〈d 〉=d , [d]=d } ;1 2 1 2

# #here, it is assumed that d ∈� D( 〈e 〉 , 〈e’ 〉 , ...) , d ∈� D([e], [e’], ...) .1 2

The definition of �C together with effect of r , r on it, can be put, more succinctly,0 1 2
as

�
�C [X, A] = Equiv(FX, A) = {x: x:FX���A} .0

�Continuing, we define, for f:X��Y , f:A��B , x=(X, A, x), y=(Y, B, y)∈�C ,0

� �

�C (x, y)[f, f] = Iso(y�Ff, f�x) ,1

the set of all 2-cell-isomorphisms ϕ as in
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xFX�����A
� ≅ ��Ff� ����f .� � �ϕFY�����By

�C is relational, meaning that its fibers are either {*} , or ∅ . Instead of2
" * ∈ �C (x, y; ϕ, γ)[μ, ν] ", we just write " �C (x, y; ϕ, γ)[μ, ν] ".2 2

�f f������� �������For X �μ Y in � , A �ν B in � , x, y and ϕ as before, and������� �������g �g
�γ∈�C (x, y)[g, g] ,1

xFX �������������� A
� � ��ν��� � f���g� Fμ � "�" � �

�C (x, y; ϕ, γ)[μ, ν] 	


� Ff ���� Fg � �2 � � ϕ ������def � � �� ��� �� � �� ��γ � �� �FY ��������������� By
y�Fμy�Ff����������y�Fg

� �	


� ϕ� � �γ .� �def � �� �f�x���������� g�xν�x

Using that x , y are equivalences, and that F is an equivalence of bicategories, we see that,

for fixed x, y, ϕ, γ , the relation �C (x, y; ϕ, γ)[μ, ν] of the variables μ, ν is a2
bijection

≅ � �μ��ν : �C (f, g)������C (f, g) .2 2

�This implies that (� , r , r ) preserves the equality relation E . Also, with reference to0 1 C2
�ff ����������������� �� � �ν �g �μ � �g�������� �X�������ξ��Y , A �σ �ζ B , and η∈�C [h, h] , we easily see that�ρ � � � 1������� �� ����������h �h

�C (x, y; ϕ, γ)[μ, ν] , �C (y, z; γ , η)[ρ, σ] , ρμ = ξ , σν = ζ 


�2 2
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�C (x, z; γ , η)[ξ, ζ] ,2

from which it follows (by the above bijection μ��ν ) that

�C (x, y; ϕ, γ)[μ, ν] , �C (y, z; γ , η)[ρ, σ] , �C (x, z; γ , η)[ξ, ζ] ����2 2 2
ρμ = ξ ��� σν = ζ .

-1 # -1 #This means that r (� T )=r (� T ) ; that is, (� , r , r ) preserves T .0 2 1 2 0 1 2

Given

� � �(x:FX���A)∈�C [X, A] , f:X��X in � , f:A��A in � , ϕ∈�C (x, x)[f, f] ,0 1
that is,

xFX�����A
� ≅ ��Ff� ��	�f ,
 � 
ϕFX�����Ax

≅ � ≅ �and a:1 ���f , a:1 ���f , we haveX A

ϕ �xFf����������fx≅
� ��xFa�≅ ≅�ax� �

�
�I ( x , ϕ)[a, a] ����� xF(1 ) � 1 x .1 X Ac i def10 1 � �xF �≅ ≅�λX� � x
 
≅x1 ��������� xFX ρx

Given

� �(*) (x:FX���A)∈�C [X, A] , (y:FY���B)∈�C [Y, B] ,0 0
�(z:FZ���C)∈�C [Z, C] ,0
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Y� � B� �f��� ��g f��� ��g�� �� �� ��� �X	









�Z in � , A	









�C in � ,i �i
≅ # � �� ≅ � # � � �(a:gf	
�i)∈� T (f, g, i) , (a:gf	
�i)∈� T (f, g, i) ,1 1

� � �ϕ∈�C (x, y)[f, f] , γ∈�C (y, z)[g, g] , ι∈�C (x, z)[i, i] ,1 1 1

we have

�
�T (ϕ, γ , ι)[a, a] ��1 def

(front)

zFaF≅ f, g(zFg)Ff�

�z(FgFf)	





















�zFiα
� �� �(right) γFf � � ι (bottom)� �� � �

� ≅ � �(gy)Ff�

�g(yFf) ixα � �� �� � ��(left) gϕ � � ax (back)� �� � ≅ ��g(fx)	
�(gf)xα

(we have referred to the following diagram of 1-cells, and its "faces":

B����� � �y���� � ��� � ��� f � � g�FY � �
� � � � �Fg i� � A	








�CFf ��� ��� � � ��� ��� x�� � ���� �� z� �� � ��� �FX	









�FZ ).Fi

� �The facts that E , E are preserved are shown through the facts that the definitions ofI T1 1
�

�I , �T give bijections a��a .1 1
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� �The proof that (� , r , r ) so defined preserves A and H is put into Appendix D .0 1

We have an "augmented" version of (5), similarly to §6. I will state this without proof; for the

proof the details of the notion of anafunctor would be needed, together with a concept of

cleavage; the proof is, in outline, quite similar to the proof of 5.(8).

Let K be the full subcategory of L=L consisting of the objects C , C and0 anabicat 0 1
#C . A restricted context is a context of K . For a bicategory � and its saturation � ,2 0

# #
��K =� �K ; �[�]=� [�] whenever � is restricted.0 0

�Let � be a restricted context. An augmented bicategory of type � is a pair (�, a) of a

� � �bicategory � and a tuple a∈�[�] ; symbols such as (�, a) , (�, x) stand for augmented

� � � � � �bicategories. The notation E:(�, x)���(�, a) signifies that E:����� and E(x)=a .

� �The relations ��� and ��� are now defined in the same way as for I-diagrams in §6. For

� �bicategories, that is type-∅ augmented bicategories, the relations ��� , ��� coincide with

equivalence � . Generalizing (5), we have

� � # � # �(7) For augmented bicategories (�, x) , (�, a) , (� , x)≈ (� , a) iffL
� � �(�, x)�����(�, a) .

*We can, analogously to §6, define a recursive translation θ��θ from FOLDS formulas θ
*over L to formulas θ in ordinary multisorted logic over L such that, ifbicat

*
�=Var(θ) is a restricted context, then Var(θ )=� , and for any bicategory � ,

� # � * �a∈�[�] , � �θ[a] iff ��θ [a] . We obtain the following analogs of 5.(20) and 5.(20').

(8)(a) Let T be a theory extending T . Let � be a finite restricted context overbicat
L , σ an L -formula such that Var(σ)⊂� . The following two conditions (i), (ii)anabicat T
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are equivalent.

� � �(i) For any M, N �T and tuples a∈�M�[�] , b∈�N�[�] , M�σ[a] and

� � � �(�M�, a)���(�N�, b) imply N�σ[b] .

(ii) There is θ in FOLDS over L with Var(θ)⊂� such that for allanabicat
� � * �M�T and tuples a∈�M�[�] , we have M�σ[a] iff M�θ [a] .

(b) In particular, if σ is a sentence over L , and for any M, N �T , M�σ andT
�M� � �N� imply N�σ , then there is a sentence θ of FOLDS over L such thatanabicat

*for any M�T , M�σ iff M�θ .

(9) Let T be a normal theory of bicategories. Let � be a finite restricted context over

L . Suppose that the first-order formula σ over L with free variables allanabicat bicat
in � is preserved and reflected along equivalences of models of T . Then there is a formula

*ϕ in FOLDS over L such that σ is equivalent to ϕ in models of T .anabicat

(8)(b) follows from (5) (proved in detail above) and §5. As was mentioned, the proofs of

(8)(a) and (9) require a more detailed look at anabicategories, similarly to what we did in §5

on anadiagrams in the proof of (20)(a); this work is omitted here.

A paraphrase of (8) can be stated as follows. A first-order property of a bicategory, or of a

diagram of 0-cells, 1-cells and 2-cells in a bicategory, is invariant under (bi)equivalence of

bicategories if and only if it can be expressed in FOLDS as a statement about the saturation of

the bicategory.
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Appendix A: An alternative introduction of logic with dependent sorts.

The way we defined the basic concepts of FOLDS in §1 may look somewhat ad hoc because

of the a priori role of the one-way (simple) categories as vocabularies. There is a more direct

definition of FOLDS which does not start with assuming simple categories as vocabularies.

The notion of "vocabulary" that arises naturally in the direct approach does, nevertheless, turn

out to be equivalent to the one we started with in §1. More fully, the direct approach and the

original approach turn out to be equivalent in all essential respects. This Appendix describes

this state of affairs.

We first define the classes of entities called kinds, sorts, variables, contexts and

specializations, and certain relation between these entities. Each kind, sort, variable, context

and specialization has a certain level, which is a natural number; the definition of the said

entities is by a simultaneous induction, proceeding by the level.

For the present purpose, we use the set-theoretic notion of function as a set of ordered pairs

with the usual condition; the point is that we do not make the "categorical" specification of the

codomain as part of the data for a function. Given functions s and t , t�s is always

defined and is a function; dom(t�s) = {x∈dom(s): s(x)∈dom(t)} , and for

x∈dom(t�s) , (t�s)(x)=t(s(x)) .

The kinds of level 0 are the entities of the form 〈0, ∅, a 〉 , with a any set. We say that

�the kind K = 〈0, ∅, a 〉 is of arity ∅ , and we write K ∅ . The sorts of level 0 are the
�

entities 〈1, K, ∅〉 , with K a kind of level 0 ; we put Var(K) = ∅ . A variable of level 0

is any entity of the form 〈2, X, a 〉 with X a sort of level 0 , a any set; we say that the

variable x = 〈2, X, a 〉 is of sort X , and we write x:X . (The definition ensures that every

variable of level 0 has a unique sort of level 0 .) A context of level 0 is a finite set of

variables of level 0 . A specialization of level 0 is a function s whose domain is a context

of level 0 , and for each x∈dom(s) , s(x) is a variable of the same sort as x .

Suppose n is a natural number, n>0 , and we have defined what the kinds, sorts, variables,

contexts and specializations of level k are, for each k < n , such that each context of level

< n is a finite set of variables of level < n , and each specialization of level < n is a

function whose domain and range are sets of variables of level < n . Suppose moreover that
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we have defined the concept of a variable x being of sort X , for variables x and sorts X

of level <n .

A kind of level n is an entity 〈0, �, a 〉 , where � is a context of level n-1 , and a is an

�arbitrary set; we say that � is the arity of K= 〈0, �, a 〉 , and we write K � .
�

[Kinds are to form sorts (see below); kinds are incomplete sorts, with places for variables to

fill; when these places are filled in a correct manner, then we have a sort. In our formulation,

we did not introduce "places" as distinct from variables, although we could have done so; we

used variables to denote "places"; this is the same as the "nameforms" in [K]. Our procedure

may be compared to the one when, in ordinary first-order logic with several sorts, a relation

symbol R is introduced in the form R(x , x , ...x ) , with distinct specific variables0 1 n-1
x of definite sorts; the arity of R then may be identified with the seti
�={x , x , ...x } ; the atomic formula R(y , y , ...y ) ( y of the same sort0 1 n-1 0 1 n-1 i
as x ) using R can then be identified with the pair (R, s) ( = " R(s) ") where s is thei
function with domain � for which s(x )=y .]i i

A sort of level n is any X= 〈1, K, s 〉 , written more simply as K(s) , where K is a kind

�of level n , s is a specialization of level n-1 , and K dom(s) ;
�

Var(X) = range(s) .def

For a sort X , a variable of sort X is any x = 〈2, X, a 〉 ; we write x:X .

A context of level n is any set of the form �∪� where � is a context of level n-1 , � is

a (non-empty, for having level exactly =n ) finite set, and each x∈� is a variable of level n

such that if x:X , then Var(X) ⊂ � .

If X=K(s)(= 〈1, K, s 〉) , then X�t denotes K(t�s)(= 〈1, K, t�s 〉) . [ X�t is the sort

obtained "by substituting t(x) simultaneously for each x∈Var(X) in X ".] t is a

specialization (of level n ) if t is a function whose domain is a context, and for every

x∈dom(t) , if x:X , then X�t is a sort (of level ≤n ), and t(x) is a variable (of level

≤n ) of sort X�t (and there is at least one x∈dom(t) of level n ).

The above may be put in a more compact manner, without talking about levels, as follows. We
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define classes

KIND , CONTEXT , SORT , SPEC , VARIABLE

such that

�∈CONTEXT ��� � is a finite subset of VARIABLE ,

s∈SPEC ��� s is a function, dom(s) and range(s) ⊂ CONTEXT ;

predicates

� �⊂ KIND × CONTEXT (read K � as " K is a kind of arity � ")
� �

: ⊂ VARIABLE × SORT (read x:X as " x is a variable of sort X ")

and the function

Var : SORT���� (VARIABLE) ,fin

by the closure conditions:

�1 �∈CONTEXT ��� 〈0,�,a 〉 ∈ KIND and 〈0, �, a 〉 � ;
�

2 ∅ ∈ CONTEXT ;

3 �∈CONTEXT , X∈SORT , x:X , Var(X) ⊂ � ��� �∪{x} ∈ CONTEXT ;

�4 s∈SPEC , K∈KIND , K dom(s) ���
�

〈1, K, s 〉 ∈ SORT and Var( 〈1, K, s 〉) = range(s) ;

5 ∅ ∈ SPEC ;

6 �∈CONTEXT , s∈SPEC , X∈SORT , X�s∈SORT ,

x:X , x∉dom(s) , Var(X)⊂� , y:X�s ��� s∪{(x,y)} ∈ SPEC ;

( 〈1, K, s 〉�t = 〈1, K, t�s 〉 )def
7 X∈SORT ��� 〈2, X, a 〉 ∈ VARIABLE and 〈2, X, a 〉:X .

By definition, the intended system (KIND,...) is the minimal one satisfying the given

closure conditions.
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Let us give some examples. Let O , A , A , U , V , u , v be arbitrary entities, U≠V ,
� � �1 � � � � � �

u≠v . Here are specific kinds, variables, sorts and contexts, introduced by the above rules; at
� �

the start of the line, the number of the clause used is shown:

2 ∅∈CONTEXT ,

� ��1 O = 〈∅,∅,O 〉 ∈ KIND , O ∅ .def � �

5 s = (∅:∅��∅) ∈ SPEC0 def
�4 O = 〈1,O,s 〉 ∈ SORT , Var(O) = ∅def 0

7 U = 〈2,O, U 〉 ∈ VARIABLE , U:Odef �

V = 〈2,O,V 〉 ∈ VARIABLE , V:Odef �

3 twice {U, V} ∈ CONTEXT

�1 A = 〈0,{U, V},A 〉 ∈ KIND , A {U, V}def � �

6 twice s = id :{U, V}��{U, V} ∈ SPEC1 def {U, V}
4 A(U, V) = 〈1,A,s 〉 ∈ SORTdef 1
7 u = 〈2,A(U, V), u 〉 ∈ VARIABLE , u:A(U, V)def �

v = 〈2,A(U, V), v 〉 ∈ VARIABLE , v:A(U, V)def �

3... {U, V, u, v} ∈ CONTEXT

1 A = 〈0,{U, V, u, v}, A 〉 ∈ KIND1 def �1

For a variable x , we have a unique sort X for which x:X ; X =K (s ) for a uniquelyx x x x x
determined kind K and specialization s . For a kind K , � is the context for whichx x K
�K � .
� K

A pre-vocabulary is a set K of kinds such that K∈K , x∈� imply that K ∈K . (I amK x
talking about pre-vocabularies because relations are not yet contemplated.)

We compare the present approach to the one in §1. Let K be a pre-vocabulary. We make K

into a category with objects the elements of K . Arrows of K are the identity arrows, and the

Kp :K��K , one for each pair K∈K , x∈� . Composition is defined thus. Givenx x K

KK xp px yK���������K ���������K ( x∈� , y∈� ) ,x y K Kx
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X = K (s ) , with s :� ����Var(X ) . z = s (y)∈Var(X )⊂� ; also,x x x x K x def x x Kx
Kp Kz x K KK =K ; therefore, K���������K . We define p �p = p .z y y y x z

This composition is associative as is seen by using the equality s(s (u))=s (u) ,y s(y)
which in turn is part of the definition of s being a specialization.

The category K so defined is clearly a simple category; the levels of kinds as given in the

definition above are the same as their levels in K .

Let us use K as a category of kinds in the way done in §1. I claim that the resulting notions

of variable , sort , and context are essentially the same as those of variable , sort and1 1 1 K K
context in the sense of the present Appendix, with the only kinds allowed the ones in K .K
More precisely, we define, by a simultaneous recursion, functions

�X���X : Sort ����Sort (1)K 1

�x���x : Variable ����Variable ; (2)K 1

������� � �������by putting 〈2, X, a 〉 = 〈2, X, a 〉 , and 〈1, K, s 〉 = 〈1, K, 〈x 〉 〉 , wherep p∈K�K
���� Kx =s(y) for the unique y for which p=p . I leave it to the reader to check that (1) andp y

� �(2) are bijections, and x:X ��� x:X . Moreover, we have that the bijection (2) induces a

bijection between Context and Context .1 K

Let us return to the development started in this Appendix. A relation-symbol is an entity of the

form 〈3, �, a 〉 where � is a context; � is the arity of the relation-symbol R= 〈3, �, a 〉 ;

�R � . A vocabulary is a set L of kinds and relation-symbols such that the set K of kinds in
�

�L is a pre-vocabulary, and if R is a relation-symbol in L , R � , x∈� , then K ∈K .
� x

Our comparison above of pre-vocabularies and simple categories of §1 clearly extends to an

essential bijection between vocabularies as defined here, and DSV's of §1.

An atomic formula (in logic without equality) is any 〈4, R, s 〉 where R is a
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�relation-symbol, s is a specialization, and R dom(s) .
�

I leave the rest of the development of FOLDS in the style of this Appendix, and its comparison

to the main body of the paper, to the reader.
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Appendix B: A fibrational theory of L–equivalence

E E
� �

Consider fibrations �� , �� , and the category Fib[�,�] of all maps
B B
� �

M2E ������E
� �

M=(M , M ) : ���� :: �� � �� (1)1 2 B ������B
� M �1

of fibrations; Fib[�,�] is a full subcategory of [�,�] ; see [M3]. Fib[�,�] is the

total category of a fibration denoted Fib 〈�,� 〉 ; its base-category is the functor-category

[B ,B ] , and the fiber over U:B ��B has objects all the M as in (1) with the fixed
� � � �

U=M , and arrows as in 〈�,� 〉 defined in [M3]; the fiber of Fib 〈�,� 〉 over U is a full1
subcategory of the fiber of 〈�,� 〉 over U . Given (f:U��V)∈[B , B ] , and N:����

� �

h=θ* fover V , the Cartesian arrow M=f (N)������N is obtained by the stipulation that for all

hA XA∈B , X∈� , M(X)����X is a Cartesian arrow over f :U(A)��V(A) ; the definition
� A

of M on arrows is the obvious one; see also below. The fact that M so defined is a map of

fibrations is shown by the diagram:

MθqMX��������������� MY��� �� h�� �� Yh �� ��X �� Nθ ���� q 	NX ��������������NY
UA��������������� UB��� Uq ���� �� f�� �� Bf �� ��A �� 	VA ��������������VB .Vq

Here, θ :X��Y is a Cartesian arrow over q:A��B ; the issue is to show that Mθ isq q
Cartesian (over Uq ). The definition of M on arrows makes Mθ an arrow over Uq makingq
the upper quadrangle commute (unique such Mθ exists by h being Cartesian). As aq Y
composite of Cartesian arrows, (Nθ )
h is Cartesian; as a left factor of the last, Mθ isq X q
Cartesian.

In what follows, the base categories B , B will have finite limits. Fiblex 〈�,� 〉 is the
� �
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subfibration of Fib 〈�,� 〉 with base-category Lex(B ,B ) , a full subcategory of
� �

[B ,B ] , with fibers unchanged from Fib 〈�,� 〉 .
� �

Next, assume that � and � are �∃-fibrations. We have the prefibration �∃- 〈�, � 〉 , with

base category Lex(B ,B ) , and total category �∃(�,�) . The fiber over U∈Lex(B ,B )
� � � �

is the full subcategory of the fiber of Fiblex 〈�,� 〉 over U with objects the maps of

�∃-fibrations M:���� . �∃- 〈�, � 〉 is not a fibration; however, for certain maps

*f:U��V , f (N) calculated in Fiblex 〈�,� 〉 does belong to �∃- 〈�,� 〉 , as we proceed

to point out (from which it will of course follow that over such f , Cartesian arrows do exist

in �∃- 〈�,� 〉 ).

Assume that � is a �∃-fibration, with � = Arr(B ) . Let us call q∈Arr(B )
� � �

B * *surjective if ∃ t = t . If q is surjective, then for any Y∈� , ∃ q Y = ∃ (t �q Y)q A B q q A
= ∃ t �Y = Y (where the second equality is Frobenius reciprocity). It is clear that a pullbackq A
of a surjective arrow is surjective, and the composite of two surjective arrows is surjective. It

is also clear that if qr is surjective, then so is q .

Let us call a commutative square in B
�

gA���������B
� �a� �b� � (1')� �
A’��������B’g’

a quasi-pullback if the canonical arrow p:A’��A× B’=P is surjective.B

Using the stated properties of surjective maps, we easily see that if in the quasi-pullback (1'),

g is surjective, then so is g’ .

Consider two adjoining squares and their composite:

A���������B���������C A�������������C
� � � � �� 1 � 2 � � �� � � � 3 � (1")� � � � �
A’��������B’��������C’ A’������������C’
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(2) The "composite" of two quasi-pullbacks is again a quasi-pullback: if both 1 and

2 are quasi-pullbacks, then so is 3 .

The verification uses both the pullback and composition properties of surjective arrows noted

above.

(3) In (1"), if 3 is a quasi-pullback, 2 is a pullback, and 1 commmutes, then 1 is

a quasi-pullback.

(3') If in the commutative diagram

A ��������B
� �

� � ��	� � � ��	�� ��	� ��	�� � ��	� ��	�� � �
� �
�A ��������BA’��������B’
� � � �
� ��	� � ��	�� �

��	� ��	� �
��	� ��	�

�
� �
�A’��������B’

�� ��the two quadrangles AA’AA’ and BB’BB’ are pullbacks, and the square AA’BB’ is a

�� ��quasi-pullback, then AA’BB’ is a quasi-pullback too.

This follows from (2) and (3).

(3") If in (1"), 3 is a quasi-pullback, and AB is surjective, then 2 is a

quasi-pullback.

To see this, let P=B× C’ for 2 , and R=A× C’ for 3 . We have the commutative diagramC C
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A�������B�������C
� � �� � �� � � � �
R�������P�������C’

�
� � �� � �� � �
A’������B’

with two pullbacks as indicated. Since AB is surjective, so is RP . The assumption gives that

A’R is surjective. Now, the composite A’P is surjective, and so is its left factor B’P ,

which is what we want.

(4) The Beck-Chevalley condition for ∃ holds (not just with pullback squares, but

also) with quasi-pullback squares.

Indeed, consider the diagram

gA��������������B
�	

� 	
r �� 	� �� �a� P� �b� 	
s �� p�� 	
 �� � �

�A’�������������B’ ,g’

* * * * * *and calculate: ∃ a X = ∃ ∃ a X = ∃ ∃ q r X = ∃ r X = b ∃ X ; the third equalityg’ s p s p s g
is the "quasi-pullback" property, the last ordinary B-C .

Let us continue to assume that � is a "full" �∃-fibration ( � contains all arrows), let � be
�

an arbitrary �∃-fibration, (q:A��B)∈B . We call a map (f:U��V)∈Lex(B ,B ) very
� � �

surjective with respect to q if the square

UA��������������� UB�
	
 Uq 	

	
 	
 f
	
 	
 Bf 	
 	
A 	� �VA ��������������VBVq

is a quasi-pullback. (The concept of "very surjective" is relative to the fibration � , although it

does not depend on the fibration � except for its base-category.)
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(5) If f is very surjective with respect to an arrow q , then so it is with respect to

any pullback of q ; if f is very surjective with respect to a pair composable arrows, then so

it is with respect to their composite.

This follows by (3) and (2).

We say that f is very surjective if it is very surjective with respect to every q∈� ; by (5), it
�

is enough to require the condition for a "generating set" of q's .

(6) The composite of very surjective arrows (in Lex(B ,B ) ) is very surjective; the
� �

pullback of a very surjective arrow is very surjective.

This follows by using (2) and (3).

opLet K be a simple category, B = Con(K) ; Lex(B,B ) can be identified with
�

Fun(K,B ) ; this is the kind of base-category for the fibrations we are interested in. In §4,
�

we made two different choices for the class � of quantifiable arrows in B . The choice for

≠the purposes of the main body of §5 is � ; this, in the version that is closed under

=composition, is simply the class of epimorphisms of B . When we make the choice of � for

� , we get as the very surjective maps in the sense of this section the ones we called normal

ones in §5; we leave it to the reader to verify this.

≠(6') Let (f:U��V)∈Fun(K,B ) be very surjective (with respect to � ). For
�

every finite context � over K , f :U[�]��V[�] is surjective. For any K∈K ,[�]
f :U(K)��V(K) is surjective.K

The first assertion is shown by induction on the cardinality of � . If � is of positive size, we

⋅can write � as �∪{x} such that � is a context too. By the paragraph after (4) in §4, for

K=K , we have a pushout diagramx
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*
� ����������K K
� �� �� �
������������

*in Con(K) , which, with �=� , �=� , gives rise toK K

U[�]���������V[�]� �� ��	� � ��	�
 ��	�
 ��	�� ��	� ��	�� 1 � ��	� ��	�� � U[�]���������V[�]U[�]���������V[�]� �� ��	� � ��	�
 2 
��	� ��	���	� � ��	� ���	� � ��	� �
U[�]���������V[�]

to which (3') is applicable. The square 1 is a quasi-pullback (by f being very surjective),

hence, so is 2 . Since by the induction hypothesis, U[�]��V[�] is surjective, so is

U[�]��V[�] .

The second assertion follows immediately from the first by the quasi-pullback

UπKU(K)�������U[K]
f � �fK� � [K]� �
V(K)�������V[K] ;UπK

note that U[K] = U[� ] , etc.K

Assume now that � and � are �∃-fibrations, � a "full" one.

*(7) If f:U��V is very surjective, and N∈�∃(�, �) , the M=f (N) calculated in

Fib(�,�) is in fact in �∃(�, �) .
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*First of all, using that for each g∈Arr(B ) , g is a morphism of lattices, we immediately
�

see that M preserves the fiberwise operations.

Consider

MX� M∃ X
�� θ q �� θ
�� f �� f
��A ��B
�� ��
��NX N∃ XqUA��������������� UB�

�� Uq ��
�� �� f
�� �� Bf �� ��A �� �VA ��������������VBVq

* * *M∃ X = f N∃ X = f ∃ NX = ∃ f NX = ∃ MX ;q B q B Nq Mq A Mq

here, the first equality is the definition of M ; the second the quality of N being a morphism

of ∃-fibrations; the third f being very surjective; and the last again the definition of M .

Now, assume in addition that both � and � are 	
��∃∀-fibrations, again with

� = Arr(B ) . I claim that
� �

(8) If f:U��V is very surjective, then N ∈ 	
��∃∀(�, �) implies that

*M=f (N) ∈ 	
��∃∀(�, �) .���

The additional fiber-wise operation, Heyting implication, is dealt with as before. Let

A UB(q:A��B)∈� , X∈� ; we want to show that M∀ X = ∀ MX ; that is, for any Φ∈� ,
� q Mq

*Φ ≤ M∀ X �� (Uq) Φ ≤ MX . The left-to-right implication is automatic. AssumeUB q UA

*(Uq) Φ ≤ MX , (9)UA

and consider
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* *(Uq) Φ≤MX=f UX ΦA

?*(Vq) (∃ Φ)≤NX ∃ Φf fB B

UA��������������� UB�
�� Uq ��
�� �� f
�� �� Bf �� ��A �� �VA ��������������VB .Vq

As indicated, we consider the object ∃ Φ over VB , and claim that the inequality marked ?fB
is true.

* *(Vq) (∃ Φ) = ∃ (Uq) Φ (10)f fB A

by the (generalized) B-C property for ∃ with quasi-pullbacks. (9) implies that

* *∃ (Uq) Φ ≤ ∃ MX = ∃ f NX ≤ NX . (11)f UA f f AA A A

(10) and (11) imply what we wanted. Now, from this, ∃ Φ ≤ ∀ NX = N(∀ X) , andf Vq qB
* *Φ ≤ f ∃ Φ ≤ f N(∀ X) = M(∀ X) as desired.B f B q qB

M, N ∈ 	
��∃∀(�, �) are said to be equivalent, M�N , if there is a diagram

P�m � �� n
�� ��
� �M N

such that m , n are Cartesian in Fiblex(�, �) , and m :P ��M , n :P ��N are1 1 1 1 1 1
very surjective. Equivalence is clearly reflexive and symmetric; it is transitive too; given

Q� R�m ��� �� n n’��� �� p
�� �� �� ��
� �� � ��M N P
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with the relevant properties, one forms the pullback

S � rq �� 1 �� 11� ��
�� �
�Q � R1 �� n n’ ��� 1

��1 1�
�	 �N1

*in Lex(B ,B ) , and defines S as (n") (N ) , for n"=n q =n’r ; let n":S
�N
� � 1 1 1 1 1 1 1

be the Cartesian arrow over n" . Then n being Cartesian implies that there is a (unique) q1
over q such that nq=n" ; similarly for r over r . Since n" is Cartesian, so are q1 1
and r . Since q , r are pullbacks of very surjective arrows, they are very surjective. We1 1
conclude that mq and pr are Cartesian arrows over very surjective ones, which proves what

we want.

Let us take T=(L, ∅) , the "empty theory" over the DSV L , and let �=[T] , a

op
���∃∀-fibration with base-category B = (Con[K]) and class of quantifiable arrows

≠
�=� . Recall the canonical i:K
�B induced by Yoneda. Mod (T) = Str (L) , and weC C

Khave the fibration �:Mod (T)
�C as explained in §5. We also have the fibrationC

� = Fiblex 〈�,�(C) 〉 : Fiblex[�,�(C)]
���Lex(B,C) .

- -We have a "forgetful" morphism () :�
�� ; () is the equivalence1

� KU �� U�i : Lex(B,C)
��C ;

- -and () is defined as P �� P was defined in §4 (see (5)) for the special case when2
-P∈Mod (�) ⊂ Fiblex[�,�(C)] . It is easy to verify that () is a morphism of

�(C)
fibrations.

We have the quasi-inverse

K �U ��[U] : C 
��Lex(B,C) (12)
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-specified so that [U]([�]) = U[�] ; we have the canonical isomorphism j :[U] ≅ UU
-natural in U . () :���� restricts to an equivalence

- iso iso() : Mod (�)�����Mod (T) , (13)
�(C) C

whose quasi-inverse is

iso isoM �� [M] : Mod (T)�����Mod (�) ⊂ Fiblex[�,�(C)]C �(C)

-constructed in §4 , with the canonical isomorphism j :[M] ≅ M natural in M . These areM
connected to (12) by [M] =[M�K] , (j ) =j .1 M 1 M�K

Let us deduce (1)(b) of §5 from (8); let's use the notation and hypotheses of 5.(1)(b). Consider

the following diagram in the fibration � :

θf
� M������������Nj ���� � ���	M ���� ����

���� ≅ ≅ ����
���� ����


��� 
��� j- - N[M] ������������[N]-[θ ]f f
� U������������Vj ���� � ���	U ���� ����

���� ≅ ≅ ����
���� ����


��� 
��� j- - V[U] ������������[V]- .[f]

The two quadrangles commute, by the naturality of j . It follows that

- - - - - -[θ ] :[M] ���[N] is Cartesian over [f] :[U] ���[V] . Consider the Cartesianf
* -arrow θ :[f] [N]���[N] over [f]:[U]���[V] in � . Since () is a morphism[f]

of fibrations,

- * - -(θ ) :([f] [N]) ���[N][f]

- - -is Cartesian over the same [f] :[U] ���[V] . It follows that there is an isomorphism
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* - ≅([f] [N]) ���M over 1 - . But then, since (13) is full and faithful, it follows that[U]
*[f] [N] = M . Hence,

* * *M[�:ϕ] = ([f] [N])[�:ϕ] = f ([N][�:ϕ]) = f (N[�:ϕ]) ,
� �

where the second equality is the description of Cartesian arrows in � , the last is the definition

of [N] ; and this is what was to be proved.

Continuing in this manner, we see that, for M, N ∈Mod (T) , M� N in the sense of §4 iffC L
[M]�[N] in the sense of this Appendix.
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Appendix C: More on L–equivalence and equality.

Ordinary multisorted first-order logic without equality and without operation symbols (only

relations are allowed) is a special case of FOLDS as follows. Let L be a multisorted, purely

relational vocabulary. We associate a DSV L with L . The kinds of L are the sorts of L ;

the relations of L are the relation symbols of L . For R is sorted " R ⊂ � X " , we haveii<n
Rproper arrows p :R��X (i<n) . This completes the description of L . Clearly, thei i

L-structures are essentially the same as the L-structures.

L just constructed is a very simple DSV; its category of kinds has height 1 .

Now, a natural notion of "isomorphism" for L-structures "without equality" is the ordinary

notion of isomorphism modified by dropping single-valuedness and 1-1-ness. Let M , N be

�L-structures. By definition, h:M���N means a family of relations h :MX�����NXL X
( X∈Sort(L) ) such that dom(h )=MX , range(h )=NX , and for any " R⊂ � X " inX X ii<n

� �L , a= 〈a 〉 ∈ � MX , b= 〈b 〉 ∈ � NX , we have that a h b for all i<ni i<n i i i<n i i X ii<n i<n i
� � � � �(briefly, ahb ) implies that a∈MR ��	 b∈NR . It is pretty clear that h:M���N preservesL

� � � �the meaning of L-formulas without equality: ahb ��	 (M�ϕ[a] ��	 N�ϕ[a]); this would

hold good for infinitary logic, and other extended notions of "formula". It is also clear that if

for each sort X of L , there is a relation " E ⊂X×X " whose interpretation in both M andX
�N is ordinary equality on X , then h:M���N is the same as an ordinary isomorphismL

≅M���N .

The last-mentioned notion of "relational isomorphism" coincides with the relational version of

L-equivalence, for L the DSV constructed for L as above, defined as follows. For a general

DSV L , we call the L-equivalence (W, m, n):M���N relational if m and n are jointlyL
rmonomorphic; we indicate the said quality by the letter r in (W, m, n):M���N . ThisL

means that for every kind K in L , the pair (m , n ) of functions is jointly monomorphic,K K
m nK Kthat is, the span MK
�����WK������NK is a relation.
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For simplicity, we deal with Set-valued structures in what follows. Suppose

r(W, m, n):M���N . For each kind K , define the relation ρ ⊂MK×NK byL K
�aρ b ��� ∃c∈WK.m c=a�n c=b . For � a finite context, a= 〈a 〉 ∈M[�] ,K K K x x∈�

� � � � � � � �b= 〈b 〉 ∈N[�] , we write aρ b ��� ∃c∈W[K].mc=a�nc=b . It turns out howeverx x∈� �
� �that aρ b ��� ∀x∈�.a ρ b . Indeed, the left-to-right direction is obvious. Conversely,� x K xx

�let c ∈WK such that m c =a �n c =b . I claim that c= 〈c 〉 ∈W[K] . Forx x K x x K x x x x∈�x x
this, we need that if y∈� , p∈K �K , theny

c =(Wp)(c ) . (1)x yy, p

But m(Wp)(c )= (Mp)(mc )=(Mp)(a )=a , and similarly n(Wp)(c )=b ;y y y x y xy, p y, p
since c=c ∈WK is uniquely determined by the property m(c)=a &x x xy, p y, p y, p
n(c)=b , (1) follows.xy, p

As a consequence, a relational equivalence can be described in terms of the relations ρ asK
rfollows. A relational equivalence ρ:M���N is a family ρ= 〈 ρ 〉 of relationsL K K∈K

ρ ⊂MK×NK such that, withK

� �aρ b ��� ∀x∈�.a ρ b , (2)� def x K xx

the following hold:

(3) For any p:K��K , a∈MK , b∈NKp
aρ b ��� (Mp)(a)ρ (Np)(b) .K Kp

� �(4) For any K∈K , a∈M[K]=M[� ] , b∈N[K]=N[� ] ,K K
� � � � � �aρ b & a∈MK(a) ��� ∃b∈NK(b). aaρ bb .� *K �K
� � � � � �aρ b & b∈NK(b) ��� ∃a∈MK(a). aaρ bb .� *K �K
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� �(5) For any relation R in L , and a∈M[R]=M[� ] , b∈N[R]=N[� ] ,R R
� � � �aρ b ��� ( a∈MR ��� b∈NR ) .

�R

* � *(the notations � , � , � are from §4; aa denotes 〈d 〉 ∈M[� ] for whichK K R x * Kx∈�K
d =a when x∈� , and d =a ).x x K xK

r rBy what we said above, every (W, m, n):M���N gives rise to a ρ:M���N ((3) isL L
naturality, (4) is the very surjective condition, (5) is the preservation of relations). Conversely,

rgiven ρ:M���N , putting WK={ 〈K, a, b 〉: aρ b} , m ( 〈K, a, b 〉)=a ,L K K
rn ( 〈K, a, b 〉)=b gives (W, m, n):M���N .K L

We can make some steps towards Infinitary First Order Logic with Dependent Types. (We

refer to [Ba] as a basic reference on infinitary logic and back-and-forth systems.) Let us fix the

DSV L as before. The syntax of the logic L of FOLDS over L with arbitrary (set) size∞, ω
conjunction and disjunction, and finite quantification should be obvious; as usual, we only

allow formulas that have finitely many free variables. To fix ideas, we consider logic without

equality. M ≡ N means that M and N satisfy the same L -sentences withoutL ∞, ω∞, ω
equality. We have the following "back-and-forth" characterization of the relation ≡ . AL∞, ω

rweak relational L-equivalence ρ:M������N is a system ρ= 〈 ρ 〉 of relationsL � �∞, ω
ρ ⊂M[�]×N[�] , indexed by all finite contexts, satisfying the following conditions (6)-(9):
�

� �(6) for any specialization s:����� , a∈M[�] , b∈N[�] ,

� � � �aρ b ��� (a�s)ρ (b�s) ;
� �

� �here, if a= 〈a 〉 , then a�s= 〈a 〉 .y y∈� s(x) x∈�

(7) ∅ρ ∅ holds.∅

⋅ � �(8) For any finite contexts � , �∪{x} , a∈M[�] , b∈N[�] ,
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� � � � � �aρ b & a∈MK(a) ��� ∃b∈NK(b).aaρ ⋅ bb ,
� �∪{x}

� � � � � �aρ b & b∈NK(b) ��� ∃a∈MK(a).aaρ ⋅ bb .
� �∪{x}

(9) = (5)

rWe say that M and N are weakly L-equivalent, M � N , if there is ρ:M������N .L, w L∞, ω

r rGiven ρ:M���N , then, with making the definitions as in (2), we also have ρ:M������N .L L∞, ω
The reader will see that in the case of ordinary multisorted logic, the definition of weak

relational L-equivalence reduces to the well-known concept of "back-and-forth system" that

figures in the characterization of ∞,ω-equivalence. Thus, the following generalizes that

characterization.

(10)(a) For L-structures M and N , M ≡ N iff M � N .L L, w∞, ω
(b) For countable L-structures M and N , M ≡ N iff M � N .L L∞, ω
(c) For any countable L , and countable L-structure M , there is a ("Scott"-)sentence

σ of L such that N ≡ M iff N�σ .M ω , ω L M1 ∞, ω

The proofs are routine variants of those of the classical cases.

There is a simple categorical restatement of the notion of weak L-equivalence. Consider

K opB=(Set ) as before. An L-pseudo-structure P is a functor B��Set , together with afin
subset P(R)⊂P([�]) for each relation R of L . A morphism of L-pseudo-structures is a

natural transformation of functors B��Set preserving each R in the obvious sense. Each

L-structure M can be regarded as a pseudo-structure, since any functor K��Set has a

canonical extension B��Set which is in fact finite-limit preserving. Let PStr(L) be the

Bcategory of pseudo-structures. We have a forgetful functor �’:PStr(L)��Set ; �’ can

be seen to be a fibration. Now, a (not-necessarily-relational) weak L-equivalence

B(W, m, n):M�����N is, by definition, a functor W∈Set , together with arrowsL, w
m:W���’M , n:W���’N such that m , n are very surjective with respect to all

epimorphisms in B (according to the definition before B.(5), with Lex(B ,B ) replaced
� �
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Bby Set ), and there is a pseudo-structure P , with Cartesian arrows θ :P��M , θ :P��Nm n
over m and n , respectively. We write M � N for: there exists (W, m, n):M�����N .L, w L, w

It is not hard to show that M � N iff there is a weak relational L-equivalenceL, w
rρ:M������N ; the proof is similar to the proof below concerning non-weak relationalL∞, ω

equivalences.

We return to ordinary (non-weak) equivalences. When M and N are Set-valued

rL-structures, with any (W, m, n):M���N , there is a relational (W’, m’, n’):M���N ; inL L
fact, W’ can be chosen as a subfunctor of W , with m’ and n’ being restrictions of m and

n , respectively. To define W’K⊂WK , we use recursion on the level of K . Fix K . The

induction hypothesis gives us the inclusion W’[K]���W[K] . Consider the pullback

P=WK× W’[K] as inW[K]

mi KP����������WK���������MK
� � � �� � �� � �� � �

W’[K]�������W[K]�������M[K] ,

with i an inclusion; look at g= 〈m i, n i 〉:P���MK×NK , and, using the Axiom ofK K
Choice, split h:P���Im(g) by an inclusion k:W’K���P as in

P���������������	W’K
� �� 
� � ��� � ≅g� � Im(g)� �� ���MK×NK ;

we have defined W’K . Inspection shows that W’ is appropriate.

For not necessarily Set-valued L-structures M , N , let us write M � N for: there existsL, r
r(W, m, n):M���N .L

What we saw says that the concept M� N remains unchanged, at least for Set-valuedL
models, if we ignore all but the relational L-equivalences:
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M � N ��� M � N . (11)L L, r

� �However, the more general notion (M, a)� (N, b) goes wrong under the same alteration.L
For one thing, the need for not-necessarily-relational L-equivalences is natural if we look at

� �the proof of 5.(4). Given � and the tuples a∈M[�] , b∈N[�] as there, the desired

� �L-equivalence (W, m, n):(M, a)���(N, b) is constructed so as to continue the mappingsL
x��a , x��b ; if the latter two mappings are not jointly monomorphic, the resultingx x
L-equivalence will not be relational. On the other hand, the entry of non-relational

L-equivalences is not just a characteristic of the proof of 5.(4); it is in fact unavoidable.

Consider the following example of a DSV, called L :

e10
�������E K1 ������� 1e11 ��p pe =pe� 10 11e 	00
�������E K0 ������� 0 .e01

A standard structure M for L is one for which, for b , b ∈M[K ] , that is,0 1 1
(Mp)b =(Mp)b , we have b (ME )b ��� b =b , and also, ME is ordinary equality0 1 0 1 1 0 1 0
on MK . Consider the following example for an L-equivalence (W, m, n):M���N , for0 L
certain M and N :

��������� �� z z �� 0 1 �
� y y �0 1� ��������� �������� ��������� � � �

� b b � � d d �0 1 0 1� � �������� � ��������� � � ��������
� x x �0 1� ���������������� �������� � � �a c� � � �������� ������� .

Here, MK ={a} , MK ={b , b } , NK ={c} , MK ={d , d } , WK ={x , x } ,0 1 0 1 0 1 0 1 0 0 1
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Wp WpWK ={y , y , z , z } , y , z ����x , y , z ����x , and1 0 1 0 1 0 0 0 1 1 1

m m m my ���b , y ���b , z ���b , z ���b ,0 0 1 1 0 1 1 0

n n n ny ���d , y ���d , z ���d , z ���d ;0 0 1 0 0 1 1 1

E and E are interpreted in M and N as equality.0 1

This shows that, for the context �={x , x :K ; y :K (x ); y :K (x )} , and for0 1 0 0 1 0 1 1 1
� �a= 〈a/x , a/x , b /y , b /y 〉 , c= 〈c/x , c/x , d /y , d /y 〉 , we have0 1 0 0 1 1 0 1 0 0 0 1

� �(M, a)� (N, c) . On the other hand, there is no relational equivalenceL
� � m’(W’, m’, n’):(M, a)���(N, c) . In any such, W’K is a singleton {x} ; x����a ,L 0

n’ m’ m’x����c ; we have some u , u ∈W’K (x) such that u ����b , u ����b ; and the0 1 1 0 0 1 1
preservation of E implies n’(u )≠n’(u ) , contradiction.1 0 1

This example also dispels the possible belief that an L-equivalence (W, m, n):M���N canL
always be reduced to a relational one by taking the image of (W, m, n) . Let U=M�K ,

V=N�K , and consider

W� �� � �m� �r �n� � �� � �
U	����
Φ������V (12)� ϕ ψ � � �� � �π � �i � π’� � �

U×V

where r and i form the surjective/injective factorization of 〈m, n 〉:W��U×V . In other

words, when i:Φ��U×V is an inclusion, for any K∈K , the relation ΦK⊂MK×NK is given by

a(ΦK)b ��� ∃c∈WK.mc=a&nc=b . When applied in our example, (Φ, ϕ, ψ) so defined

does not preserve E .1

I now turn to some remarks on equality.

GLet L be an arbitrary DSV. Let us augment L to L , another DSV, by adding a relation
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� � �G to L for every K∈Kind(L) , with proper arrows g :G ��K , g :G ��K ,K K0 K K1 K
�together with all composites pg :G ��K , p∈K�L (i=0, 1). We do not identify pgKi K p K0

Gwith pg . For an L -structure M ,K1

� � � � � � �M[G ] = {(a, a, b, b): a, b∈M[K], a∈MK(a), b∈MK(b)} .K

The letter G is used because we are dealing with global equality as opposed to fiberwise

G � �equality (see below). A standard L -structure M is one in which, for a, b∈M[K],

� � � � � �a∈MK(a), b∈MK(b) , (a, a, b, b)∈M(G ) iff a=b ; more briefly, M(G ) as a subsetK K
Gof MK×MK is {(a, a):M(K)} . Any L-structure can be made into a standard L -structure

Gin exactly one way. When an L-structure is used as an L -structure, we mean the

Gcorresponding standard L -structure.

The effect of adding global equalities is that all L-equivalences can be canonically replaced

by relational ones, by taking the image of the given one. If (W, m, n):M����N , then forGL
r(Φ, ϕ, ψ) defined above, we have (Φ, ϕ, ψ):M����N .� � � � � � � � � � � G� � �L

To see this, first we show that the arrow r in (12) is very surjective; that is, for any K∈K ,

the diagram

rKW(K)����������Φ(K)

� �� �� � (13)� �
� �

W[K]����������Φ(K)r[K]

� � � �is a quasi-pullback. Assume a∈M[K] , b∈N[K] , a∈MK(a) , b∈NK(b) such that

� � � � � � � � �(a, b)∈Φ[K] , (a, b)∈ΦK(a, b) , and c∈W[K] with mc=a , nc=b (that is,

� � � �r (c)=(a, b) ); we want c∈WK(c) such that mc=a and nc=b . By the definition of[K]
�Φ , there is d∈WK with md=a , nd=b . By the very surjectivity of n , there is c∈WK(c)
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such that nc=b . But by the presence of the relation G , md(MG )mc iff nd(NG )nc ;K K K
that is, md=mc iff nd=nc ; which says that mc=a as desired.

By B.(6'), the induced map r :W[�]���Φ[�] is surjective.[�]

Now, looking at

r ϕ m[K] [K] [K]W[K]��������Φ[K]��������M[K] W[K]�����������M[K]
� � � � �� � � � �� � � � �

W(K)��������Φ(K)��������M(K) W(K)�����������M(K)r ϕ mK K K

we see that B.(3") is applicable to yield that ϕ is very surjective.

G � �Given a relation R∈Rel(L ) , if (a, b)∈Φ[R] , then by r :W[R]���Φ[R] being[R]
� � � � � � � �surjective, there is c∈W[R] with r (c)=(a, b) , that is, mc=a , nc=b , and thus[R]

� � ra∈MR iff b∈NR . This completes showing that (Φ, ϕ, ψ):M����N .GL

We have shown something more general (and more technical), which is independent of

equality. This is that

(14) If (W, m, n):M���N and we haveL

W� �� � �m� �r �n� � � � �� 	 

U������Φ������Vϕ ψ

such that r is very surjective, then (Φ, ϕ, ψ):M���N ;L

the relational quality of (ϕ, ψ) is not relevant to this.

Clearly, a relational equivalence preserving global equalities on all kinds is nothing but an
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� �isomorphism. We have shown that M� N implies that M≅N , and (M, a)� (N, b)G GL L
� �implies (M, a)≅(N, b) . But, all formulas in multisorted logic over �L� are preserved by

isomorphism. By the invariance theorem 5.(12), we conclude the following.

(15) For any context � over L , and any formula σ of multisorted logic over �L�

with Var(σ)⊂� [remember, a variable x:X of FOLDS counts as a variable of sort K inx
Gmultisorted logic], there is a FOLDS formula θ over L with Var(θ)⊂� such that σ

*and θ are logically equivalent (over � ):

* *
� ∀�(σ���θ ) ; or in other words, M[�:σ]=M[�:θ ] for any L-structure M . (We

Gapply 5.(12) to I:L ��[(�L�,Σ[L])] ; for Σ[L] , see §1. I is essentially the identity

*except that all the G 's are interpreted as equality. In M[�:θ ] , M is understood as aK
Gstandard L -structure.)

Notice the small point that in the statement of (15), we are not allowed to start with a

�L�-formula σ with arbitrary free variables; the free variables have to form a context. E.g.,

in the case of the language of categories, a formula with a single arrow-variable cannot (of

course) have an equivalent in FOLDS with the same free variables; we have to add the

"domain and the codomain of the arrow-variable" as free variables.

Let us hasten to add that it is possible to show (15) directly, by a rather simple structural

induction on the formula σ .

We have an instance of what we may call expressive completeness of FOLDS: full first-order

Glogic over �L� can be expressed in L . This is accompanied by a mode of deductive

Gcompleteness. We will give a deductive system for entailments over L , extending the

Gstandard system for L for logic without equality by specific rules related to the

GG-predicates, which is complete for semantics restricted to standard L -structures, that is,

semantics of true equality.
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The set G �L , the arity of the relation G , is the setK K

{pg : p∈K�L}∪{g }∪{pg : p∈K�L}∪{g }K0 K0 K1 K1

� �Accordingly, we will write atomic formulas G (z) , z indexed by G �L , in the formK K
� � � � � �G (x, x, y, y) ; here, x= 〈x 〉 , x:K(x) , y= 〈y 〉 , y:K(y) .K pg p∈K�L pg p∈K�LK0 K0

Here are some other pieces of notation. For any object A of L (kind or relation), and tuples

� � � �x= 〈x 〉 , y= 〈y 〉 for which A(x) , A(y) (types or atomic formulas) arep p∈A�L p p∈A�L
� �well-formed, xG y denotes the formula[A]

��� G ( 〈x 〉 , x , 〈y 〉 , y ) .K qp q∈K �L p qp q∈K �L pp∈A�L p p p

� �pWhen x= 〈x 〉 , x = 〈x 〉 .p p∈K�L def qp q∈K �Lp

V. Global-equality axioms.

(G ) ����������������������1 � �t ����� G (x, x, x, x)K�

(G ) �������������������������������2 � � � �G (x, x, y, y) ����� G (y, y, x, x)K K�

(G ) ���������������������������������������������3 � � � � � �G (x, x, y, y) � G (y, y, z, z) ����� G (x, x, z, z)K K K�

(G ) ����������������������������������� ( p∈K�L )4 � � �p �pG (x, x, y, y) ����� G (y , y , x , x )K K p p�

�(G ) ������������������������������������ ( x:K(x) )5 � � � � �xG y ����� ∃y:K(y).G (x, x, y, y)[K] K�
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(G ) ����������������������������6 � � � �xG y ����� R(x)���R(y)[R]
�

The proof of the said completeness is done in the traditional manner; we use completeness for

Glogic without equality over L for the theory whose axioms are the (conclusion-)entailments

Gin the equality rules. Given any structure M for L satisfying the equality axioms, we

G Gconstruct a standard L -structure M/� which is L -elementary equivalent to M . For a kind

K , let � be the relation on the set MK defined by a� b ��� MG ([a], a, [b], b)K K K
holds; here [a]= 〈(Mp)(a) 〉 , and similarly for [b] . By (G ), (G ) and (G ),p∈K�L 1 2 3
each � is an equivalence relation; let us write a/� for the equivalence class containingK
a . (G ) implies that if f:K��K’ , a ∈MK , a’=(Mf)(a )∈MK’ , then a � a ��4 i i i 1 K 2
a’� a’ . Let U=M�K . We define U/�:K��Set by (U/�)(K)=(UK)/�1 K’ 2
( = {a/�: a∈UK}) , and ((U/�)(f))(a/�)=((Uf)(a))/� , which is well-defined.def

� �For a= 〈a 〉 ∈M[R] , we put a/� = 〈a /� 〉 ∈ (M/�)R .p p∈R�K p p∈R�K

We define M/� by (M/�)�K=U/� , and

� �(M/�)R(a/�) ����� MR(a) ;def

by (G ), this is well-defined; we have completed the definition of M/� .6

� �For any finite context � , we have (M/�)[�] = (M[�])/� ( = {a/�: a∈M[�] ).def
� � � �Moreover, when a∈M[K] , then (M/�)K(a/�) = MK(a)/� ( = {a/�: a∈MK(a)} .def

This is not automatic; it requires (G ). Finally, we show, by structural induction, that for any5
G �θ over L with Var(θ)⊂� , and a∈M[�] ,

� �M/� � θ[a/�] ���� M � θ[a] .

Having the construction M �� M/� with the properties shown, the proof of the standard

Gcompleteness for L can be completed in the expected manner.
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In place of global equality, it seems natural to consider fiberwise equality for FOLDS. Let, for

Eany DSV L , L denote the DSV obtained by adding to L a new relation E for everyK
eK0

����� eqkind K , with E K and pe =pe (p∈K�K) as for maximal kinds in L . AK����� K0 K1eK1
Estandard L -structure is one in which each E is interpreted as equality; to give a standardK

EL -structure is the same as to give an L-structure. In what follows, M and N are

EL-structures; when they figure as L -structures, they mean the corresponding standard ones.

rSuppose ρ:M����N . I claim that each ρ ⊂MK×NK is the graph of a bijection MK��NK .E KL
By (6'), dom(ρ )=MK , codom(ρ )=NK . Thus, it remains to show thatK K

a ∈MK , b ∈NK , a ρ b (i=1, 2) ��� a =a ��� b =b (16)i i i K i 1 2 1 2

We show this by induction on the level of K . Assume the hypotheses of (16). Let

�i �i �i i �i ia ∈MK(a ) , b ∈NK(b ) . Then, if a = 〈a 〉 , b = 〈b 〉 , theni i p p∈K�K p p∈K�K
i ia ρ b (by (3)).p K pp

�1 �2 � 1 2Assume (e.g.) a =a . Then a =a =a , that is, a =a for all p∈K�K . By the1 2 def p p
1 2 �1 �2 �induction hypothesis, (16) applied to K , we have b =b , that is, b =b =b . Wep p p def

� � � �have a , a ∈MK(a) , b , b ∈NK(b) , and aa ρ bb . Therefore, by (6),1 2 1 2 i * i�K
� �ME (a, a , a ) ��� NE (b, b , b ) ; that is, a =a ��� b =b as desired.K 1 2 K 1 2 1 2 1 2

≅Given that each ρ is a bijection, clearly, ρ is an isomorphism ρ:M���N (ofK
L-structures). We conclude

M � N ��� M ≅ N (17)EL ,r

(the above argument did not depend essentially on the fact that we dealt with Set-valued

structures)
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Applying 5.(12), we obtain

(18) For every sentence σ in multisorted logic (with equality) over �L� there is a sentence

� E �σ of FOLDS over L such that for every L-structure M , M�σ ��� M�σ (here, in the first

Einstance, M figures as an �L�-structure; in the second instance as a standard L -structure).

EProof. Consider the interpretation I:L ��[T] , where T=(�L�, Σ ) , extending theL
"identity" interpretation L��[T] , and interpreting each E as equality. We apply 5.(12) toK
I , �=∅ and σ . Suppose M, N�T are Set-valued models (!),

E EM�L � N�L (19)EL

E Eand M�σ . M and N are L-structures, and M�L , N�L are the corresponding standard

EL -structures. By (19) and (11), it follows that M≅N . Since "everything" is invariant under

isomorphism, N�σ . Thus, the hypothesis of 5.(12) holds. The conclusion is exactly what we

want.

Note that the result of (18) cannot be generalized to formulas with free variables in place of

E Gsentences. That is, the statement of (15), with L replacing L is not true. This is shown by

Ethe example that we gave above; in that example, L=L for L consisting of K , K and0 0 0 1
p (and no relations). With �={x , x , y , y } as in the example, if for the formula0 1 0 1
σ≡y =y (whose free variables are in � ) there were θ in FOLDS over L with0 1
Var(θ)⊂� such that, for every L -structure M (also counted as a standard L-structure) and0

�a= 〈a , a ∈MK ; b ∈MK (a ); b ∈MK (a ) 〉 ,0 1 0 0 1 0 1 1 1

� ? �M�σ(a) ��� b =b ��� M�θ(a)0 1

� �then for every equivalence (W, m, n):(M, a)���(N, c) , whereL
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�c= 〈c , c ∈NK ; d ∈NK (c ); d ∈NK (c ) 〉 ,0 1 0 0 1 0 1 1 1

since it would preserve θ , we would have

b =b ��� d =d ;0 1 0 1

but the example shows that this conclusion is false.

(18) can be used to give another proof of 6.(3), the Freyd-Blanc characterization result, at least

for �=∅ ; this proof is a variant of what is contained in [FS].

Let T be a normal theory of categories with additional structure. Assume σ is an

L -sentence such that for M, N�T , �M���N� implies that M�σ iff N�σ . In particular,T

for M, N�T , �M�≅�N� implies that M�σ iff N�σ .

By ordinary model theory (a version of Beth definability), it follows that there is a sentence τ
in multisorted logic over �L � such that for models of T , σ and τ are equivalent. Bycat

E(18), there is a sentence ψ in FOLDS over L which is equivalent to σ in allcat
EL -structures (also counted as standard L -structures). There are two E-predicates incat cat

ψ , E and E . Replace each occurrence E (X, Y) of E by the formulaO A O O

"X≅Y" ≡ ∃f∈A(X, Y).∃g∈A(Y, X).∃h∈A(X, X).∃i∈A(Y, Y)

(I(h)�I(i)�T(f, g, h)�T(g, f, i)) ;

eqcall the result θ . Notice that θ is a FOLDS formula of L (it has only the allowablecat
eqequality predicates in L ). I claim that for all M�T ,cat

M�σ ��� M�θ .

Let M�T . �M� is a category; let �M� be its skeleton. Since �M���M� , by thes s
normality of T , there is N�T such that �N�=�M� . Nows
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M�σ ��� N�σ since �M���N� , and M, N�T

��� N�τ since N�T

��� �N��τ
��� �N��ψ
��� �N��θ since �N� is skeletal (that is, for objects X, Y, X=Y

iff X≅Y )

��� �M��θ since �M���N� , and θ is a FOLDS formula with

equality over Lcat
��� M�θ .

This method of proof is also applicable to the "higher" cases. Let us consider the case of

bicategories; let us show that if a sentence σ in multisorted logic over

L =�L � is invariant under equivalence of bicategories, then σ is equivalentbicat anabicat
* *in bicategories to θ for a FOLDS sentence θ over L ; θ is the translate ofanabicat

* #θ such that ��θ ���� �θ .

A bicategory � is skeletal if any two equivalent objects are equal, and any two isomorphic

parallel 1-cells are equal. For any bicategory � , there is a skeletal one, � , which iss
(bi)equivalent to � .

The first step is to use Beth definability to the interpretation Φ:L ��[T ] .anabicat bicat
# #Since � ≅� implies that ��� , it follows that there is a sentence τ in multisorted logic

#over �L � such that for every bicategory � , ��σ ��� � �τ . By (18), we cananabicat
E # #find a sentence ψ in FOLDS over L such that, in particular, � �τ ��� � �ψ .anabicat

Now, transform ψ in the following way. Each occurrence E (X, Y) of E is replacedC C0 0
by the formula

" X�Y " ≡ ...

f
���and each occurrence E (X Y) of E is replaced by the formulaC ��� C1 g 1

" f≅g " ≡ ...
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eqThe resulting sentence θ is in L . I claim that for any bicategory � ,anabicat
*

��σ ��� ��θ . Indeed,

# # # # *
��σ ��� � �σ ��� (� ) �τ ��� (� ) �ψ ��� (� ) �θ ��� � �θ ��� ��θ ;s s s s

# #the next-to-last last biconditional holds because � �� , of which (� ) � �s s eqL
eq( L = L ) is a consequence, and because θ is a FOLDS sentence over L .anabicat

This proof replaces the general invariance theorem 5.(12) by Beth definability, and a special

case of that invariance theorem, (18). It falls somewhat short of the results of §7, partly

because we have confined the situation to an empty context � . Also, this approach is not

available in constructive category theory; the existence of the skeleton (already in the classical

case of mere categories) depends on the Axiom of Choice. As we will see in Appendix E, the

main theory of equivalence of §5 has a constructive version involving intuitionistic logic.

Modifying the notions of equivalence to notions of "anaequivalence" (using, and building on,

[M2]), we obtain versions of the results of sections 6 and 7 for constructive category theory.
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Appendix D: Calculations for §§§7.

D1. Define the generalized DS vocabulary L as the full subcategory of L2-cat anabicat
� � � � �on the objects of L , with relations I , I , T , H , T ; it is generalized since a2-cat 1 2 1 2

non-maximal object, T , is also made into a relation. Accordingly, an L -structure is a1 2-cat
functor from L in which the listed relations (including T ) are interpreted2-cat 1
relationally. This is the picture for L :2-cat

h0� ������������� �T H1 �������������h1t ��t �t h ��h �h10�� 11� 12 2�� 3� 4�� � �� ��� � �� � tc �� � c �� � 2010 20 ������������������������ ���������� �������������� �C C C t T0 ���������� 1 ���������� 2 21 2c c ��������������11 � 21 � t� � 22� �
� �I I1 2

A 2-category-sketch (2-cat-sketch) is, by definition, a structure of type L ; maps of2-cat
2-cat-sketches are natural transformations of functors. For a 2-cat-sketch S , �S� is its

underlying 2-graph, its reduct to

c c10 20���������� ����������C C C .0 ���������� 1 ���������� 2c c11 21

Any bicategory has an underlying 2-cat-sketch. We will look at maps S��	� , S∈2-catSk

, � a bicategory.

M��������	Let S � . A transformation τ:M�	N is given by��������	N

(i) τ :MX�	NX for each X∈S(C ) ;X 0

≅(ii) for each (f:X�	Y)∈S(C ) , τ :Nf
τ ��	τ 
Mf as in1 f X Y
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τXMX������NX
� τ �Mf � f�� �Nf� � �� ≅ �

MY������NYτY

such that

f�������(a) for any X ϕ� Y in S ,�������g
τfNf�τ �������τ �MfX Y

Nϕ�τ � � �τ �Mϕ ;X� � Y� �
Ng�τ �������τ �MgX τ Yg

(b) (f:X��Y)∈S(I ) 		
 τ =1 ; and1 f τX

f ��B� g�� ��� �(c) for every A ��������� C ∈ S(T ) (note that MgMf=Mh , NgNf=Nh ),h 1

Mf Mg MhMA��������MB��������MC MA������������MC
� τ � τ � � �τ � f�� τ � g�� τ � = τ � τ τ �A� � B� � C� A� h�� C�� � � � � �

Nf NgNA��������NB��������NC NA������������NC ,Nh

that is,

τ Mfg α(τ Mg)Mf��������(Ngτ )Mf�������Ng(τ Mf)C B B
� �� �α� � �τ Ng� � f� �

τ (MgMf)��������(NgNf)τ �������Ng(Nfτ ) .C τ A α Ah

M MΦ��������� ���������Given S �τ � and Φ:T���S , we have T �τΦ � for which (τΦ) =τ��������� ��������� f ΦfN NΦ
for f∈T(C ) .1
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D2. Going back to the definition of �T in part (B) of the proof of 7.5,1
and using the notation there, that definition can be put as follows. Consider the 2-cat-sketch

S :0

gB��������� C��� gf �� ��� ( S (T )={(f,g,gf)} ,f� �� �� 0 1� �� �� i	 	 -1A S (C )={a,a ,1 ,1 } )0 2 i gf≅a: gf���i
,

Φ���������and the two diagrams S � defined as0���������Ψ

�Fg gFY���������FZ B��������� C�� �� ��� FgFf�� ��� �� gf �� ���Φ = Ff� �� �� Ψ = f� �� �� �� �� �� Fi � �� �� i	 	 	 	FX ; A .

≅ � �� ≅ �Φa=FaF :FgFf���Fi Ψa=a:gf���if, g

�Then �T (ϕ, γ , η)[a, a] iff x, y, z, ϕ, γ , ι are the components of a map Φ��Ψ .1

D3. In what follows, we will consider the following 2-cat-sketch S and various of its parts

(subsketches):

B ��������������������������������������� C
�� g� ��� �� 
�� ��� k gf ���� �� ���c�� ��� ���� �� ��� ��� ���� ����� �f� hg ��� ��� �� ���� �h� ����� ������� i �� �� ����� ��� �� ���� �� ��� ��� �� ���� ���� ��� �� �� ���� a����� ��� �S = ���� ���� ��
����������������� ������������������������d �������������������kf���������������������cf �A ��������������������(hg)f��������������� D�β �α�������������������������h(gf)�����������ha �������������������������������hi���������b ���������������������������������j�������
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S(T ) has six elements, (f, g, gf) , (gf, h, h(gf)) , (i, h, hi) , (g, h, hg) ,1
(f, hg, h(gf)), (f, k, kf) ; the notations showing composition are purely symbolic. The

horizontal compositions cf and ha signify the presence of elements " 1 " and " 1 "off h
S(I ) , and two corresponding elements of S(H) . S(I )=∅ . There are further 2-cells and2 1
elements of S(I ) and S(T ) to the effect that a, b, c, d, α and β are isomorphisms,2 2

-1 -1and α is the composite d(cf)β(ha) b .

In case of a general 2-cat-sketch S , for a sketch-map M:S��� and a functor F:���� of

bicategories, the composite FM cannot be defined (think of a sketch in which a 1-cell is a

composite in two different ways); in the case of our S however, since S is sufficiently

"free", a useful sense can be ascribed to FM . First of all, for S from D2, for M:S ��� ,0 0
F:���� , FM is defined as Φ was above: for

gY��������� Z
��

� gf�� ���f� �� ��� �� �� i
	 	X

≅a:gf���i

as M , we put FM to be

FgFY���������FZ
��

� FgFf�� ���FM = Ff� �� ��� �� �� Fi
	 	FX .

≅Fa=FaF :FgFf���Fif, g

Now, there are four mappings of the form S ��S , corresponding to the four items0
≅ ≅ ≅ ≅a:gf���i, b:hi���j, c:hg���k, d:kf��� � . We define, for any M:S��� and

F:���� , FM:S��� as follows. First, we make sure that for any of the four maps

σ:S ��S , (FM)σ = F(Mσ) . This requirement determines FM as far as its restriction to0
the subsketch
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B ��������������������������������������� C���� g� 	��� �� ���� 	��� k gf 
�� �� 	��c�� 	��� 
��� �� 	��� 	��� 
��� 
���� �f� hg 	��� 	��� �� 
��� �h� 	���
� 	���
��� i �� 
� 	���
� 	��� �� 
��� 
� 	��� 	��� �� 
��� 
��� 	��� 	� �� 
��� a����� 	��� ����� ���� 	� .
����������������� ������������������������d������������������kf��������������������A D
������������������������������hi���������b��������������������������������j�������

is concerned. But then the effect of FM is uniquely determined on the items h(gf),

(hg)f, cf, ha . Next, we define (FM)(β) so that the following diagram commutes; we

wrote f, g, h for Mf , Mg , Mh :

F Ff Fh, g f, hg(FhFg)Ff����������F(hg)Ff���������F((hg)f)

� �(FM)(β)� � �F(Mβ)� �

Fh(FgFf)����������FhF(gf)���������F(h(gf)) .FhF Ff, g gf, h

Finally, the effect of FM on α in S is now uniquely determined. It is worth noting that if

Mβ = α , then (FM)(β) = α ( f=Mf , etc.); the reason is that Ff, g, h Ff, Fg, Fh
"preserves" α (see above).

I claim that, for FM:S��� so defined, (FM)(α) = F(M(α)) . This is demonstrated by the

following commutative diagram:

����������������������������� (FM)(α) ��� 4 �F �f, kFkFf��������������F(kf)�������F ���� Fd(FM)(c)���� � � ��� 2 �FcFf 6 F(cf)� �� � � �F Ff �h, g �(FhFg)Ff����������F(hg)Ff���������F((hg)f) �F �f, hg �� � �(FM)(β)� 1 �F(Mβ) 8 �F(M(α))� � ���Fh(FgFf)����������FhF(gf)���������F(h(gf)) �FhF F �f, g gf, h �
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��� � � ��� 3 �FhFa 7 F(ha)� ��� � � �(FM)(a) ��� FhFi��������������F(hi)�������FjF Fb� i, h 	� 5 �� (FM)(b) �����������������������������

Here, the cell 1 commutes by the definition of (FM)(β) ; 2, 3, 4, 5 commute by the

definition of FM on the 2-cells a, b, c, d; 6 and 7 by the naturality of F ; and 8-, -
by the fact that Mα is the appropriate composite. The assertion is the commutativity of the

outside perimeter of the diagram.

D4. Let S be the following subsketch of S :1

gB���������C�� 
�	 ��
� �f� gf
���hg�h� 
� ���A���������D(hg)f���������h(gf)

( S (t)=∅ for all t∈L , except for t=C ,C ,T ) , and let S be the sketch1 2-cat 0 1 1 2
(subsketch of S ) obtained by adding the 2-cell α:h(gf)���(hg)f to S . Suppose we1
have M, N:S ��� such that Mα = α and Nα = α (associativity2 Mf, Mg, Mh Nf, Ng, Nh
isomorphisms), and, also writing M for M�S , we have1

M���������S �τ � (1)1���������N

Then τ is a map with respect to S , that is,2

M���������S �τ � .2���������N

This fact expresses the naturality of the associativity isomorphism in a sense that is

considerably stronger than the one required in the definition of bicategory. The proof of the

assertion is contained in the diagram
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� �� �� �����(h(gf))τ����������������((hg)f)τ ������������������������������� A A τ �� � � (hg)f�� �� � �� � � � �� � �� h((gf)τ )���h(g(fτ ))���(hg)(fτ ) IV �� A A A �� � � � � �� �� � h(gτ )� �(hg)τ �� � f f τ f �� � � � �� �� hg �� � h(g(τ f))���(hg)(τ f)���((hg)τ )f��������� �� I B B B � �� � � � �� � � �� � � � � � � �� � h((gτ )f)���������������(h(gτ ))f � �� � B B � �� � � � � � � �� � h(τ f)� � (hτ )f � �� � g g � �� � � � � �� � h((τ g)f)���������������(h(τ g))f � �C C
� � � � II � �� �� � � � � � �� �������h(τ (gf))���(hτ )(gf)���h(τ (gf)) � �� � C C C � �� h(τ ) � � � �� gf τ (gf)� �(τ g)f �� h h �� �� (τ h)(gf)���((τ h)g)f�����(τ (hg))f �� D D D ��τ III �� h(gf) � � �� �� ���������������������������� τ (h(gf))�����������������τ ((hg)f)����D D

�in which t is written for Mt , t for Nt , for all relevant values of t , and all unmarked

arrows are instances of associativity isomorphisms, possibly horizontally composed with a

1-cell. The issue is the commutativity of the outside quadrangle. The four cells marked I ,

II , III and IV commute by the definition of τ being a map as in (1). The

commutativity of the pentagons are the associativity coherence axioms for bicategory; the

commutativity of the small quadrangles are instances of the (ordinary) naturality of the

associativity isomorphism. Since all cells commute, the outside commutes as a consequence,

and this is what we want.

D5. Now, start with the part (subsketch) S3

gB���������C	
 ��� 	
� �f� i �	
k �h� � 	��� �A���������D���������j

of S ( S (t)=∅ for all t∈L , except for t=C ,C ), and a map3 2-cat 0 1

167



M���������S �σ � . (2)3���������N

P���������It is clear that if we have any T �θ � , and T’ is the sketch obtained by adding a���������Q
new element " gf=h " to T(T ) , where f and g are already in T , but h is new, then1

P���������P , Q and θ uniquely extend to T’ �θ � . Now, let S be the part of S which��������� 4Q
is S without the 2-cells ( S (t)=S(t) for t=C ,C ,T and S (t)=∅ otherwise).4 0 1 1 4
Applying the above remark four times, we have, a unique extension

M���������S �σ �4���������N

of (2).

D6. Suppose T is a sketch, T’ is a subsketch of T missing only some 2-cells and

T -elements of T , and that T is generated by T’ in the sense that T is the least subsketch2
T" of T such that T" contains T’ and every time when (ρ, σ.θ)∈T(T ) ,2
ρ, σ∈T"(C ) , then θ∈T"(C ) , and every time when (ρ, σ.θ)∈T(H) ,2 2

M���������ρ, σ∈T"(C ) , then θ∈T"(C ) . Then every transformation T’ �τ � is also one2 2 ���������N
M���������as in T �τ � . This is immediate.���������N

D7. Let us turn to the proof that � preserves A . What we need to show is this. Assume that

we have

�g gY���������Z B���������C�� �	 �� �	
 ���� � �
 � ����� ��f� i ����k �h f� i ����k �h� �� ��� in � , � �� � ��� in � , �  �X���������W A���������D��������� ���������j �j
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the items listed under (*) in §7, the further items

�(w:FW���D)∈�C [W, D] ,0
≅ # � �� ≅ � # � � �(b:hi���j)∈� T (i, h, j) , (b:hi���j)∈� T (i, h, j) ,1 1
≅ # � �� ≅ � # � � �(c:hg���k)∈� T (g, h, k) , (c:hg���k)∈� T (g, h, k) ,1 1
≅ # � �� ≅ � # � � �(d:kf��� �)∈� T (f, k, �) , (d:kf��� �)∈� T (f, k, �) ,1 1

� � �η∈�C (z, w)[h, h] , ψ∈�C (x, w)[j, j] , κ∈�C (y, w)[k, k] ,1 1 1
�λ∈�C (x, w)[ � , �] ;1

and assume that

� �
�T (ϕ, γ , ι)[a, a] , �T ( ι , η, ψ)[b, b] ,1 1

� �
�T (γ , η, κ)[c, c] , �T (ϕ, ψ, λ)[d, d]1 1

�hold. Under these conditions, we want that if �C (x, w; ψ, λ)[α, α] , then2

# # � � � � �
� A(a, b, c, d; α) ��� � A(a, b, c, d; α) .

I claim that it suffices to show that

# # � � � � � �
� A(a, b, c, d; α) and � A(a, b, c, d; α) imply �C (x, w; ψ, λ)[α, α] .2

#We use that for the given a, b, c, d , there is a unique α such that � A(a, b, c, d; α)

� � � �(see (4) in §7), and similarly for a, b, c, d ; and we use that for the given x, w; ψ, λ , the

� �relation �C (x, w; ψ, λ)[α, α] of the variables α,α establishes a bijection2
� ≅ � �α��α : �C (j, �)����C (j, �) . The claim now is easily seen.2 2

# # � � � � �Thus, we assume � A(a, b, c, d; α) and � A(a, b, c, d; α) .

Recall the sketch S . The data give us diagrams M :S����� , N:S����� ; the effect of0
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M , N are given by the notation, except that M β = α (associativity iso in � ) and0 0 f, g, i
Nβ = α� � � (associativity iso in � ). Composing M with F , we get M=FM :S�����f, g, i 0 0
(see D3). Consider the restrictions M:S ��� , N:S ��� . The data3 3
x, y, z, w, ϕ,γ , ι ,η,ψ,κ,λ supply the components of a map

M
���������S �τ � .3���������N

By D5, we have a unique extension of τ , also denoted by τ , as in

M
���������S �τ � .4���������N

Let S be the subsketch of S that consists of S , and the 2-cells a, b, c, d . The5 4
assumptions and D2 (applied to the four maps S ��S ) tell us that we have0

M
���������S �τ � .5���������N

Now, add also β back to S , getting S . Since by D3,5 6

Mβ = (FM )(β) = α = α ,0 Ff, Fg, Fh Mf, Mg, Mh

D4 says that we have

M
���������S �τ � ,6���������N

and finally D6 says that

M
���������S �τ � .
���������N

�The fact that τ is natural with respect to α is the desired fact �C (x, w; ψ, λ)[α, α] ,2
since, by D3, Mα = F(M α) .0
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D8. The proof that (� , r , r ) preserves H is similar, and simpler. Now, the situation is0 1
this. We have

�
��� ��

�� Y ��
�� � ��f �� ��� �� �� h

�� �� �� ��
������	� �
������

�� β�� g ��δ ��
�� �� i �� ��

�� �� ��
  ��k

���������������������������������	
�εX � Z

���������������������������������	j

in � , and

�
��� ��

�� B ��� �� � �� �f �� ��� �� �� h
�� �� �� ��

������	� �
������
�� � �� � �� � ��

�� β� g � �δ ��
�� �� i ��
  � ��k

���������������������������������	
��A �ε C

���������������������������������	�j

in � ; we have

� � �(x:FX��	A)∈�C [X, A] , (y:FY��	B)∈�C [Y, B] , (z:FZ��	C)∈�C [Z, C] ,0 0 0
� � �ϕ∈�C (x, y)[f, f] , η∈�C (y, z)[h, h] , ψ∈�C (x, z)[j, j] ,1 1 1
� � �γ∈�C (x, y)[g, g] , ι∈�C (y, z)[i, i] , κ∈�C (x, z)[k, k] ,1 1 1

# # � # � � � � # � � �s∈� T (f, h, j) , t∈� T (g, i, k) , s∈� T (f, h, j) , t∈� T (g, i, k)1 1 1 1

such that

� �
�C (x, y; ϕ, γ)[β, β] , �C (y, z; η, ι)[δ, δ] , (3)2 2

� �
�T (ϕ, η, ψ)[s, s] and �T (γ , ι , κ)[t, t] . (4)1 1

Under these conditions, we want that
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� # # � � � � �
�C (x, z; ψ, κ)[ε , ε] ��� (� H(s, t; β, δ, ε) ��� � H(s, t; β, δ, ε)) .2

Again, it suffices to show that

# # � � � � �
� H(s, t; β, δ, ε) and � H(s, t; β, δ, ε) (5)

�imply �C (x, z; ψ, κ)[ε , ε] . (6)2

Assume (5). Consider the 2-cat-sketch

���� �	�� Y �	�� � �	f �� ��� �	 �	 h�� �� �	 �	�
������ ������	�� β�� g �	δ �	�� �� i �	 ���� �� �	� � ��T = k
����������������������������������ε �X � � j Z
����������������������������������s �t� � hf
����������������������������������δβ�� � ig
���������������������������������

shf
��j
We have (f, h, hf), (g, i, ig)∈T(T ) , (β,δ,δβ)∈T(H) , and δβ � � �ε (the1 ig
��kt
latter by an (unmarked) 2-cell σ , and (s, ε , σ), (δβ, t, σ)∈T(T ) ) .2

The conditions in (5) ensure that the data we have give rise to morphisms M :T
�� ,0
N:T
�� . As in the case of the sketch S , we can form the composite M=FM :T
�� ; we0
have M(s)=Fs�F , M(t)=Ft�F ; the commutativity of the diagramf, h g, i

FδFβFhFf
���������FiFg

F � �Ff, h� � � g, i� �
F(δβ)F(hf)
��������F(ig)

� �Fs� � �Ft� �

F(j)
���������F(k)Fε
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ensures that M is indeed M:T��� . Consider the following subsketches of T :

���� ���� Y ���� � ��f �� ��� �� �� h�� �� �� ����				�� �
			����� β�� g ��δ ���� �� i �� ���� �� ��  ��T = k1 �																																�
X j Z�																																�

���� ���� Y ���� � ��f �� ��� �� �� h�� �� �� ����				�� �
			����� β�� g ��δ ���� �� i �� ���� �� ��  ��T = k2 �																																��X � j Z�												�																			��s �t� � hf�												�																			��� ig�																																�

The data x, y, z, ϕ, γ , η, ι , ψ, κ give, via the relation (3), a map

M�							�T �τ � ,1�							�N

which, by (4) and D2, uniquely extends to

M�							�T �τ � .2�							�N

By D6, this extends to

M�							�T �τ � .�							�N

The naturality of τ with respect to ε is the desired relation (6).
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Appendix E: More on equivalence and interpolation

In this section, S and T are small Heyting categories, L is a DSV , K its category of

kinds, and F:L��S , G:L��T are S- , resp. T-valued L-structures. Mod(S) denotes the

Scategory of coherent functors S��Set , a full subcategory of Set ; similarly for

Mod(T) .

Primarily, we have in mind T (also, S ) obtained as the Lindenbaum-Tarski category [T ]0
of a theory T in intuitionistic logic. We will be looking at Kripke-models of T ; that is,0

CHeyting functors Φ:T��Set , with various exponent categories C ; we write Φ�T for " Φ
is a Kripke model of T ". " σ is a sentence of T ", " Φ�σ " and other unexplained notation

have the meanings analogous to the ones used in §5.

We have the following intuitionistic version of the interpolation theorem 5.(7)(a).

(1) Assume that σ,τ are sentences of T , and for all Kripke models Φ, Ψ�T ,

Φ � σ & Φ�L � Ψ�L ���� Ψ � τ .L

Then there is an L-sentence θ in logic with dependent sorts without equality such that for all

Φ�T ,

Φ � σ ��� Φ�L � θ and Φ�L � θ ��� Φ � τ .

In (5) below, we will reformulate (and strengthen) the theorem in a purely syntactical fashion,

by removing references to Kripke semantics.

We will imitate [M4] in the proof of (1).

When I:T��Q is a Heyting functor , and F:L��T , we have an obvious composite

IF:L��Q .
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H�����Recall that for L Q , α:H���I (called an L-equivalence) is α=(A, α , α ) , with����� L 0 1I
A:K��Q and α :A��H�K , α :A��I�K with suitable properties. Given also J:Q��R ,0 1
we have the composite Jα = (JA, Jα , Jα ):JH���JI ; the requisite properties aredef 0 1 L
easily checked.

Consider data as in

HS���������Q
� � ≅F� �I α:HF�����IG (2)� � L
L���������TG

with H , I Heyting functors. Fixing the items L, S, T, F, G , and for Q a Heyting category,

let C be the groupoid whose objects are triples (H, I, α) as in (2), and whose arrowsQ
≅(H, I, α)���(H’, I’, α’) (where α=(A, α , α ) , α’=(A’, α’, α’) ) are triples0 1 0 1

≅ ≅ ≅(ϕ:H���H’, ψ:I���I’, γ:A���A’) of natural isomorphisms such that

ϕFHF��������H’K
� �α � � �α’0� � 0γA ��������� A’ (2')

α � �α’1� � � 1� �
IG��������I’GψG

Composition in C is defined in the obvious way. We may write (Q;H, I, α) forQ
(H, I, α) to emphasize Q .

Given an object Γ=(Q; H, I, α) of C , and L:Q��R , a Heyting functor, we have theQ
composite object LΓ=(R; LH, LI, Lα) (with Lα described above) of C . Moreover, weR
have the functor

* *Γ = Γ : Hom(Q, R)�����CR R

where Hom(Q, R) is the category (groupoid) of Heyting functors Q��R with isomorphisms

*as arrows; the object-function of γ is L��Lγ as described, the arrow-function being
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similarly defined by composition.

There are Q=S+ T , a Heyting category, and Γ∈C , given by the dataL Q

I0S���������S+ TL� � ≅F� �I α:I F�����I G (3)� � 1 0 L 1
L��������� T ,G

*such that (Q; Γ) enjoys the universal property that for any Heyting category R , Γ is aR
surjective (on objects) equivalence of categories (groupoids).

The description of Q = S+ T is as follows. Q is the Lindenbaum-Tarski category [Q ] ofL 0
a theory Q in intuitionistic logic. L consists of L �L , the disjoint union of the0 Q S T0
underlying graphs of S and T , together with new objects AK , one for each K∈K , arrows

Ap:AK��AK , one for each K∈K and p∈K�K , and arrows α :AK��FK ,p 0K
α :AK��GK . The axioms of Σ are those of S and T (formulated for the symbols that1K Q0
are the images of the original symbols of S and T in L �L ), together with axiomsS T
amounting to the assertion that (A, α , α )=(AK, α , α ) is an L-equivalence0 1 0K 1K K∈K
between the S-model and the T-model involved. The object Γ∈C is the evident one.Q
Kripke-models of S+ T are essentially the same as triples (M�S, N�T, α:M���N) ; thisL L
fact is essentially the universal property of (S+ T, γ) with respect to R a presheafL

Ccategory Set .

We call (3) the L-pushout of (F:L��S, G:L��T) .

Next, we introduce some auxiliary concepts.

Suppose that in

HS���������Q
� �F� �I� �
L���������TG
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Q is a coherent category, H and I are coherent functors (however, S and T are still the

same Heyting categories as before). Let A:K��Q , α :A��HF�K , α :A��IG�K . We0 1
write α=(A, α , α ):H���I if the following holds:0 1 *

(3') for every finite K-context � , and any L-formula θ of FOLDS,

* *(α ) (F[�:θ]) ≤ (α ) (G[�:θ]) .0 [�] A[�] 1 [�]

(α ) (α )0 [�] 1 [�]This refers to the arrows HF[�]�����������A[�]�����������IG[�] induced by

α and α . We write (A, α , α ):H���I if both (A, α , α ):H���I and0 1 0 1 * 0 1 *
(A, α , α ):I���H ; of course, this just means an equality in place of ≤ in (3') .1 0 * A[�]
Finally, we write (A, α , α ):H���I if α=(A, α , α ):H���I and α and α are0 1 # 0 1 * 0 1
very surjective.

Notice that if (A, α , α ):H���I , then α=(A, α , α ):H���I ; the latter involves0 1 # 0 1 L
preserving atomic L-formulas only.

Let us explain the meaning of the last-mentioned concepts when Q=Set , and

H=M∈Mod(S) , I=N∈Mod(T) .

� �With � and ϕ as above, let a= 〈a 〉 ∈(M�K)[�] . We write M � ϕ[a] forx x∈� w
� �〈a 〉∈M(F[�:ϕ]) ( ⊂M(F[�]) ) ; here, the notation 〈a 〉 is used in the sense given to it in

the line after 5.(7'). The subscript w is to serve as a warning that this is a "non-standard"

meaning for truth ( � ); the coherent functor M:S��Set is not supposed to respect the full

logical structure of S , hence it does not necessarily "recognize" the full meaning of ϕ ; M is

m na "weak model for L-formulas". We have that for U:K��Set , and M����U����N ,

(U, m, n):M���N iff for all � and ϕ as above, and for any 〈c 〉 ∈U[�] ,* x x∈�

M� ϕ[ 〈mc 〉 ] ��� N� ϕ[ 〈nc 〉 ] .w x x∈� w x x∈�

Note that when U=∅ , (∅, ∅, ∅):M���N means that M(F[∅:ϕ])=1 �� N(G[∅:ϕ])=1 .*

Let
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�I0S���������S+ T#
� �� � � � � � �F� �I α=(A, α , α ):I F���I G (4)� � 1 0 1 0 # 1
L��������� TG

be the entity that is "initial" among all

HS���������Q
� �F� �I α=(A, α , α ):HF���IG , (4')� � 0 1 #
L���������TG

in the following natural sense, amounting to a modification of the definition of S+ T . TheL
#category C , for Q a coherent category, has objects (4'), and arrowsQ

(ϕ:H��H’, ψ:I��I’, γ:A��A’):(H, I, α)���(H’, I’, α’)

( α=(A, α , α ) , α’=(A’, α’, α’) ) such that (2') holds; it is important that here ϕ , ψ0 1 0 1
#and γ are not restricted to be isomorphisms. For any coherent category R , and Γ∈C , weQ

have

* #Γ : Coh(Q, R)�����CR

Qwhere Coh(Q, R) is the category of coherent functors Q��R , a full subcategory of R .

*The universal property of S+ T is that, for Γ given by (4), for any coherent R , Γ is a#
surjective equivalence of categories.

The construction of S+ T is similar to that of S+ T . S+ T is the Lindenbaum-Tarski# L #
# #category of a coherent theory Q ; the language of Q is the same as that for Q given0 0 0

above for S+ T . We include (coherent) axioms to ensureL

� * � *(α ) (F[�:θ]) =� (α ) (G[�:θ])0 [�] A[�] 1 [�]

for each � , θ as above. Note that the (ordinary, Set-valued) models of S+ T are#
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essentially the same as triples (M, N, u) , with M∈Mod(S) , N∈Mod(T) and u:M���N .#

(4) may be referred to as the #-pushout of (F:L��S, G:L��T) .

�Notice that there is a coherent comparison functor J:S+ T���S+ T for which JI =I ,# L 0 0
� �JI =I and Jα=α . The reason is the universal property of S+ T , and the fact that, for1 1 #

Heyting functors Φ:S��R , Ψ:T��R , α:Φ���Ψ implies α:Φ���Ψ .L #

Any diagram

HS���������Q α α
� � 0 1F� �I HF������A�����IG� �
L���������TG

involving (at least) coherent categories and coherent functors, is said to have the interpolation

property if the following holds: whenever � is a finite context for L , σ∈S (F[�]) ,S
* *τ∈S (G[�]) and (α ) (Hσ) ≤ (α ) (Iτ) , then there is an L-formula θT 0 [�] A[�] 1 [�]

(of FOLDS) such that σ ≤ F[�:θ] and G[�:θ] ≤ τ .F[�] G[�]

Using the (Kripke) completeness theorem for intuitionistic logic (for any small Heyting

Ccategory S , there is a conservative Heyting functor S��Set ), it is easy to see that (1) is a

weakened form of saying that the L-pushout diagrams have the interpolation property. Thus,

(1) will follow from

(5) Both the #-pushout and the L-pushout of a pair (F:L��S, G:L��T) , with S and T

small Heyting categories, have the interpolation property. Moreover, the comparison map

J:S+ T���S+ T is conservative; thus, the assertion for the L-pushout is a consequence of# L
that for the #-L-pushout.

For the proof of (5), we will employ the method described in [M4] (and adapted there from

[G]).
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Let M∈Mod(S) . M�L = M�F , and M�K = M�F�j , for the inclusion j:K��L . Fordef def
KW∈Set , an arrow m:W��M means an arrow m:W��M�K .

We write L for the underlying graph of the category S , and regard it as a vocabulary forS
intuitionistic first-order logic. (Now, S is a general small Heyting category; in particular,

�what follows will also be applied to T .) For a finite sequence x= 〈x 〉 of distincti i<n
�variables , by [x] we mean a chosen product X ×X ×...×X , where x :X . For0 1 n-1 i i

� �any (first-order) formula ϕ over L , with free variables in x , we have [x:ϕ] , aS
� �subobject of [x] , the "internal interpretation of ϕ in the context x in S "; see [MR1].

coh cohWe will use the coherent theory T =(L , Σ ) , the internal theory of S as a coherentS S S
cohcategory introduced in [MR1]. Mod(S) is identical to Mod(T ) , the category of modelsS

cohof the theory T with ordinary homomorphisms as arrows. For a coherent formula ϕS
� � �with free variables in x , M([x:ϕ]) , a subset of M([x]) , is identical to the ordinary

� � �interpretation of ϕ , {a:M�ϕ[a/x]} , modulo the canonical isomorphism

� � �j: � X ��M([x]) ( x= 〈x 〉 , x :X ) ; that is, M([x:ϕ]) =i i i<n i ii<n
� � �j({a:M�ϕ[a/x]}) . For coherent formulas ϕ and ψ over L , with free variablesS

�included in x ,

coh �T � ϕ���ψ (that is, for all M∈Mod(S) , M� ∀x(ϕ��ψ) ) iffS �x
� �[x:ϕ]≤ � [x:ψ] ;[x]

cohin other words, a coherent entailment is an ordinary semantic consequence of T iff it isS
internally true in S ; this is but a form of the (Gödel) completeness theorem for coherent

logic.

Now, we refer to F:L��S as well. Let x��x a 1-1 mapping of variables of FOLDS over L-
into variables over L so that x:F(K ) . Let, for any finite context � of L-variables,S � x
E(�) denote the formula

�
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���{(Fp)(x) = x : x∈�, p∈K �K} .- FK x, p xp ����

This formula describes that the x for x∈� fit together via the maps Fp , p∈K �K , as- x
dictated by the structure of the context � .

Recall F[�] defined as a certain pullback; we have a monomorphism m:F[�]���[�] for-
which π �m = π ( x∈� ); here, we refer to the evident projections. In fact, m representsx x-
the subobject [�:E(�)] of [�] . If Φ = [n:�Φ	���F[�]] is any subobject of F[�] ,

� - -
then Φ = [mn:�Φ����[�]] is a subobject of [�] . We have a formula Φ(�) with

� def � - � �

free variables in � such that [�:Φ(�)] = Φ ;
� � � � �

Φ(�) = ∃z∈�Φ	���(π �n)(z)=x
� � def x -x∈�

( π :F[�]
��FK ). When ϕ is an L-formula in FOLDS, with Var(ϕ)⊂� , and we takex x
Φ=F[�:ϕ]∈S(F[�]) , we get ϕ(�) = F[�:ϕ](�) .

� - def ������ -

Note that if M∈Mod(S) , then for 〈a 〉 ∈F[�] ,x x∈�

M� ϕ[ 〈a 〉 ] ��� M�ϕ(�)[a /x] . (5')w x x∈� � - x � x∈�

If Var(ϕ)⊂�⊂�’ , then

[�’:E(�’)�ϕ(�)] = [�’:ϕ(�’)] (6)
� � � � �

as is easily seen.

Let �⊂� be finite contexts over L ; assume Var(ϕ)⊂� . Let us write ∀(�-�)ϕ for the

nformula ∀z ∀z ...∀z ϕ , where 〈z 〉 is a repetition-free enumeration of the set1 2 n i i=1
�-� such that for all j≤n , �∪{x :i≤j} is a context (an enumeration in a non-decreasingi
order of the level of K will ensure this; the formula ∀z ∀z ...∀z ϕ is well-formed as az 1 2 n
consequence. ∀(�-�)ϕ is not quite uniquely determined, but it is, up to logical

equivalence). We have the equality:

[�:(∀(�-�)ϕ)(�)] = [�:E(�)�∀(�-�)(E(�)��ϕ(�))] ; (7)
� ������� � � � � � � � �
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here, ∀(�-�) stands for ∀z ∀z ...∀z for �-� = {z , ...z } as above. This is��� 1 2 n 1 n�� �� ��
easy to show by induction on the cardinality of �-� .

Other easily seen equalities we will use are

[�:���ϕ (�)] = [�: E(�)����ϕ (�)] , (8)i � � i �i<m i<m�������

[�: ���ψ (�)] = [�: E(�)����ψ (�)] , (9)j � � j �j<n j<n�������

[�:(ϕ��ψ)(�)] = [�: E(�)�(ϕ(�)��ψ(�))] , (10)� ���� � � � � � � �

under the natural conditions on the parameters involved.

The following is the analog of Lemma 3 of [M4].

(11) Suppose M∈Mod(S) , N∈Mod(T) and (U, m, n):M���N . Then we have*
P∈Mod(S) , (f:M�	P) ∈ Mod(S) , g:U�	V and (V, r, q):P���N such that q is*
very surjective, and

P 
� ��
 r��
� ��� V��
 q (12)f� ��
� g� ��

� � � ���M������������U��������������	 Nm n

Proof. We first construct

V��
 q��
g� ��
� � ���U��������������	 N�Kn

Kin Set such that q:V���N�K is very surjective and g is a monomorphism. We put
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n0 nU ����N�K = U���N�K , and by recursion on i<k , the height of K , assuming0
n ni i+1U ����N�K defined, we define U ������N�K as follows. For all K∈K except wheni i+1

the level of K equals i , we put U K = U K . When K∈K , we put, for alli+1 i i
� � � �a∈U [K]=U [K] , U K(a) = U K(a)�(N�K)K(n (a)) ; here, we use thei i+1 i+1 i i

� �notation of 1.(3). (This means that U K = � (U K(a)�(N�K)K(n (a))) .) Wei+1 � i ia∈U [K]i
have the map g :U ��U whose component at each K∉K is the identity, andi, i+1 i i+1 i

�whose component at K∈K on the fiber over a∈U [K] is the coproduct coprojectioni i
� �U K(a)���U K(a) . The component of n at each K∉K is that of n . Fori i+1 i+1 i i

� �K∈K , (n ) :U K��(N�K)K maps the image of b∈U K(a) in U K(a)i i+1 K i+1 i i+1
�under the first coprojection to (n ) (b) , and the image of b∈(N�K)K(n (a)) ini K i

�U K(a) under the second coprojection to b itself. We have that n �g =n .i+1 i+1 i, i+1 i
niHaving defined all U ����N�K , we let V = colim U ( = U when k<ω ), with thei i+1 k-1i<k

g as connecting maps, and q = colim n . g is the coprojection U ��V . It isi, i+1 i 0
fairly clear that V , g and q so constructed are appropriate.

We may assume that g is an inclusion (that is, each of its components g is an inclusion ofK
sets).

Consider the (infinite) contexts � ⊂� associated with U and V as in §4. ForU V
x∈� -� , let x denote a variable for ordinary multisorted logic over L , of the sortV U � S
F(K ) ; the mapping x��x is 1-1. For any A∈S , a∈M(A) , let (A, a) , abbreviated asx - �����

a , be a variable of sort A ; assume that the a are different from the x . With- - -

⋅C = {x:x∈� -� } ∪ {a:A∈S, a∈M(A)} ,def � V U �

by a C-formula we mean one over L whose free variables all belong to C .S

For x∈� , m(a(x)) is an element of M , thus m(a(x)) belongs to the second term inU �������

C . When x∈� , let x stand for m(a(x)) . (Recall the correspondence between theU - �������

Velements of � and those of V ; for any fixed K∈K , d��y is a bijectionV K, d

183



≅V(K)���{x∈� :K =K} , with inverse x��a(x) ). Now, x∈C is defined for all x∈� ,V x � V
and we have x:FK .

� x

We now write down a set Σ of formulas over the language L with free variables in the setS
C . Σ is the union of the following five sets of formulas in classical first order logic:

cohΣ (13.1)S

{o(a)= b : (o:A��B)∈S, a∈MA, b∈MB, (Mo)(a)=b} (13.2)
� B�

{(Fp)(x) = x : x∈� , p∈K �K} (13.3)- FK x, p V xp ����

{ϕ(�) : Var(ϕ)⊂�⊂� , N� ϕ[ 〈qx 〉 ]} (13.4)
� � V w x∈�

{¬(ψ(�)) : Var(ψ)⊂�⊂� , N� ψ[ 〈qx 〉 ]} (13.5)
� � V w x∈�

(note that N� ψ[ 〈nx 〉 ] is not the same as N� (¬ψ)[ 〈nx 〉 ] !).w x∈� w x∈�

Let us understand the free variables in Σ as individual constants. Assume that Σ is

�consistent (satisfiable); let (P, c) be a model of Σ . Then, by (13.1), P∈Mod(S) . Byc∈C
�(13.2), f = 〈f 〉 for which f (a)=a (A∈S, a∈MA) is a natural transformationA A∈S A -

V �f:M��P . By (13.3), r= 〈r 〉 for which r (d) = (y ) whenever K∈K , d∈VKK K∈K K K, d
����

V Vis a natural transformation r:V��P�K . Since for c∈U , y = m(a(y )) = m(c) ,K, c K, c ����
���� ����������

we have the left-hand commutativity in (12). Finally, by (13.4) and (13.5),

(V, r, q):P���N (see (5')). We have verified that the consistency of Σ establishes (11).*

Let us prove that Σ is satisfiable. Assume that a finite subset Φ of Σ is not satisfiable. Φ
involves a finite number of C-variables. There is a finite context �⊂� and a finite set � ofV
elements a=(A∈S, a∈MA) of M such that all formulas in Φ have free variables from

�∪� ; �={y:y∈�} , �={a:a∈�} . Let Θ denote the set Φ∩(13.2) ; for all formulas- � - � - �

θ∈Θ , Var(θ)⊂� . By increasing Φ , we may assume that it is a subset of
�
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cohΣ ∪ Θ ∪ E’(�) ∪ {ϕ (� ):i<m} ∪ {¬(ψ (� )):j<n} (14)S � i i j j
�� �� �� ��

where E’(�) is the set whose union is E(�) , each ϕ (� ) belongs to (13.4) , each
� � i i

�� ��

¬(ψ (� )) belongs to (13.5) , and � ⊂� , � ⊂� . Let θ = ���Θ .j j i j
�� ��

The inconsistency of (14) is the same as saying that

cohT � θ � E(�) � ���ϕ (� ) ������ ��	ψ (� ) .S � i i j ji<m�� �� �∪� j<n�� ��
� �

By our remarks above (completeness), this is the same as

[�∪�: θ�E(�)����ϕ (� )] ≤ [�∪�: ��	ψ (� )] .
� � � i i � � j ji<m�� �� j<n�� ��

By (6) , this may be rewritten as

[�∪�: θ�E(�)����ϕ (�)] ≤ [�∪�: ��	ψ (�)] .
� � � i � � � j �i<m�� j<n��

With ϕ=���ϕ , ψ=��	ψ , we see that ϕ(�)∈(13.4) , ¬(ψ(�))∈(13.5) .i j � � � �i<m j<n

Also using (8), (9), we have

[�∪�: θ�E(�)�ϕ(�)] ≤ [�∪�: ψ(�)]
� � � � � � � � �

In other words,

[�∪�: θ�E(�)] � [�∪�: ϕ(�)] ≤ [�∪�: ψ(�)] ,
� � � � � � � � � � �

and as a consequence, using the Heyting implication in S([�∪�]) ,
� �

[�∪�: θ�E(�)] ≤ [�∪�: ϕ(�)]���[�∪�: ψ(�)] = [�∪�: ϕ(�)��ψ(�)] .
� � � � � � � � � � � � � � � � �

By (10), it follows that
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[�∪�: θ�E(�)] ≤ [�∪�: (ϕ��ψ)(�)]
� � � � � ���� �

and

[�∪�: θ] ≤ [�∪�: E(�)���(ϕ��ψ)(�)] . (15)
� � � � � ���� �

⋅Let �=�∩� . We have that � = �∩� ⊂ � , and �∪� = � ∪ (�-�) . Let π:[�∪�]��[�]U � � � � � � � � � � �

be the projection, let τ = E(�)���(ϕ��ψ)(�) . As was mentioned above, Var(θ)⊂� .
� ���� � �

*Using π �∀ ,π

*π [�:θ] ≤ [�∪�:τ] ��� [�:θ] ≤ ∀ [�∪�:τ] .
� � � � π � �

By (15), it follows that [�:θ] ≤ ∀ [�∪�:τ] . Now, ∀ [�∪�:τ] = [�:∀(�-�)τ] . We
� π � � π � � � � �

conclude

[�: θ�E(�)] ≤ [�: E(�)�∀(�-�).E(�)���(ϕ��ψ)(�).]
� � � � � � � ���� �

and by (7) ,

[�: θ�E(�)] ≤ [�: (∀(�-�)(ϕ��ψ)(�)] . (16)
� � � ������������ �

By the definition of E(�) , M�E(�)(m(a(x))/x) . But, for x∈� , x =a for
� � � x∈� � �

a=m(a(x)) ; thus, M�E(�)[a/a] . By Θ⊂(13.4) , M�θ[a/a] . By (16), we
� � a∈� � a∈�

conclude that M� (∀(�-�)(ϕ��ψ)(�)[a/a] , that is,
������������ � � a∈�

M� (∀(�-�)(ϕ��ψ)(�)(m(a(x))/x) .
������������ � � x∈�

By (U, m, n):M���N , we conclude*

N� (∀(�-�)(ϕ��ψ)(�)[q(a(x))/x]
������������ � � x∈�

( q extends n ). By the choice of ϕ and ψ ,

N�ϕ[q(a(y))/y] ,
� y∈�
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N�ψ[q(a(y))/y] .� y∈�

Also,

N�E(�)[[q(a(y))/y] .� � y∈�

However,

[�: (∀(�-�)(ϕ��ψ)(�) � ϕ � E(�)] ≤ [�: ψ] .� ������������ � � �

The last five displays contain a direct contradiction.

This completes the proof of (11).

The following is essentially simpler than (11); it is the analog in our context of Lemma 4 of

[M4].

(17) Suppose M∈Mod(S) , N∈Mod(T) and (U, m, n):M���N . Then we have*
Q∈Mod(T) , (h:N��Q)∈Mod(T) , g:U��V and (V, r, q):M���Q such that r is*
very surjective, h is pure, and

� Qq ���� �����	��� 
��V � (12)r ���� �h���� g
 � ��� � �
M �����������U��������������� N .m n

( h:N��Q being pure means that the naturality squares

NmNA��������NB
h � �hA� � B� �

QA��������QBN’m

corresponding to monomorphisms m∈T are pullbacks.)
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Combining (11) and (17) in an "alternating chain" argument (see the proof of Lemma 2 in

[M4]), we obtain

(18) Suppose M∈Mod(S) , N∈Mod(T) and (U, m, n):M���N . Then there are*
M’∈Mod(S) , N’∈Mod(T) , g:U��U’ , f:M��M’ , h:N��N’ and

(U’, m’, n’):M’���N’ (in particular, m’ and n’ are very surjective) such that h is#
pure, and

m’ n’M’�������U’�������N’
� � �f� �g �h (18')� � � � �� � �
M��������U��������N .m n

(Observe the asymmetry; (U, m, n):M���N , and not the other way around; h , but not f ,*
is required to be pure.)

Let us prove the assertion, contained in (5), that (4) has the interpolation property. Let σ and

τ be as in the interpolation property, assume the hypotheses, and also that the conclusion

fails. That is,

� * � � * �(19) (α ) (I σ) ≤� (α ) (I τ) ;0 [�] 0 A[�] 1 [�] 1

however,

(20) there is no L-formula θ (of FOLDS) such that σ ≤ F[�:θ] andF[�]
G[�:θ] ≤ τ .G[�]

I claim that (20) implies that

� �(21) there are M∈Mod(S) , N∈Mod(T) and (F , a, b):M���N such that
� *

� �M� σ[a] and N� τ[b] .w w

188



Let x��x be a 1-1 map of variables x∈� into variables over L , x:GK . Let θ range
� T � x

over L-formulas with Var(θ)⊂� . E’[�] , θ(�) and τ(�) were defined before.
� � � � �

Consider the set

cohΣ ∪ E’[�] ∪ {θ(�):σ≤ F[�:θ]} ∪ {¬(τ(�))} . (22)T � � � F[�] � �

If this were inconsistent, we would easily conclude that there is θ with G[�:θ] ≤ τ ,G[�]
�contrary to (20). Let (N; x/x) be a model for (19). Next, let x��x be a 1-1 map of
� x∈� �

variables x∈� into variables over L , x:FK , and considerS � x

coh �Σ ∪ E’[�] ∪ {¬(θ(�)): (N; x/x) � θ(�)} ∪ {σ(�)} . (23)S � � � � x∈� w� � � �

�This is easily seen to be consistent by the fact that (N; x/x) is a model of (22). Now, if
� x∈�

� � � � �(M; x/x) is a model of (23), then with a= 〈x 〉 , b= 〈x 〉 we have (21).
� x∈� x∈� x∈�

� �Now, apply (18) to (F , a, b):M���N as (U, m, n):M���N ; we obtain that
� * *

(24) there are M’∈Mod(S) , N’∈Mod(T) and (V, m, n):M���N such that#
� �M� σ[a] and N� τ[b] .w w

�(Indeed, h being pure ensures that N� τ[b] .) On the other hand, by (24) and the universalw
� �property of (4), there is P:S+ T��Set such that PI =M , PI =N and# 0 1

� � � * *P(A, α , α )=(V, m, n) . Applying these to (19), we get m (Mσ) ≤ n (Nτ) ,0 1 [�] V[�] [�]
� �which contradicts the conjunction of M� σ[a] and N� τ[b] .w w

It remains to prove the other assertion of (4), namely that the comparison J is conservative.

Mod(R)For any small coherent category R , we have the evaluation functor e:R��Set , a

conservative coherent functor, and if R is Heyting, e is Heyting (Kripke-Joyal theorem; see

[M4]).
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We show, in analogy to Proposition 7 of [M4], that

�I1 e Mod(R)(25) For R=S+ T , the composites T����R����Set ,#
�I0 e Mod(R)S����R����Set are Heyting.

The argument is similar to that in loc.cit. We deal with the first composite; the second is

symmetric. Upon an analysis similar to that in loc.cit., we see that what we need is this:

given k:A��B in T , X∈S(A) , M∈Mod(S) , N∈Mod(T) ,

u=(U, m, n):M���N , y∈NB such that y∉N(∀ X) ,# k

there are M’∈Mod(S) , N’∈Mod(T) , u’=(U’, m’, n):M’���N’ and#
#(f:M��M’, h:N��N’, g:U��U’):(M, N, u)��(M’, N’, u’) , an arrow in C , andSet

x∈N’(A)-N’(X) such that h (y)=(N’k)(x) .B

* * * * * *As in loc.cit., we have N ∈Mod(T) , h :N��N , x ∈N (A)-N (X) such that

* * *h (y)=(N k)(x ) . We build a commutative diagramB

m’ n’M’���������U’�����������N’

� � �f� g �h’� � �
*M����������U������������Nm *(h �K)�n

� � � *1 � 1 � �hM� U� �

M����������U������������N .m n

The lower half is already constructed. The important remark is that (U, m, n):M���N*
*implies that (U, m, (h �K)�n):M���N . Then, by (18) , we have the rest such that, in*

addition, (U’, m’, n):M’���N’ and h’ is pure. Taking the vertical composites, in#
* * *particular h=h’�h , and x=(h’) (x ) , noting the purity of h , we have what weA
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want.

Having (25), the proof of the conservativeness of J is as in loc.cit.

This completes the proof of (5) and (1).

The results proved may be applied to characterizations of formulas invariant under equivalence

of categories, of diagrams of categories, and of bicategories, in category theory done in

intuitionistic set-theory. However, the condition of being invariant under equivalence cannot,

in most cases, be stated by using the traditional concept of equivalence. Note that in the proofs

of 6.(5), 6.(23), 7.(5), one direction (passing from an L-equivalence to a categorical

equivalence) uses the Axiom of Choice, not available in intuitionistic set-theory. [M2]

introduces "ana"-versions of certain concepts, among others functors of categories and functors

of bicategories, that can be used in this context. The condition of invariance under categorical

equivalence has to be strengthened, in general, to invariance under categorical anaequivalence,

to have the characterizations analogous to the ones we proved for classical logic.

Let us note that statement (5), being in essence of a syntactical (arithmetical) nature, can be

proved constructively, in intuitionistic set theory, by a general transfer result of H. Friedman

[Fr]; thus, (5) is available when doing category theory intuitionistically. However, to be able to

apply (5), the assumption of invariance under equivalence has to be available in the "provable"

sense.

In the case of equivalence of categories, essentially because now there is no need to pass to a

notion of "anacategory", we do have the direct analog of 6.(3) for intuitionistic logic. In

particular:

(25') Let ϕ(�) be a first-order formula on a finite diagram � of objects and arrows in the

language of categories. Suppose that it is provable in intuitionistic set-theory that the property

of ϕ(�) being true is preserved and reflected along equivalence functors. Then there is a

*formula θ(�) in FOLDS over L such that ∀�(ϕ���θ ) is provable in intuitionisticcat
predicate calculus from the axioms of category
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*(here, θ is the usual translate of θ into ordinary multisorted logic, given in §1).

In the rest of this Appendix, we discuss (simple) Craig interpolation and Beth definability for

FOLDS.

For specificity, we consider FOLDS in the sense of classical FOLDS with (restricted) equality;

theories etc. below are to be understood accordingly.

First, let us put ourselves in the context of Appendix A. Suppose L is a vocabulary. A1
subvocabulary of L is a subset L of L which itself is a vocabulary. Note that the1 1
set-theoretical intersection and union of any number of vocabularies are always again

vocabularies.

In terms of the terminology of §1, instead of the above notions, we would use the following.

Let L , L DSV's, i:L��L a functor. I call i an inclusion of DSV's if it is (a) 1-1 on1 1
objects, (b) for any object R of the category L , R∈Rel(L) iff iR∈Rel(L ) , and (c) for1
every A∈L , i induces a bijection A�L��iA�L . Obviously, i preserves levels. A1
sub-DSV L of L is given by an inclusion i:L��L of DSV's for which i acts as the1 1
identity ( i is a "real" inclusion). If we have inclusions i :L��L , i :L��L , we may1 1 2 2
consider the pushout L + L ; as a category, it is a pushout in the ordinary sense; the1 L 2
relations of L + L are defined to be the images of those of L and L ; clearly, the1 L 2 1 2
coprojections L ��L + L , L ��L + L are inclusions too.1 1 L 2 2 1 L 2

Let us use the terminology of Appendix A. Suppose that T is a theory in FOLDS over1
L , and L⊂L . Then T �L denotes the theory (L,Cn (T )) , where Cn (T ) is the1 1 1 L 1 L 1
set of L-consequences (in classical FOLDS) of T . (A small point to make here is that an1
L-formula is not necessarily an L -formula, despite the fact that L⊂L . The reason is that a1 1
kind K in L may be maximal in L , but not maximal in L , in which case equality on K1
is allowed in FOLDS over L , but not in FOLDS over L . The definition of Cn (T ) is1 L 1
that it is the set of all L-sentences which are also L -sentences, and which are consequences1
of T .) If T is a theory over L (i=1,2), then T ∪T is the theory over L ∪L for1 i i 1 2 1 2
which Σ =Σ ∪Σ . When two theories S and S are over the same languageT ∪T T T 1 21 2 1 2
L , then S ∪S is also over L .1 2
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In the §1 terminology, when T is a theory over L (i=1,2), we can define the "pushout"i i
theory T + T in the obvious way.1 L 2

We will revert to the Appendix-A terminology.

Craig Interpolation for classical FOLDS. Suppose L , L are vocabularies (for FOLDS),1 2
L = L ∩L , T is a theory over L (i=1, 2) . Then T ∪T is consistent if and only if1 2 i i 1 2
(T �L)∪(T �L) is consistent.1 2

Of course, only the "if" part requires proof.

Let us illustrate the meaning of the above statement of the Craig interpolation theorem for

FOLDS.

Suppose σ is a sentence over L (i=1, 2) , and σ �σ . Consider T over Li i 1 2 1 1
whose single axiom is σ , and T over L whose single axiom is ¬σ . Then, T ∪T1 2 2 2 1 2
is inconsistent; hence, so is (T �L)∪(T �L) . This means that there are sentences θ , θ1 2 1 2
over L such that σ �θ , ¬σ �θ and {θ , θ } is inconsistent; but then σ �θ and1 1 2 2 1 2 1 1
θ �σ ; we have the usual form of interpolation.1 2

There is a generalization of the above statement of interpolation, obtained by allowing

individual constants in the theories. A vocabulary L with individual constants is a set of the

form L=L ∪� , where L is a vocabulary, and � is a (not necessarily finite) context of0 0
variables (individual constants) such that for c∈� , K ∈L . Intersection and union ofc 0
vocabularies with individual constants is again such. An L-sentence is an L -formula with all0
free variables in � . A structure M for L is one, say M , for L , together with an0 0
interpretation of the �-symbols: some 〈a 〉 ∈M [�] . For an L-sentence ϕ , M�ϕ ���c c∈� 0 def
M �ϕ[ 〈a 〉 ] . A theory over L is given by any set of L-sentences; a model of the0 c c∈�
theory is an L-structure satisfying all the axioms. Now, all the terms in the above statement of

the Craig interpolation theorem have natural meanings when L , L are vocabularies with1 2
individual constants; the theorem remains correct in the generalized form.

In the well-known manner, the Beth definability theorem can be deduced from Craig

interpolation, by using individual constants. We obtain
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Beth definability theorem for FOLDS. Suppose T is a theory in FOLDS, L⊂L , � is aT
finite context for L , and ϕ is an L -formula with Var(ϕ)⊂� . Suppose that for any twoT
models M , M of T , if M �L = M �L , then M [�:ϕ]=M [�:ϕ] . Then there is an1 2 1 2 1 2
L-formula θ with Var(θ)⊂� such that M[�:ϕ] = M[�:θ] for all models M of T .

For the proof, make two copies L , L of the vocabulary L , by renaming all kinds and1 2 T
relations A∈L -L in two distinct ways as A and A , and by puttingT 1 2
L =L∪{A :A∈L -L} ; L ∩L =L . For any L∪{�}-sentence ψ , we have thei i T 1 2
L ∪{�}-sentence ψ , with the same free variables (in � ), obtained by the appropriatei i
renaming. Applied to all members of Σ , this gives Σ , a set of L -sentences. ConsiderT i i
the theories T =(L ∪�, Σ ∪{ϕ }) , T =(L ∪�, Σ ∪{¬ϕ }) over vocabularies1 1 1 1 2 2 2 2
L ∪� , L ∪� with individual constants. Craig interpolation applied for T and T gives1 2 1 2
the desired conclusion.

We make some preparations for the proof of the Craig interpolation theorem.

Recall our definition of saturation in §5. We make some modifications on it.

Let us fix the DSV L ; K is its category of kinds. First of all, in contrast to §5, we now want

to deal with logic with equality; formulas now may have equality. The definitions up to

" �-L-saturated " remain the same, except for the change in what counts as a formula.

Consider a context � , and a �-set Φ of formulas; all formulas in Φ have variables in the

⋅context �∪{x} . Let us say that Φ is low if K is low, that is, it is not a maximal elementx
of K . This is the same as to say that no equality predicate is allowed on K .x

�The L-structure M is said to be strictly �-L-saturated if for every a∈M[�] and every

� �

�-set Φ , if Φ is finitely satisfiable in (M, a) , then (1) Φ is satisfiable in (M, a) , and (2)

if Φ is a low set, then Φ is satisfiable by an element a for which a≠a for all y∈� ;y
�here, a= 〈a 〉 . We say that M is strictly κ-L-saturated if it is strictly �-saturated fory y∈�

all � of cardinality < κ .

There are two issues: existence and uniqueness; let's deal with existence first. To that end, we

give a simple general construction.
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Let M, N be L-structures. We write M� N if M is a subfunctor of N (note that both ML
� �and N are functors L��Set ), and for any � , a∈M[�] ( ⊂N[�] ) , M�ϕ[a] iff

�N�ϕ[a] .���

� �(26) Let M be any L-structure, K a low kind, a∈M[K] , and MK(a)≠∅ . We can

� �construct another structure N such that M� N and MK(a)⊂NK(a) .L ≠

For simplicity, we assume that M is separated (the MK are pairwise disjoint). Let

�b∈MK(a) .���

Let U=M�K . Construct V:K��Set as follows. Say of x∈�U� that it is above b if there is

f:K’��K (possibly the identity) such that (Uf)x=b . Note that

(27) if g:K ��K , x ∈UK and x =(Ug)(x ) , then if x is above b , so is1 2 1 1 2 1 2
x .1

�Introduce a new element x for every x above b , distinct from each other and from the

⋅ �elements of U . Put VK’=UK’∪{x: x∈UK’ above b} . The effect of V on arrows is

defined so that U is a subfunctor of V , and by the following determinations. For

� Vg �g:K ��K , x ∈UK above b , let x =(Ug)(x ) ; x ∈VK ����� x if x is1 2 1 1 2 1 1 1 def 2 2
� Vgabove b , x ∈VK ����� x otherwise. It is easy to see, using (27), that V is a functor,1 1 def 2

� rwe have the inclusion i:U��V , and we have the retraction r:V��U for which x���x ;

� � r � �ri=1 . I claim that r is very surjective. If y= 〈y 〉 ∈V[K] , y���x , x∈UK(x) ,U p p∈K�K
� rthen if x is not above b , then no y is above b and x∈VK(y) , and of course x���x ;p

� � � rbut if x is above b , then x∈VK(y) , and of course x���x .

*Returning to M , using the very surjective r:V��U , define N=r M (see §5). When we

eqregard M and N as structures for L , with standard equality for the equality predicates,

* �then still N=r M . This amounts to the following: if K’ is a maximal kind , y∈V[K’] ,

� � r � r ry , y ∈VK’(y) , y���x , y ���x , y ���x , then x =x implies y =y . If1 2 1 1 2 2 1 2 1 2
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x =x , the only way y ≠y could be the case is that x is above b , y =x and1 2 1 2 1 1 1
�y =x (or the other way around). However, if so, then since K’≠K ( K is low), we have2 1

� � �p:K’��K proper such that (Up)x =b , hence, (Up)x =b , and, since b≠b , y =x ,1 1 1 1
� � �y =x cannot both be in VK’(y) for the same y , contradiction.2 1

eqWe have, by 5.(1), that θ is elementary (with respect to logic over L without equality;r
i.e., with respect to logic over L with equality). Combining this with ri=1 , weU
immediately obtain that θ :M��N is elementary, that is, M� N as desired. This proves (26).i L

The usual proof of the existence of saturated models (see [CK]), using unions of elementary

chains, is now easily supplemented by uses of (26) to provide

(28) For any infinite cardinal κ≥#L ( L any vocabulary with individual constants), any

+ κconsistent theory T over L has a strictly κ , L-saturated model of cardinality ≤ 2 .

(29) If M , N are strictly κ, L-saturated L-structures, M≡ N , both of cardinality ≤ κ ,L
then they are isomorphic.

Proof. Inspecting the proof of 5.(4), we see that we can make both maps m and n bijective.

This suffices.

Proof of Craig. Suppose (T �L)∪(T �L) is consistent. Let M be a model of it; M is an1 2
L-structure. Let Σ be the set of all sentences in FOLDS over L that are true in M ;

T=(L, Σ) . Both T ∪T and T ∪T are consistent; if not, we would have (say) τ∈Σ such1 2
that T �¬τ ; but then, by definition, ¬τ∈Σ , hence M�¬τ ; contradiction to τ∈Σ .1 T �L1

+ λChoose λ ≥#L , ≥#L such that κ=λ =2 . By (28), let M �T ∪T (i=1, 2) strictly1 2 i i
κ, L -saturated, of cardinality ≤κ . Then M �L is also strictly κ, L -saturated, ofi i i

≅cardinality ≤κ . By (29), there is an isomorphism f:M �L���M �L . There is M’ and an1 2 2

196



≅isomorphism g:M’���M such that M’�L = M �L (and g�L=f ). But then the2 2 2 1
L ∪L -structure N for which N�L =M , N�L =M’ , is a model of T ∪T .1 2 1 1 2 2 1 2

Finally, let us note that Craig interpolation and Beth definability hold for intuitionistic FOLDS.

Looking at the above formulation for classical FOLDS, we are led to the following

formulation:

S’������������������S’+ T’
� R
�

� � �� � � �F� � H �� � ��S���������S+ T � F , G conservative �� H conservativeR ��
� � � �� � �� � �� �
R����������T ���������T’G

This is to be understood in a suitable doctrine. Above we proved, in essence, this in the

doctrine of 	
¬∃-fibrations (see §3) restricted to fibrations obtained from simple

base-categories as described in §4 , with arrows restricted to inclusions as defined above. The

claim is that the same holds when we switch to 	
��∃∀-fibrations. The proof is along the

lines we presented in the first part of this Appendix.
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