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Abstract—A graphical model represents the data distribution
of a data generating process and inherently captures its feature
relationships. This stochastic model can be used to perform infer-
ence, to calculate posterior probabilities, in various applications
such as classification. Exact inference algorithms are known to
be intractable on large networks due to exponential time and
space complexity. Approximate inference algorithms are instead
widely used in practice to overcome this constraint, with a trade
off in accuracy. Stochastic sampling is one such method where
an approximate probability distribution is empirically evaluated
using various sampling techniques. However, these algorithms
may still suffer from scalability issues on large and complex
networks. To address this challenge, we have designed and
implemented several MapReduce based distributed versions of a
specific type of approximate inference algorithm called Adaptive
Importance Sampling (AIS). We compare and evaluate the
proposed approaches using benchmark networks. Experimental
result shows that our approach achieves significant scaleup and
speedup compared to the sequential algorithm, while achieving
similar accuracy asymptotically.

Keywords—Adaptive Importance Sampling; Approximate Infer-
ence; MapReduce

I. INTRODUCTION

In machine learning, statistical models are typically used
for describing the data distribution of a data generating process.
Probabilistic graphical models [1] are statistical models that
succinctly capture the data and feature relationships. It is
specified by a graph consisting of a set of vertices, and a
set of edges between them. Each vertex represents a random
variable in the data distribution, and an edge represents the
relationship between two variables. Real world applications
that use such representation include speech recognition [2],
video analysis [3] and bioinformatics [4].

In general, inference queries on a graphical model can
be broadly classified into four types [5], i.e., Probability
of Evidence, Prior and Posterior Marginals, Most Probable
Explanation (MPE) and Maximum a Posteriori Hypothesis
(MAP). The most common query is to evaluate P (X|E = e),
where X and E are sets of disjoint network vertices, and
E represents the set of evidence variables. Exact inference
algorithms, such as Variable Elimination [5], can be used to
compute the probability of evidence P (E = e). However,
these algorithms have exponential time and space complexity.
Performing exact inference over a large complex network is
known to be computationally intractable [6]. Approximate al-
gorithms are instead used for query evaluation within practical
time and space limits, for such networks.

Sampling based approximate inference algorithms [7] are
one class of randomized approximate algorithms widely used
in multiple applications involving large and complex networks.
These methods generate stochastic random samples from a
given model. The samples are used to empirically estimate
the data distribution represented by the model. Adaptive Im-
portance Sampling (or AIS) [8] is an approximate algorithm
where weighted samples are generated from a distribution,
which is updated periodically, to asymptotically approximate
the unknown data distribution of a data generating process.
This algorithm is especially used for reducing variance, caused
by rare events, during estimation.

Applications of AIS include variance reduction in commu-
nication systems [9], market evaluation [10], aeronautics [11],
etc. These applications performing predictions and simulations
typically involve large datasets. In addition to large datasets,
use of AIS over complex graph structures may also demand
large computational resources [12]. With the use of parallel and
distributed computational frameworks, these challenges can be
addressed adequately.

Recently, many parallel and distributed architectures [13]
have been proposed, commonly referred to as “BigData
Frameworks”, which provide an efficient way to handle large
amounts of data to perform analytics. Therefore, it is impera-
tive to study and develop techniques involving graphical model
computations using these technologies. Generation of samples
and weight calculations in AIS have a certain degree of
parallelism. In this paper, we exploit the nature of independent
sampling and weight computation in AIS, and propose a
MapReduce-based approach to perform faster inference over a
given graphical model. Our experimental evaluation shows that
the proposed approaches achieve substantial gain in scaleup
and speedup compared to the sequential execution of AIS.

The contributions of this paper are as follows:

1) We design a distributed approach to perform Adap-
tive Importance Sampling (AIS). In particular, we
consider a version of AIS that combine both sam-
pling and exact inference techniques. Parallel and
distributed sampling and weight calculation methods
are designed for this version of AIS.

2) We implement the proposed approach using the
MapReduce framework.

3) We evaluate the distributed techniques in terms of
speedup and scaleup, comparing its effectiveness with
the sequential approach, using benchmark networks.



The rest of the paper is organized as follows: In Section II,
we provide some background information on probabilistic
graphical models and sampling algorithms. In Section III, we
discuss some related studies. In Section IV, we discuss certain
design challenges in distributed AIS, and present our proposed
approach to overcome them. The evaluation of this approach
is provided in Section V. We compare the performance among
other distributed approaches, and with the sequential approach.
Finally, Section VI concludes the paper.

II. BACKGROUND

In this section, we review some background information on
inference over probabilistic graphical models. We also describe
the sequential AIS method that combine sampling and exact
inference.

A. Probabilistic Graphical Models

A probabilistic graphical model G consists of a set of
random variables X representing data features, and edges
between these variables representing feature relationships. The
model succinctly represents a data generating process, cap-
turing data and feature relationships, over which inference
can be performed. We denote these feature relationships by
φ = (φ1, ..., φk), a set of k functions (or network parameters)
over Y ⊆ X. A model (also called graph or network) is typi-
cally categorized into two types based on edge directionality.
A Bayesian network is a directed acyclic graph where φ is
a set of conditional probability distributions over Y. On the
other hand, an undirected graph is known as a Markov network
where φi ∈ φ (i ∈ {1 . . . k}) denotes a factor that represents
a relationship between random variables in a clique.

Inference algorithms over these representation models use
corresponding network parameters to evaluate a query. A
typical query requires estimation of the probability of evidence
in case of a Bayesian network, or the partition function in case
of a Markov network. At inference time, both Bayesian and
Markov networks can be considered equivalent. In general, the
joint probability represented by a Markov network is given by-

P (X = x) =
1

Z

∏
k

φ(x{k}), where Z =
∑

X

∏
k

φ(x{k})

(1)
Here, Z is the partition function, and x{k} is the state of the
variable X ∈ X appearing in the kth clique.

Exact inference algorithms can be used for evaluating Z
accurately. Variable elimination is one such exact inference al-
gorithm where non-query variables (X\Xe,Xq) are eliminated
from the evidence instantiated network Ge in a certain order.
Xe represents a set of evidence variables, and Xq represents
set of query variables. Elimination of non-query variables uses
the Product and Sum rule [5].

1) Product Rule: The product of two factors φ1(Y1)
and φ2(Y2) results in another factor φ3(Y) where
Y1,Y2 ⊆ X and Y = Y1 ∪ Y2, such that φ3(y) =
φ1(y1) ∗ φ2(y2) with y ∈ Y, y1 ∈ Y1 and y2 ∈ Y2.

2) Sum Rule: The sum out of a variable y ∈ Y from a
factor φi over Y ⊆ X results in a new factor φ̂i over
variables Ŷ = Y \ {y}.

The order of elimination λ is chosen based on heuristics
such as min-degree (eliminate variables in an increasing order
of number of neighbors) or min-fill (eliminate variables in
an increasing order that lead to least addition of edges).
Executing the schematic Variable Elimination algorithm using
a certain order of elimination can be represented using a tree
decomposition [1].

The width of the tree decomposition (or ordering) is defined
as the cardinality of its largest cluster, minus 1. The minimum
width of all possible tree decompositions of a graph is defined
as its treewidth. Both time and space complexity of the
Variable Elimination algorithm on the graph G is exponential in
its treewidth. This motivates the use of approximate inference
algorithms.

B. Sampling

Sampling based approximate inference algorithms are used
to approximate a distribution P with an empirical estimation
from samples. A sample x is an instantiation or an assignment
to variables in X. Let F be a function of X. A set of samples
x are used for estimating its expectation F̃ with regard to the
distribution P given by-

F̃(X) =

N∑
i=0

F(xi) ∗ P(xi) (2)

In case of Markov Chain Monte Carlo methods such as
Gibbs sampling [14], samples are generated directly from a
given probability distribution P represented by the network.
However, in many cases, the estimation may result in large
variance in expected value due to occurrence of rare events.

In order to reduce variance, the importance sampling
technique [5] draws samples from another distribution, called
proposal distribution (denoted as Q), instead of the given
distribution. The proposal distribution is initialized randomly
such that Q(x) > 0 when P(x) > 0, where x ∈ x. The
expectation in this case is given as-

F̃(X) =

N∑
i=0

F(xi) ∗
P(xi)

Q(xi)
(3)

Here, the quantity P(xi)
Q(xi)

is known as the importance weight.

Variance can be further reduced by choosing a proposal
distribution similar to that of the given distribution. In many
cases, this is not possible since the given distribution might
be unknown or complex. In such cases, an adaptive strategy
can be used where the proposal distribution Q is updated
periodically using a set of weighted samples generated from
the current Q. This is known as Adaptive Importance Sampling
(AIS) [8]. A variant of AIS combining sampling and exact
inference is known as Rao-Blackwellized AIS.

Rao-Blackwell theorem [15] in its simplest form, improves
the accuracy of expectation by conditioning on a subset
of variables from X \ Xe, and asymptotically reduces the
variance of an estimator. The application of Rao-Blackwell
theorem to stochastic simulation (or sampling) is known as
Rao-Blackwellized sampling. In this case, a set of variables
Xw ⊂ X\Xe (called w-cutset [16]) are sampled. Each sample
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Fig. 1: Schematic Description of RB-AIS

wi ∈ Xw is then instantiated or conditioned on the evidence
instantiated graph Ge. This effectively reduces the treewidth of
Ge, resulting in a graph Gewi

. Exact inference over the set of
variables Ŷ = X \ Xw,Xe can be tractable if the treewidth of
Gewi

is sufficiently small. Clearly, this is possible by choosing
an appropriate size of Xw. A heuristic is often used to choose
the set Xw from X.

In this paper, we use the Rao-Blackwellized version of
Adaptive Importance Sampling (RB-AIS) to show a distributed
and parallel inference technique. We choose an initial Q
(uniform distribution) [17] over a set of discrete random
variables in Ge. The w-cutset variables Xw is chosen such that
the most occurring variable in a tree decomposition is removed
iteratively from all clusters until the width of ordering is re-
duced to a desired value of w+1. This desired value is typically
chosen depending on the computational capability available for
practical implementation of the algorithm. Smaller value of w
may result in larger w-cutset size |Xw|. On the contrary, larger
w typically results in smaller |Xw|. Samples are generated from
Xw, which are used to instantiate Ge resulting in Gew. For
instance, |Xw| = 0 implies that no variables are considered
for sampling, and Gew = Ge.

Variable Elimination is executed on Gew using P to obtain
a weight for each sample x as follows-

ψx =
V E(Gew)

Q(X = x)
(4)

V E(G) is the result of variable elimination on graph G.

The proposal distribution Q is periodically updated using
n sample-weights as-

Q(X = x) =

∑n
t=1 δxt(X = x)ψxt∑n

t=1 ψxt

(5)

Here x1 . . . xn are the set of samples generated whose weights
are used for updating Q. δ is the Dirac function. The sum-
accumulated weight is averaged over these samples to estimate
the probability of evidence Z.

A schematic description of the above described RB-AIS
algorithm is shown in Figure 1. A sequential implementation
involves generation of N samples, weight calculation for
each sample, and I updates to Q after every n samples.
Execution of V E(Gew) for sample-weight computation may
form a bottleneck demanding large computational resources.
In particular, if Gew is large enough for Variable Elimination
to be performed in memory, the resulting sample-weight may

have a better quality to be used for updating Q rather than
a smaller Gew. In a sequential execution of RB-AIS, sample-
weight for each sample is computed serially, increasing the
overall computational time. For applications requiring faster
computation, a parallel and distributed computation becomes
imperative. In this paper, we design and evaluate distributed
approaches for calculating Z using RB-AIS.

III. RELATED WORKS

In this section, we review related existing studies on
distributed and parallel approaches to perform inference on
graphical models. We also review various distributed architec-
tures developed to handle large datasets.

Several studies describe approaches to perform parallel
exact and approximate inference in graphical models. Kozlov
et al. [18] proposed a parallel exact inference method by
assigning independent cliques of a junction tree on sepa-
rate processors. Similarly, parallel evidence propagation was
studied in [19]. Unlike these approaches that explore struc-
ture based parallelism, [20] investigated data parallelism by
carrying out node level computations in parallel. Despite
these efforts, execution of exact inference algorithms on real
world complex networks can still be infeasible. Approximate
inference algorithms are therefore widely used to overcome
these constraints.

Approximate inference algorithms such as Markov chain
Monte Carlo (MCMC) methods, e.g., Metropolis-Hasting [21]
and Gibbs sampling [14], have been extensively studied to
realize a parallel computational structure. These are known
to have an “embarrassingly parallel” structure, which has
been exploited in various studies [22], for generating samples
using a distributed environment. A recent study proposes a
parallel architecture for MCMC sampling methods [23] using
MapReduce. They distribute network variables into multiple
processes, which can be considered as a subposterior network
consisting of subsets of variables. Samples are generated from
these subposteriors in parallel. These are then combined to
form a full-data posterior.

On the contrary to existing efforts, we show a distributed
and parallel approach to estimate the given distribution using
importance sampling techniques. In particular, we devise an
architecture to perform Rao-Blackwellized Adaptive Impor-
tance Sampling to evaluate the probability of evidence or
partition function. In a recent work [24], we propose a different
approach for RB-AIS, using an architecture that perform either
distributed sampling or distributed weight computations. Here,
we propose an architecture to combine the two techniques.

Previous studies [25] list various challenges in develop-
ing parallel inference algorithms including different process
speeds, sample mixing times, etc. Proliferation of tools such
as Hadoop [26], has provided sophisticated architectures to
overcome most of these challenges. In particular, frameworks
such as Pregel [27], GraphLab [28] and PowerGraph [29]
provide architectures for parallel computation on graph struc-
tures. These essentially adopt vertex-centric models to enable
efficient message passing between nodes in a graph. Our
study involves an iterative process which uses data structures
over cliques in a graph. We argue that the mechanism of
combining sample weights for distribution adaptation is most



suitable to be implemented using MapReduce. However, other
frameworks, such as Spark [30], can be leveraged for faster
computation. We leave this for future work.

IV. PROPOSED APPROACH

In this section, we discuss certain design challenges and
present our approach that combines distributed techniques of
sampling and weight computation for RB-AIS.

A. Design Challenges

The two main challenges in designing a parallel version of
RB-AIS are sample generation and sample-weight computation
used for estimating new proposal distribution.

Sampling in a distributed environment can be categorized
into two types. One involves associating all graph nodes to
each processor in the environment by duplicating the graph,
and the other involves associating a subset of graph nodes per
processor in the environment. The former approach produces
complete samples in each processor. This is typically used
when sampling under conditional independence assumption,
such as in Gibbs sampling. However this process is known to
have high mixing time [31]. The latter approach can be used
when assuming that samples from each variable are indepen-
dent of other variables in the graph. In RB-AIS, samples from
the w-cutset variables are instantiated on the network to form
a graphical model with bounded treewidth. Variables in w-
cutset are systematically chosen to form independent elements
in the set. Therefore, we can independently generate samples
from these variables (called partial sample) by distributing the
variables across multiple processes, or use a single process to
sample all w-cutset variables (called complete sample).

RB-AIS computes a weight for each complete sample.
These weights are used to update the proposal distribution at
the end of each iteration. This requires a method to combine
partial samples or complete sample weights. Consequently, a
parallel approach should consist of a synchronization method
between processes for combining samples and sample weights
at every iteration.

These challenges can be addressed to a significant ex-
tent by using the MapReduce framework, which has an in-
herent distributed and fault-tolerant mechanism along with
a method to combine results of partial computations from
multiple processes. In [24], we proposed an approach called
Distributed Sampling in Mappers (DSM) that leverages the
Mapper function to perform parallel sampling, and a Reduce
function to combine samples for weight computation and
estimation of new proposal distribution Q. As noted earlier,
the major resource intensive task in RB-AIS is the analytical
weight computation performed on each complete sample,
using Variable Elimination. Distributed sampling alone may
not effectively employ the MapReduce architecture if weight
calculation is performed using a single process. Therefore, we
propose a new approach called Distributed Weight Calculation
in Reducers (DWCR) which computes sample weights in a
distributed fashion using the Mapper functions along with
the distributed sampling technique. Here, we employ a set of
Reducer functions to compute sample-weights independently,
which are later combined and used for estimating a new
proposal distribution Q′.

Input
Xw; Qi

Map 2
Input: X2 ⊂ Xw

Output: Partial Samples
x2 ∈ X2

Map 1
Input: X1 ⊂ Xw

Output: Partial Samples
x1 ∈ X1

Map m
Input: Xm ⊂ Xw

Output: Partial Samples
xm ∈ Xm

Reducer
Combine partial samples to form x

Calculate weight on sample
Update Qi to Qi+1

Fig. 2: MJU of Distributed Sampling in Mappers

Algorithm 1: Pseudocode for Mapper in DSM
input : X as key; (Q[X],Ω[X]) as value
output: partial samples on X

1 begin
// −1 is a special key for Z

2 if X! = −1 then
3 x← sampling (X,Q[X], n);
4 for x ∈ x do
5 Emit(s, (X , x, Q[X = x], Ω[X]));
6 else
7 Emit(−1, Z);

The proposed approaches use a set of MapReduce jobs to
form a chain. We call a set of MapReduce jobs performing the
computations of a single iteration in RB-AIS as a MapReduce
Job Unit (MJU). A chain of MJU’s is formed to obtain the final
distribution QI and probability of evidence Z, in the end. For
example, the ith MJU generates n samples. Weights for these
samples are computed, which are used for updating Qi, in the
last reduce phase in this MJU, to produce Qi+1. The output
of the ith MJU is given as input to the (i+ 1)th MJU.

In this study, we compare the performance of DSM and
DWCR. Therefore, we first describe DSM, in detail (similar
to [24]), for completeness, and then describe the new DWCR
approach.

B. Distributed Sampling in Mappers (DSM)

An overview of Distributed Sampling in Mappers (DSM)
approach is depicted in Figure 2. In this approach, each
MapReduce Job Unit (MJU) is composed of only one MapRe-
duce job, i.e., a set of Mappers and a single Reducer process.
Xw variables are distributed among available Mappers in the
ith MJU. Each Mapper then generates partial samples on the
subset of Xw variables assigned to it. These partial samples
are combined to form complete samples on all Xw variables
in a single Reducer. Subsequently, weights for each complete
sample is calculated using Equation 4. This is used to update
Qi using Equation 5, to obtain Qi+1. The updated Qi+1is
provided as input to the (i+1)th MJU in the chain. Moreover,
Z is also updated using complete samples in the Reducer.



Algorithm 2: Pseudocode for Reducer in DSM
input : intermediate key value pairs from Mappers
output: key value pairs where key is X and value is

(Q[X],Ω[X])

1 Procedure setup
2 Ge ← loadNetwork(distributedCacheLocation);
3 Z ← 0;
4 ψ ← ∅;

1 Procedure reduce
2 s← extractSampleIndex (key);

// −1 is special key for Z
3 if s != -1 then
4 x← combinePartialSamples(List[values]);
5 [Q,Ωi]← load(List[values]);
6 ψx ← calculateSampleWeight(Ge,Q(X = x), x);
7 ψ ← ψ ∪ ψx;
8 Z ← Z + ψx;
9 else

10 Z ← loadZ(value);

1 Procedure cleanup
2 [Ωi+1,Q]← updateProposalDistribution(Ωi,ψ);
3 for X ∈ X do
4 Emit(X , (Q[X],Ωi+1[X]));
5 Emit(−1, Z);

Algorithm 1 shows Mapper functionalities in DSM. The
input key is index of one of the assigned variable X , with
Q[X] as its associated value. Partial samples on X are drawn
using Q[X] values at Lines 3-5. The output key is a sample
index s ∈ {1 . . . n}, with corresponding value composed of
the variable index X , the sample x, current Q[X = x], and
cumulative weights Ω[X] for different values of X .

The Reducer has three procedures, i.e., setup, reduce and
cleanup as shown in Algorithm 2. Partial samples from the
Mappers are combined in the reduce procedure to form a
complete sample x, according to sample index s, at Lines 4-
5. Sample-weight ψx for each of the n complete samples
are calculated at Line 6, to form ψ. Ge required by VE
to compute sample-weight is loaded onto the Reducer using
Distributed Cache at the setup phase. Z is updated using
ψx at Line 8. Finally, the cumulative weight Ω and Q are
updated using ψ at Line 2 of the cleanup procedure. The
output constitute the variable index X , with corresponding
value as Q[X] and Ω[X] for each X ∈ Xw. Note that we
use a special key of −1 to propagate Z along the MJU chain.

C. Distributed Weight Calculation in Reducers (DWCR)

An overview of Distributed Weight Calculation in Reducers
(DWCR) is shown in Figure 3. Unlike DSM approach, a
MJU in DWCR consists of a chain of two MapReduce jobs.
In the first job of the job-chain, a subset of Xw variables
are assigned to a set of Mapper which generates a desired
number of partial samples, similar to DSM. However, contrary
to DSM, partial samples in DWCR are distributed among
multiple Reducers such that each reducer obtains a complete
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Output: Partial samples
x2 ∈ X2

Map 1
Input: X1 ⊂ Xw

Output: Partial samples
x1 ∈ X1
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xm ∈ Xm

Reducer 2
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Calculate weight ψx

Reducer 1
Combine partial samples
s : xi → x; i ∈ {1 . . .m}

Calculate weight ψx

Reducer r
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Update Ω
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Fig. 3: MJU of Distributed Weight Calculation in Reducers

Algorithm 3: Pseudocode for DWCR Reducer in first
MapReduce job of MJU

input : intermediate key value pairs from Mappers
output: key value pairs where key is sample index s

and value is (x, ψx)

1 Procedure setup
2 Ge ← loadNetwork(distributedCacheLocation);

1 Procedure reduce
2 s← extractSampleIndex (key);
3 if s != -1 then
4 x← combinePartialSamples(List[values]);
5 [Q,Ωi]← load(List[values]);
6 ψx ← calculateSampleWeight(Ge,Q(X = x), x);
7 Emit(s, (x, ψx);
8 else
9 Emit(-1, value);

set of partial sample to produce a complete sample. Sample-
weight for this complete sample is computed and is provided
as input to the next MapReduce job in the job-chain. All
sample-weights are aggregated at a single Reducer in this job,
to update Q and calculate Z.

DWCR Mappers in the first MapReduce job of each MJU
have the same functionality as Mappers in DSM, as shown
earlier. Algorithm 3 shows the functionalities of Reducer in the
first MapReduce job of MJU. As before, the setup procedure
loads Ge from Distributed Cache. The partial samples are
distributed among multiple reducers based on the sample index
s. For an si (i ∈ {1 . . . n}) obtained in a Reducer process,
the reduce procedure combines all partial samples of si to
obtain a complete sample x, and then computes sample-weight
ψx at Lines 4 to 7. The output, with si as key and ψx as



Algorithm 4: Pseudocode for DWCR Reducer in second
MapReduce job of MJU

input : s as key; (x, ψx) as value
output: key value pairs where key is X and value is

(Q[X], Z)

1 Procedure setup
2 Ge ← loadNetwork(distributedCacheLocation);
3 Z ← 0;
4 ψ ← ∅;

1 Procedure reduce
2 s← extractSampleIndex (key);
3 if s != -1 then
4 x← extractSample(value);
5 ψx ← extractWeight(value);
6 ψ ← ψ ∪ ψx;
7 Z ← Z + ψx;
8 else
9 Z ← loadZ(value);

1 Procedure cleanup
2 [Ωi+1,Q]← updateProposalDistribution(Ωi,ψ);
3 for X ∈ X do
4 Emit(X , (Q[X],Ωi+1[X]));
5 Emit(−1, Z);

corresponding value, is given as input to the next MapReduce
job in the MJU.

The purpose of the second MapReduce job in the job-
chain is to combine the sample-weights calculated at the
previous MapReduce job, and update Q and Z. The Mappers
in this case simply transmits it’s input as intermediate key-
value pairs towards the single Reducer. Functionalities for the
second Reducer in a MJU is shown in Algorithm 4. The
setup and cleanup procedures are identical to that shown
in Algorithm 4 of DSM, where Q is updated at Line 2
of the cleanup procedure. The reduce procedure combines
the sample-weights from the intermediate key-value pairs to
update ψ and Z from Lines 5 to 7. We use a special key of
−1 to transmit Z in DWCR as well.

D. Utility Procedure

Both of the proposed approaches use common utility proce-
dures for sampling, sample-weight computation, and updating
the proposal distribution. These procedures are shown in
Algorithm 5. The procedure sampling generates n samples
on set of variables X using the probability distribution Q.
The procedure calculateSampleWeight calculates weight
for each of the samples in the set x using the network G
and distribution Q. For each sample, first this procedure sets
the sampled values as an evidence, and calculates the exact
inference value using Variable Elimination at line 4. Finally, it
calculates weight ψx for the sample x using Equation 4. The
procedure updateProposalDistribution is used to update the
cumulative weights Ωi using the set of weights in ψ, to obtain
Ωi+1. Moreover, it also updates the proposal distribution Q
using Ωi+1 and Equation 5.

Algorithm 5: Pseudocode for Utility Procedures

1 Procedure sampling (X, Q, n)
2 begin

// x is set of samples
3 x← ∅;
4 for sampleIndex = 1→ n do
5 x← generateSample(X,Q[X]);
6 x← x ∪ x;
7 return x;

1 Procedure calculateSampleWeight (G, Q, x)
// ψ is set of sample weights

2 ψ ← ∅;
3 for x ∈ x do
4 V E(G|X = x)← VariableElimination (G, x);
5 ψx ← V E(G|X=x)

Q(X=x) ;
6 ψ ← ψ ∪ ψx;
7 return ψ;

1 Procedure updateProposalDistribution (Ωi,ψ)
2 Ωi+1 ← updateCumulativeWeights(Ωi,ψ);
3 Q ← calculateQ(Ωi+1);
4 return [Ωi+1,Q];

V. EXPERIMENTAL RESULTS

In this section, we evaluate the DWCR approach, in com-
parison with DSM and the sequential approach, using various
benchmark networks, and analyze the experimental results.

A. Performance Metrics

As specified earlier in Section IV, there exists multiple
parameters which can be varied to achieve higher accuracy in
lesser time. These include the value of w in w-cutset, number
of samples n per MapReduce job, and number of updates I to
the proposal distribution Q. We perform multiple experiments
by choosing various combinations of parameter values using
all the considered benchmark networks.

We report experimental results in terms of speedup and
scaleup, which we define as follows:

1) Speedup: Ratio of execution time by sequential ap-
proach (Tsq) and corresponding distributed approach
(Td), on a particular network using the same set of
parameter values, i.e., Speedup =

Tsq

Td
.

2) Scaleup: Ratio of execution time using a single pro-
cessor (Ts) and using p number of processors or cores
(Tp) on a particular network using the same set of
parameter values i.e. Scaleup = Ts

Tp
.

For both speedup and scaleup, higher values indicate better
performance. The execution time is measured as the number
of seconds required by a single iteration in RB-AIS, or an
average time of each MJU in a MapReduce chain.

B. Results and Discussion

We conduct various experiments to evaluate the two pro-
posed approaches. The experiments were performed using a



TABLE I: Datasets

Name of Number of Number of
Network nodes factors
54.wcsp 67 271
29.wcsp 82 462

404.wcsp 100 710

Hadoop cluster (version 1.2.1/2.4.1) comprising of 9 nodes,
each having a 4 GB RAM with four 2.2GHz processors.

We use several benchmark datasets under the PR/MAR
category from The Probabilistic Inference Challenge
(PIC2011) [32]. Table I lists the networks used to evaluate
our approaches, with relevant properties that may affect the
performance of distributed RB-AIS.

Figure 4 shows speedup achieved by DSM and DWCR
approaches on each dataset, with w = {5, 7, 10, 15}, n =
{100, 1000}, and I = 10. Note that, we use the min-
degree heuristic to generate an ordering of variables to per-
form Variable Elimination during sample-weight computation.
These figures show a comparison of each approach with the
sequential execution of RB-AIS. From the figures, we observe
that DWCR achieves substantial speedup compared to the
sequential execution. For example, DWCR performs 20.891
times faster than the sequential execution on the 404.wcsp
network using w = 15 and n = 1000. In contrast, DSM
performs marginally better than the sequential approach in
most cases. The total cost of distributed sampling over a
network was observed to be equivalent to the overhead cost of
using the MapReduce framework. Therefore, any time gained
in parallel sampling was unable to overcome this overhead
cost. Compared to DSM, DWCR performs significantly better
on all the datasets as expected. This can be observed from the
figures, especially for speedup achieved with w = 15.

Further, both DSM and DWCR performs better compared
to sequential approach, with higher value of w and N . Our
empirical evaluation suggested that RB-AIS converges faster
when using larger values of w and N . However, such values
negatively impact the runtime of the sequential approach to a
great extent. This is due to the higher resource requirement for
computing sample-weights. Our approach consistently shows
a better speedup for such parameter values.

We show the scaleup achieved using all the datasets for the
proposed approach in Figure 5, with w = 15 and n = 1000,
along with that of DSM. These plots show that with more num-
ber of cores, a higher performance can be achieved using both
DSM and DWCR approaches. From the figure, it is evident that
DWCR scales better than DSM. In particular, DSM performs
marginally better than the sequential approach with increase
in number of cores, achieving an average scaleup of 1.75 over
all the networks evaluated. Whereas, the average scaleup of
DWCR is 19.42. DWCR exploits both distributed sampling
and distributed sample-weight computation techniques. This
results in greater scalability for complex networks compared
to the sequential execution.

VI. CONCLUSION

In this paper, we design and implement a distributed ap-
proach for Rao-Blackwellized Adaptive Importance Sampling

(RB-AIS) algorithm, which leverages the Hadoop MapReduce
framework. The proposed approach shows a combination of
distributed sampling and distributed weight computation, in
an iterative manner. From our experimental results, it can be
observed that, for larger values of w in choosing the w-cutset
variables, the distributed approach perform significantly better
compared to the sequential approach in terms of scalability and
execution time. This shows that a higher quality estimation of
the data distribution, in a given dataset, can be evaluated faster
using our approach. One limitation of our approach is that the
given architecture may not be applicable to datasets which have
relatively simple network structure. This is due to the Hadoop
framework overhead in setting up the MapReduce jobs. In such
cases, the sequential execution may perform better.
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