
Enterprise Database Applications and the Cloud:
A Difficult Road Ahead

Michael Stonebraker
MIT CSAIL

stonebraker@csail.mit.edu

Andrew Pavlo
Carnegie Mellon University

pavlo@cs.cmu.edu

Rebecca Taft
MIT CSAIL

rytaft@mit.edu

Michael L. Brodie
MIT CSAIL

mlbrodie@mit.edu

Abstract—There is considerable interest in moving DBMS
applications from inside enterprise data centers to the cloud,
both to reduce cost and to increase flexibility and elasticity.
Some of these applications are “green field” projects (i.e., new
applications); others are existing legacy systems that must be
migrated to the cloud. In another dimension, some are decision
support applications while others are update-oriented. In this
paper, we discuss the technical and political challenges that
these various enterprise applications face when considering cloud
deployment. In addition, a requirement for quality-of-service
(QoS) guarantees will generate additional disruptive issues. In
some circumstances, achieving good DBMS performance on
current cloud architectures and future hardware technologies will
be non-trivial. In summary, there is a difficult road ahead for
enterprise database applications.

I. INTRODUCTION

In this paper, we consider the migration of enterprise
DBMS applications to the cloud. To discuss these applications,
we must first classify them into a few constituent types. The
DBMS market is much different today than it was in the
early 1980s. Back then, there was only one target market for
DBMSs, namely business data processing. Now we can char-
acterize a much larger DBMS market into three approximately
equal size segments:

Modern OLTP: These applications include traditional on-
line transaction processing (OLTP), as well non-traditional
use cases, such as maintaining the state of Internet games
and real-time placement of advertising on web pages. Other
notable applications include high-velocity use cases whereby
an incoming message stream (either from humans, machines
or the Internet of things) must be processed transactionally and
some sort of state maintained. In modern OLTP applications,
ACID transactions are omni-present and high availability is a
requirement. Databases are typically in the Gbytes-to-Tbytes
size range and transaction volumes are often high. These
workloads are characterized by transactions that update a small
number of records at a time [20], often interspersed with small-
to-medium size queries.

Data Warehouses: Every enterprise keeps a historical
database of customer facing data (e.g., sales, customers, ship-
ments). Data warehouses usually ingest new data from OLTP
systems or sensor networks after going through a data trans-
formation/cleaning procedure. This is typically accomplished
using an “Extract, Transform, and Load” tool that streams or
bulk loads data from the front-end DBMSs into the warehouse.
The sizes of these databases can be quite large (i.e., Tbytes to

Pbytes), and the workload primarily consists of on-line analyti-
cal processing (OLAP) queries (i.e., business intelligence) that
are more complex than queries in OLTP applications. Once the
data is loaded, it is rarely-to-never updated.

Everything-Else: This class encompasses key-value stores
(a portion of the NoSQL market [5] that are good at simple
applications), document-oriented systems (another part of the
NoSQL market), array stores (good at complex analytics),
graph stores (good at storing social networks), and distributed
computing platforms (good at “embarrassingly parallel” ana-
lytic applications).

There is little we can say about the everything-else market,
since it is so diverse. As such, we focus on the other two kinds
of enterprise applications in this paper.

In Section II, we begin with a description of what we
mean by the cloud. Of course, for enterprise applications that
we discuss here, the underlying DBMS must be deployed on
cloud hardware, a topic we turn to in Section III. We also
discuss the performance headaches that the virtualization of
I/O in most public cloud systems will cause for most current
DBMSs. In the process, we also consider other challenges that
future DBMS deployments will encounter that will influence
their performance in cloud environments. Then we turn in
Section IV to the difficulties that enterprise DBMS applications
will face when migrating to the cloud. This discussion centers
on the migration cost of existing legacy systems as well as
making quality of service guarantees. Finally, we explore how
future storage technology will influence DBMS architecture
and possibly cause enterprises to consider a different type of
DBMS than currently deployed, which will cause additional
migration issues.

II. THE MEANING OF THE CLOUD

In this section, we discuss what we mean by “the cloud”
to set a context for the remainder of the paper.

Some of the authors remember a time (circa 1975) when
we interacted with a computer using a dumb terminal and the
OS multiplexed the server’s resources among a collection of
clients. Long ago, these were called time-sharing systems. We
are now rapidly heading back to this architecture, under the
sobriquet of “cloud computing”.

This transformation is driven by economies of scale. In
a typical enterprise setting, the traditional methodology is to
approve a budget for a new application that includes the cost
of dedicated hardware to host it. Such hardware is invariably

2014 IEEE International Conference on Cloud Engineering

978-1-4799-3766-0/14 $31.00 © 2014 IEEE

DOI 10.1109/IC2E.2014.97

1

sized for the peak load that is expected over the life of the
application, which is usually 10× the average load. Under
this model, service level agreements (SLAs) with the people
that use or manage the application are always met. But the
dedicated hardware is running at ∼10% capacity since it can
only be used by this one application.

Once the application is deployed in production, one of the
authors (who spent a large portion of their career in a large
enterprise) estimates that the typical downstream operational
budget is:

• 10% – Hardware Maintenance and Upgrades

• 10% – Software Maintenance and Upgrades

• 80% – Systems and Database Administration (labor)

This budget is repeated for every application in the enter-
prise, which often number in the 1000s or even 10000s. The
end result is a large number of “computing silos” running on
dedicated and often heterogeneous hardware.

The obvious solution to reducing costs is to combine silos
together on common (larger) hardware. The biggest benefit is
the reduction in administration cost, since database and sys-
tems administrators can be shared over multiple applications.
Every enterprise that we know of is moving toward this shared
(cloud-like) model to cut costs.

Such time-sharing systems can be deployed inside the fire-
wall as a private cloud or in a public server farm (e.g., Amazon,
Rackspace). Amazon claims that it can deploy a server at 10%
of the cost of a typical enterprise customer [7]. As one would
expect, some of these savings come from hardware purchasing
leverage. More significant cost savings, however, come from
the automation and streamlining of system administration. In
addition, Amazon constructs a new data center several times
a year, so they are more efficient and technically adept at this
task than companies that may build a new data center only
once a decade.

Although the cloud (public or private) can mean the rental
of physical machines, it usually entails time-sharing of virtual
resources. That is, an application is running on a virtual CPU
connected to a virtual disk and using virtual networking. In
other words, the cloud usually means “virtual everything.”
Thus, in the next section we discuss the implications of this
virtualization on DBMSs.

III. ISSUES WITH DBMSS IN THE CLOUD

In order to discuss DBMS issues with the cloud, we first
need to discuss the relationship of the DBMS with modern dis-
tributed file systems that are often used in cloud-based systems.
We discuss how DBMSs’ use of file systems have improved
in recent years, and the impact of newer I/O virtualization and
data replication technologies.

A. I/O Through the File System

One of the authors wrote a paper in 1981 [18] discussing
the shortcomings of then file system technology from the
DBMS perspective. At that time, no serious DBMS used the
file system for data storage, preferring instead to allocate a
“raw device” and build its own storage system. At this point,

all DBMSs that we are aware of that were written in the last
decade use the file system as their exclusive storage option.
Moreover, most legacy DBMSs have also been converted to
use a file system as their preferred storage mechanism. This
change has been facilitated by the extension of file systems
with the following features:

Direct Read to User Space: The old mechanism of reading
disk blocks into kernel buffers and then copying the blocks
to user space was too slow. Not only does it require double
copying, but also it generates two buffer pools (i.e., one in the
DBMS address space and one in kernel space), an obviously
inefficient architecture. Now DBMSs can retrieve data directly
from the file system with little overhead from the OS.

Asynchronous I/O: All notable DBMSs have moved
from a process-per-user architecture to a multi-threaded server
architecture. A process-per-user system consumes too much
memory and its performance is hindered by slow process
switches. A server architecture with several active threads does
not block when it issues an I/O request on behalf of one of its
threads, but instead switches to work on another thread.

Large-space Allocations: It is now straightforward to
request a large block of contiguous space from the file system.
The old way of requesting small blocks one-by-one is not
required any more. Anecdotal evidence suggests that a DBMS-
specific storage system improves performance by ∼10% over
using an OS-provided file system. For this level of performance
gain, it is not worthwhile to build a raw-device storage system.

Just as these issues were obstacles to DBMSs three decades
ago, there are now several new technologies found in cloud-
oriented file systems that are problematic to DBMSs. We now
discuss these new problems.

B. File System Distribution

File system-level distribution, known as I/O virtualization,
allows a file system to span multiple nodes and distribute data
across a cluster of machines. Such distribution is provided by
services like GFS [6] and HDFS [17]. Running on top of such a
file system is not likely to find acceptance among performance
conscious DBMSs. Essentially all multi-node DBMSs “send
the query to the data” rather than “bring the data to the query.”
This is because there is significantly less network traffic if the
query runs at the location of the data. Achieving this is not
trivial or even possible in these modern distributed file systems.

Virtualizing the CPU is just as onerous because it hides
the database’s physical location from the DBMS, thereby
virtualizing the I/O. Put differently, virtualizing the CPU has
been shown to work well on compute-oriented tasks, where
I/O performance is not a factor. But when applied to DBMSs,
it causes I/O virtualization, which results in the same perfor-
mance degradation as a distributed file system. In Section III-D
we report some simple experiments that show the magnitude
of this performance degradation.

C. Replication

Finally, we turn to file system-level replication, as imple-
mented in services like HDFS [17]. There are several reasons
why this service is not likely to find DBMS acceptance. Fore-
most is that some DBMSs, such as MemSQL [1], SQLFire [3],

2

HANA [10], and VoltDB, are main memory DBMSs, and thus
do not use the file system as the primary storage location for
databases. These systems have to provide replication in some
other way.

There are two reasonable methods that OLTP DBMSs use
to replicate data. With active-passive replication, the DBMS
writes a log at a primary node containing the before image
and after image of each update. Then, the log is moved
over the network to roll the data forward at a secondary
node. In effect the primary node does all the heavy lifting,
while the secondary node simply keeps up with primary
node updates. This approach is popular in commercial DBMS
products, but would require some adaptation to work with a
file system replication scheme. If the file system also supports
transactions, then this facility can be turned off in the DBMS
and the file system-supplied one used instead. Since few file
systems support both replication and transactions, this active-
passive approach will be problematic, and DBMSs are unlikely
to use it.

More troubling is the other popular active-active DBMS
replication mechanism, where the DBMS executes a single
transaction multiple times, once at each replica. This is the
approach used by both VoltDB and SolidDB [12]. A recent
paper [13] suggests there are many use cases for which active-
active is faster than active-passive. Obviously, an active-active
scheme is incompatible with file system replication.

In the data warehouse market, there are additional concerns
over file system-level replication. First, OLAP-style queries are
I/O intensive, and thus “sending the query to the data” is likely
to substantially outperform bringing the data to the query. In
addition, some data warehouse DBMSs, such as Vertica [8],
store replicas in different sort orders so that the query executor
can use the replica that offers the best performance for each
individual query. For example, one replica might store an
“employee” table sorted on the person’s name while a second
replica is sorted on the person’s department. The DBMS
will automatically route queries that filter on the employee
department to the second replica because it will run faster
there. Clearly, such logical replicas cannot be maintained by
the file system.

D. Experimental Results

To better understand the value of local storage and logical
replicas, we now present a series of simple experiments. These
experiments evaluate the performance of a DBMS running on
different environments that are representative of the options
available for those considering cloud-based deployments.

We first compared local block-oriented I/O to remote I/O.
Across a LAN, I/O is about a factor of 50× slower than local
I/O. However, most DBMSs are CPU intensive, and will show
a smaller performance difference.

To identify the difference between local and remote I/O in
a DBMS context, we ran a simple workload using the Vertica
DBMS. We executed two queries on a pair of tables, where one
is 10 Gbytes and the other is 50 Mbytes. One query filtered the
larger table and computed an aggregate. The second filtered the
larger table, joined it to the smaller table, and then computed
an aggregate on the joined result. These queries are typical of

the workloads found in decision support systems. With a cold
cache, the queries’ execution times were a factor of 12× slower
when using a remote (i.e., virtualized) disk deployment, versus
a local disk. Of course, if the cache is warm and the tables are
smaller, then the difference decreases, but in our experiments
it was never smaller than a factor of 2×. The performance will
obviously vary depending on local circumstances and database
sizes, but the difference is likely to be an order of magnitude.

Lastly, we also ran the above queries with a pair of bit-
wise identical replicas and compared that result to using the
Vertica logical replica facility. This facility allows the DBMS
to maintain replicas that are in different sort orders so the
query optimizer can choose the replica that offers the best
performance. Vertica ran our queries 1.8× faster with two
replicas in different sort orders relative to two replicas in the
same sort order. If the file system provides both distribution
and replication, then the performance degradation will be at
least an order of magnitude. Thus, such a file system facility
is not likely to gain acceptance at this cost.

E. Summary

DBMSs have been re-engineered in the last 20 years to use
local file systems more efficiently. When considered for cloud
deployment, this means either renting dedicated hardware
(which we expect will decline in popularity) or using the
public cloud with file systems like HDFS or Amazon’s EBS.
As noted above, these provide I/O virtualization that have an
order of magnitude or more performance degradation. They
also provide file system replication, which causes additional
performance issues. In general, one should expect a DBMS
running on the public cloud to have an order of magnitude
worse performance, compared to a non-virtualized I/O system.
There are several ways to look at this issue.

First, there is a trend toward running main memory
DBMSs. At least for OLTP applications, the size of the
database is increasing slower than the cost of main memory is
declining. In addition, [14] makes the case that even a large
retailer like Amazon is a candidate for main memory database
deployment. Main memory DBMSs are being marketed by
SAP [10], Oracle [21], Microsoft [9] and a variety of startups,
including VoltDB [4] and MemSQL [1]. If an enterprise DBMS
application is deployed on a main memory DBMS or is
contemplating moving to a main memory DBMS, then none
of the above discussion applies as such DBMSs do not use the
file system for data storage.

Second, if you are running an enterprise DBMS application
on a SAN storage device, such as sold by EMC or Hitachi,
then you are already running on virtualized I/O and paying the
performance penalty mentioned above. In this case, you can
move from one virtualized environment to another, and it will
be a lateral move, probably with no performance penalty.

Third, if you are running Hadoop, then you are already
using HDFS for storage. It is virtualized, so there will be
no additional penalty. One should only note that Hadoop
applications typically run an order of magnitude slower than
the same application run on a parallel DBMS [16].

Lastly, if you are running a parallel disk-oriented DBMS,
then it will assuredly expect storage that is not virtualized. If

3

you move such a DBMS onto virtualized storage, then you
will see dramatic performance degradation. As such, whether
or not your enterprise application will see this degradation
from cloud deployment will depend on which of the above
categories your DBMS fits into.

IV. ISSUES WITH ENTERPRISE CLOUD APPLICATIONS

Besides a cost reduction mentioned earlier, one of the
potential benefits regularly touted for cloud computing is elas-
ticity. In other words, if the DBMS (or any other application)
needs more resources, then it can automatically allocate addi-
tional machines and run in parallel over them. This is likely to
remain elusive for the majority of applications. To understand
why this is the case, we consider three kinds of applications
in this section and discuss their possible movement to the
cloud. The first group is “one-shot” applications, which are
distinguished from “production enterprise applications” that
have been running for longer periods of time or “green field”
applications that are not yet written.

A. “One-Shot” Applications

This category encompasses much of the workload currently
running on the public cloud. These include proof-of-concept
prototypes, ad hoc analytics, and other non-mission critical
operations. In order for them to be elastic, they must be coded
as parallel programs, either for running on a parallel DBMS
or on a distributed computing framework.

Most of the traditional DBMSs used today are unable to run
on multiple nodes out-of-the-box. For the ones that do, few are
able to easily scale resources up or down without significant
downtime. Several NoSQL vendors claim this ability but
they achieve this by forgoing all transactional guarantees of
traditional DBMSs [5].

Writing an application as a standalone parallel program is
just as difficult, as few of us are skilled parallel algorithm
developers. If one uses a distributed computing framework,
such as Hadoop or Spark [22], there are still other challenges.
Techniques for parallelizing computations may entail con-
siderable effort. For example, efficiently parallelizing matrix
multiply requires a block cyclic layout of the matrices and
clever parallel code.

Hence, there are significant challenges to achieving this
elasticity goal. The one use case that can easily be made
elastic is “embarrassingly parallel” applications. For example,
suppose one wants to search a document collection for all
the instances that have “MIT” followed within five words by
“CMU.” In this case, we can divide the documents among
multiple servers, run the same code on each one, and then
perform a single roll-up at the end. Such applications are
trivial to make elastic, but unfortunately few applications are
actually like this. In our analysis of MIT’s Lincoln Labs data-
intensive applications in [19], we found that only 5% of their
workload fits this categorization. We suspect that these findings
are similar to other organizations.

B. Production Enterprise Applications

Service-level agreements (SLAs) are critical to enterprise
computing. A business will only agree to participate in a shared

cloud if its SLAs can be guaranteed. But there are several
problems with guaranteeing SLAs in these environments. First,
if all resources are virtualized, then the variance in response
times will assuredly increase, as well as perhaps the average
response time. Obviously, I/O virtualization will compromise
performance in the DBMS. In addition, the cloud operator
hopes that load spikes in different applications occur at dif-
ferent times so that a cloud can be sized at ∼10% of the sum
of the individual silos.

In most enterprises, however, application usages are highly
correlated and cyclic. For example, humans usually call cus-
tomer support during business hours. Since they also invoke
web services with essentially the same skewed frequencies, it
is imperative that the cloud platform co-locates applications
in such a way to minimize the impact of this correlation.
Furthermore, the administrator will also want to co-locate ap-
plications that have similar maintenance windows. Otherwise,
it will not be possible to perform upgrades because of uptime
requirements.

Another issue in these enterprise applications is their long-
term support and maintenance. Any application that requires
legacy DBMS software will not be able to move to the cloud.
For example, IBM’s IMS DBMS only runs on IBM “big iron”
machines. Similarly, any application that requires specialized
hardware, such as Netezza or Teradata, will also be unmovable.
But even systems written for commodity hardware could have
problems. For example, an application may be coded to run
on exactly two large DBMS nodes with the logic to manually
allocate resources between them embedded in the application’s
code. A cloud provider with less powerful nodes will not be
able to easily run this application. Legacy applications may
have any number of these unexpected issues that will require
significant recoding. Any requirement for major changes in
the application will reduce or eliminate the benefit of cloud
deployment. As such, we expect moving legacy applications
to the cloud to be a drawn out affair.

Even if an application is able to move to a cloud platform,
an enterprise is more likely to move them to an internal
(private) cloud long before they will use a public one. This is
because of regulatory and security restrictions on enterprises
that prevent deployments on outside resources. For example,
most telcos are effectively precluded from using public clouds.
Second, many companies have policies in place that dictate that
their intellectual property (i.e., their data) must stay inside their
firewall. This is partly because there is a widespread belief
(almost certainly unfounded) among these companies that the
cloud is less secure than their own data centers.

Beyond legal barriers, we believe that elastic scale-out
is unlikely to be achieved by most (or possibly none) of
the legacy applications. First, the DBMS must be elastic, as
discussed above. Unless the schema is designed carefully,
it is likely that sharding a production single node database
onto multiple nodes will result in worse performance than
observed previously [15]. Such behavior will occur if most of
the transactions move from being single-sited to multi-sited.
Rewriting the application to be “shard-friendly” will likely be
a daunting task.

4

C. Green Field Applications

To take full advantage of cloud computing resources, new
applications will have to be built according to certain design
principles. We now discuss two of them that we believe are
relevant to enterprise applications and DBMSs:

Self-Service Provisioning: This means that the system
can adjust its resource needs on the fly, as it experiences
shifts in load, whether due to transient local spikes, time-
cyclic spikes, or longer term changes. Although it is possible
to code an application to perform automated provisioning,
this will require a substantial amount of new logic. This
means that enterprise applications and DBMSs will have to
perform monitoring of their resource usage and then employ a
predictive model to anticipate changes in load. Such modeling
is the domain of “data scientists” and is currently not well
understood by many developers.

Elasticity: Self-service provisioning will only work if the
application is coded natively to support elastic scale out. This
was discussed above, and entails careful coding and choice of
subsystems by application and DBMS developers.

D. Cloud SLAs on Hardware Resources

An application can only provide SLAs to its customers if
it can get guarantees on allocations from the underlying cloud
platform. But current guarantees on CPU and disk resources
are just approximations. Furthermore, the state of the art in
guaranteeing network bandwidth is in its infancy and we do
not expect emerging software-defined network technologies to
improve this situation any time soon.

Even main memory virtualization will be a big challenge.
Migrating a main memory DBMS installation from one server
to another requires moving the entire main memory state of the
system, which can be exceedingly large. In addition, moving
resources may turn single-node transactions into multi-node
ones, which are much less efficient [15]. Optimizing such a
workload over a collection of nodes at the cloud infrastructure
level seems impossible. At the DBMS level, however, it is a
challenge but perhaps doable. But this requires that the DBMS
understands the physical resources, which is not possible in a
virtualized environment.

In order to optimize data access, to permit sending the
“query to the data”, and to manage copies for data virtual-
ization, a cloud DBMS must know the location of the data
whether in-memory, in directly-attached storage, or distributed
to minimize network traffic for database access. Just how cloud
DBMSs, OSs, hypervisors, and file systems will cooperate to
optimize both computation and data management at scale in
the cloud remains to be seen.

E. Summary

The challenges of moving legacy applications to a cloud
deployment may lower the return on investment for enterprises.
In addition to this, we expect enterprise cloud deployments to
proceed much more rapidly on private clouds than on public
ones. And until cloud services get much better, SLAs will be
difficult for an application to meet and may hinder adoption.
As such, we foresee a long and difficult road ahead.

V. FUTURE HARDWARE TRENDS

There are two coming hardware advancements that are
likely to cause substantial rewrites of current DBMSs and other
system software: (1) many-core CPU architectures and (2) non-
volatile memory storage. As we will now discuss, these may
help or hinder moving enterprise applications to the cloud.

A. Many-Core CPUs

All DBMSs written more than a decade ago implement a
multi-threaded server architecture. This approach works well
with a single-core CPU. But now DBMSs are deployed on
multi-core systems, with promises of “many-core” systems
(≥1000 cores) within the next decade.

Such many-core architectures will be a significant chal-
lenge to DBMSs because of shared data structures, such as:

1. Indexes,

2. Lock tables (if dynamic locking is implemented),

3. Temporary space to be malloc-ed or freed,

4. Temporary buffers for sorting,

5. Resource information data structures.

The most notable of these are indexes, in particular the
pervasive B-tree, because they are found in every DBMS.
Using standard locking techniques for B-trees on a multi-
core system greatly impairs parallelism, and thus DBMSs use
special case concurrency control measures for these indexes.
One popular technique is to latch a B-tree block until the thread
is sure that it will not be changing the block, at which point
it releases the latch. As the thread descends to a block at the
next level of the tree, it repeats the process, and this strategy is
known as “latch crabbing.” It will tend to cause serialization of
DBMS threads. There are, of course, other options, e.g. [11],
but each has its own issues with parallelism.

We have a strong suspicion that latch contention will kill
the performance of traditional DBMSs on many-core systems.
As a result, we predict that all traditional DBMSs will have
to be rewritten to remove such impediments. Alternatively, the
DBMS could use lock-free data structures, as in MemSQL or
Hekaton [9], or use a single-threaded execution engine, as in
VoltDB and Redis [2]. It is also likely that this rewrite will be
a daunting challenge to OSs, file systems, application servers,
and other pieces of system software. Many-core may well
impact enterprise applications that use shared data structures
in much the same way.

As such, many-core CPUs are likely to cause substantial
rewrites of applications, DBMSs, file systems, OSs, and other
pieces of system software. Such rewrites may well distract
software developers from tackling cloud issues, since it is well
known that throwing too many balls up in the air at once is
usually a disaster. Alternatively, the re-factoring of systems for
many-core CPUs may also improve their ability to operate in
elastic cloud environments.

B. Storage Advancements

There are several storage trends that will heavily impact
future DBMSs. The first is that the plummeting cost of main
memory will allow a greater number of DBMS applications to

5

be main memory-resident. We expect most (if not all) modern
OLTP applications to fit entirely in main memory within a few
years. Over time, a substantial fraction of the DBMS market
will move to main memory-only storage. This trend will render
the file system irrelevant to DBMSs, except as a storage place
for checkpoints and long-term archival.

Flash is currently too slow to be considered as a main
memory replacement. Hence, administrators are deploying
flash as a disk replacement for those DBMS applications that
are too large to fit in main memory but have performance
requirements. The most notable of these is Facebook. In effect,
this is replacing one block-structured device by a second block-
structured device that is faster but more expensive. As such, we
do not see flash fundamentally altering DBMS architectures.

There are several possible technologies that may prove
viable later this decade that have the possibility of replacing
DRAM as the primary storage for DBMS data. These include
memristors, phase-change memory, and spintronic devices.
The expectation is that these technologies will be able to read
and write data at close to DRAM speeds, but at a fraction of the
cost and with much higher storage capacities. This technology
will extend the reach of main memory DBMSs into the 1–
10 Pbytes range, further enlarging the main memory DBMS
market. If successful, we expect block-structured DBMSs to
disappear during this decade as these devices lower the cost of
byte-addressable persistent storage. In other words, all modern
OLTP applications and all but the largest data warehouses will
use this technology.

An enterprise application on a main memory DBMS will
find an easier time with cloud migration, and this may alter
the economic equation in favor of cloud deployment.

C. Summary

Between many-core CPUs and non-volatile RAM, we
expect most current system software will have to be rewritten,
causing possible extensive marketplace disruption as tradi-
tional DBMSs make way for new technology. This may
accelerate or slow down cloud migration. In any case, the road
ahead will again be difficult.

VI. CONCLUSION

Although there have been significant improvements, we
still see considerable turmoil between system software and
DBMSs. The cloud, many-core CPUs, and future storage tech-
nology are likely to make the legacy DBMS implementations
in the marketplace today obsolete. These issues will require a
nearly complete rewrite of current DBMSs, and other archi-
tectural ideas may well replace the underpinnings of current
systems. In addition, we see the cloud as a major disruptive
force in enterprise computing. Specifically, we expect that
all current enterprise applications will have to be largely
rewritten to take full advantage of the cloud. In addition, how
to get the various pieces of cloud infrastructure, including
DBMSs, to work harmoniously together in guaranteeing SLAs
is a difficult problem. Even when the technology issues are
resolved, the anticipated DBMS disruption will have to be
funded by demand from new applications. Industry faces the
age-old issue of legacy application and database migration.

REFERENCES

[1] MemSQL. http://www.memsql.com.

[2] Redis. http://redis.io.

[3] VMware vFabric SQLFire. http://www.vmware.com/go/sqlfire.

[4] VoltDB. http://www.voltdb.com.

[5] R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec.,
39:12–27, 2011.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system.
SOSP, pages 29–43, 2003.

[7] J. Hamilton. Internet-scale datacenter economics: Where the costs &
opportunities lie. Presented at HPTS, 2011. http://mvdirona.com/jrh/
talksandpapers/JamesHamilton_HPTS2011.pdf.

[8] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi,
and C. Bear. The Vertica analytic database: C-Store 7 years later. Proc.
VLDB Endow., 5(12):1790–1801, Aug. 2012.

[9] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and
M. Zwilling. High-performance concurrency control mechanisms for
main-memory databases. VLDB, 5(4):298–309, Dec. 2011.

[10] J. Lee, M. Muehle, N. May, F. Faerber, V. S. H. Plattner, J. Krueger, and
M. Grund. High-performance transaction processing in SAP HANA.
IEEE Data Eng. Bull., 36(2):28–33, 2013.

[11] P. L. Lehman and S. B. Yao. Efficient locking for concurrent operations
on b-trees. ACM Trans. Database Syst., 6(4):650–670, Dec. 1981.

[12] J. Lindstrom, V. Raatikka, J. Ruuth, P. Soini, and K. Vakkila. IBM
solidDB: In-memory database optimized for extreme speed and avail-
ability. IEEE Data Eng. Bull., 36(2):14–20, 2013.

[13] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Recovery
algorithms for in-memory OLTP databases. In Submission, 2013.

[14] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and T. Neumann.
ScyPer: elastic olap throughput on transactional data. DanaC, pages
11–15, 2013.

[15] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database
partitioning in shared-nothing, parallel OLTP systems. In SIGMOD,
pages 61–72, 2012.

[16] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A comparison of approaches to large-scale data
analysis. In SIGMOD, pages 165–178, 2009.

[17] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. MSST, pages 1–10, 2010.

[18] M. Stonebraker. Operating system support for database management.
ACM, 24(7):412–418, 1981.

[19] M. Stonebraker and J. Kepner. Possible Hadoop Trajectories –
blog@CACM (2012). http://cacm.acm.org/blogs/blog-cacm/149074.

[20] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland. The end of an architectural era: (it’s time for a complete
rewrite). In VLDB, pages 1150–1160, 2007.

[21] T. Team. In-memory data management for consumer transactions the
timesten approach. SIGMOD, pages 528–529, 1999.

[22] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
a fault-tolerant abstraction for in-memory cluster computing. NSDI,
2012.

6

