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ABSTRACT

The speed of data retrieval qualitatively affects how analysts visu-
ally explore and analyze their data. To ensure smooth interactions in
massive time series datasets, one needs to address the challenges of
computing ad hoc queries, distributing query load, and hiding sys-
tem latency. In this paper, we present ATLAS, a visualization tool
for temporal data that addresses these issues using a combination
of high performance database technology, predictive caching, and
level of detail management. We demonstrate ATLAS using com-
modity hardware on a network traffic dataset of more than a billion
records.

Index Terms: D.2.11 [Software Engineering]: Software
Architectures—Domain-specific architectures; H.5.2 [Information
Interfaces And Presentation]: User Interface—Graphical user in-
terfaces (GUI); K.4.0 [Information Systems Applications]: General

1 INTRODUCTION

There has long been interest in applying visual analytics to temporal
data [6] [17] because visualization combined with interaction aug-
ments the human’s cognitive process leading analysts to discoveries
in complex data [27]. Rapidly falling storage costs now permit col-
lection of massive datasets but supporting interactive visual analysis
for these datasets is difficult. There are three main challenges. First,
analysts do not merely want to view raw data; they need to explore
it using ad hoc filters, aggregations, and trending. As dataset size
grows, the cost of computing these queries also increases. Second,
as datasets become too large for the analyst’s machine, housing data
on remote servers creates problems in load balancing the distributed
queries. Third, fetching data from remote database servers is likely
to introduce latencies that affect the responsiveness of the visual-
ization system and disrupt analysis.

In this paper we address these challenges by applying technolo-
gies from database systems and computer graphics to the field of
visual analytics. To support fast query over massive datasets, re-
searchers have developed new methods to more efficiently parti-
tion, store, and index data. In the field of computer graphics, real-
time rendering systems such as flight simulators use level of detail
(LOD) management and pre-fetching techniques to smoothly dis-
play large amounts of data at multiple resolutions. Inspired by these
approaches, we have created ATLAS, an interactive visualization
tool for large temporal databases running on commodity hardware.

2 RELATED WORK
2.1 Visualization

The visualization of time series dates back to as early as the tenth
century when the inclinations of the planetary orbits were plotted
with lines as a function of time [28]. Since then, numerous visual
metaphors have been developed to emphasize specific properties of
time series such as periodicity [7]. In recent years, researchers have
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focused on using interactive visualization to support analytical tasks
such as pattern searching [6], motif discovery and anomaly detec-
tion [17]. While these applications were built using datasets that fit
in system memory, there has been relatively little work on support-
ing interactive visual exploration over large temporal databases.

Network traffic analysts routinely deal with huge volumes of
temporal data which is difficult to visualize en foto. In VIAssist,
Tesone et al. [26] attack the problem of visual complexity through
“smart aggregation” which performs data aggregation either auto-
matically when the cardinality ratio of a field exceeds the threshold
or according to user-defined controls. Smart aggregation ensures
that the amount of data retrieved will be manageable for visual anal-
ysis. ATLAS limits visual complexity by using window displaying
a fixed number of time series. However, it must also deal with some
kindred aggregation issues, especially when the analyst zooms out
to coarse time intervals. Nuance [18] is a system that creates models
of the expected behavior of the time series for thousands of moni-
tored systems and displays current data against the model. It han-
dles large datasets in a streaming environment whereas ATLAS is
built to directly explore large historical data.

The importance of optimizing data access and filtering times to
support fluid visual analysis was recognized by Bethel et al. [2].
Their system used compressed bitmap indexing of flat files to speed
up queries, and demonstrated support for interactive ad hoc and
multi-resolution query on a supercomputer platform optimized for
data intensive analysis and visualization tasks. ATLAS aims for
similar functionality but uses a column-oriented database and a net-
work of servers running on commodity hardware.

Doshi et al. addressed the problem of visually exploring large
datasets by prefetching [12] and discussed several strategies such
as Random, Direction, and Focus. In [11], they proposed a strategy
selection framework that adapts to user interactions. ATLAS uses
a prediction strategy that is similar to their direction strategy, but
instead of sending queries only when the system is idle, it predicts
when queries need to be sent in order to maintain interactivity.

2.2 Database Systems

Most relational database management systems (RDBMS) are row-
oriented, meaning attributes of a record are contiguous in stor-
age, and optimized for throughput performance in on-line trans-
action processing applications such as order entry and banking. For
on-line analytical processing applications, where query throughput
is more important, data cubes can be used to accelerate common
queries in a large data warehouse [8] by pre-computing aggrega-
tions of measures over a set of dimensions. However, with large
datasets pre-computed views need to be planned with care [14] be-
cause of the large number of possible views.

Column-oriented storage is better for many analytic queries [21]
[22] because only the attribute data referenced in the queries are
fetched. Equivalent queries can also be computed in row-oriented
databases, but their implementations are complicated [20]. Hari-
zopoulos et al.  [15] explored the tradeoffs between row and
column-oriented architectures in terms of disk bandwidth and CPU
performance, and concluded that column stores can almost always
achieve better query performance.

In part because of FORTRAN, column storage has been widely
used for decades in scientific computing. In current scientific data
management the ROOT [5] system from CERN provides an object-
oriented store with attribute columns in flat files. In database ap-
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plications, C-Store [23], MonetDB [4], and the MonetDB/X100
extension [16] are examples of open source column-oriented sys-
tems. The last has shown excellent performance in queries over
large datasets such as TREC Terabyte Track [9]. Both compress
data columns in order to improve effective disk bandwith and em-
ploy lazy decompression for better processor cache utilization.

Tesone’s VIAssist system uses Sybase 1Q [24] , a commercial
column-oriented database with specialized indexes to improve per-
formance for low cardinality, grouped, or range data. ATLAS em-
ploys kdb+ [29] , a commercial system optimized for distributed
time series analysis.

2.3 Computer Graphics

Texture mapping is a process which adds surface details by map-
ping an image to the surface of a computer generated model. Since
the observable resolution of a texture varies with viewing angle and
distance, computer graphics systems often store a texture at mul-
tiple levels of detail. The Mipmap technique [30] does this with
a pyramid of images at different resolutions. Flight simulator sys-
tems, that must render large number of textures in real-time, ex-
tend this idea with the Clipmap [25] which treats the whole texture
dataset as a mipmap to fetch only the portions that are visible in
the clipped view. To hide system latency due to data access, data is
pre-fetched [3] along the flight path. Pre-fetching may be done by
biasing mip-level computations to retrieve higher resolutions maps
earlier; or to predict the textures that will be needed by tracking the
change in the viewpoint.

The task of visualizing a large number of long time series is anal-
ogous to the rendering of large terrains except pixels are mapped
to temporal space rather than geography. ATLAS uses techniques
similar to level of detail and pre-fetching to support smooth nav-
igation in the temporal space. However, unlike graphics systems
where textures can be pre-computed, the exploration of temporal
database involves ad hoc queries and filters that must be computed
at run-time.

3 SYSTEM GOALS

We aim to develop a system that allows interactive exploration over
large temporal databases. Our design goals for ATLAS are as fol-
lows:

1. Ad hoc querying: In order to support exploratory analysis, it
is important to allow analysts to ask ad hoc questions about
the data. Our goal is to allow analysts to calculate arbitrary
aggregates formed by attributes in the database and to apply
any filters to the data. This flexibility raises two issues. First,
analysts might formulate ad hoc queries that are expensive to
compute, especially over large databases. Second, permitting
filters with queries largely precludes the use of pre-computed
aggregates, forcing them to be computed directly from the un-
derlying data for each query.

2. Load balancing: As the amount of data analyzed increases,
it is essential for the system to be able to expand processing
capacity. A common way to handle this problem is by increas-
ing the number of database servers. However, this only works
if the system can distribute query load efficiently over the set
of servers.

3. Smooth Interaction: Exploratory analysis is greatly en-
hanced by smooth interactions. Specifically, fluid behavior
for bread and butter operations such as panning and zooming
gives analysts the impression of “flying” through the database.
With large databases, this is difficult to achieve due to sys-
tem latencies caused by query computation and data transfer.
Supporting zooming at interactive speed is particularly diffi-
cult, since the number of records which must be scanned by

the system increases exponentially as the analyst zooms out to
examine a longer time period. To address this problem some
systems pre-fetch data which creates a new set of questions
about what data to fetch and when to fetch it.

ATLAS is composed of three parts, a database cluster, a query
distribution server, and a visual interface. In Section 4, we will first
give an overview of the architecture of ATLAS, and then describe
each of its components in detail. In Section 5, we will evaluate the
performance of ATLAS according to the three design goals.

4 SYSTEM

ATLAS uses a client-server architecture in which the server is a
database cluster, and the client consists of a visual interface and a
query distribution server. The separation of database server from
the client abstracts the details of data storage from the client and
allows data to be distributed over any number of database servers.
The division of client into the visual interface and the query dis-
tribution server partitions the user interface and the caching of
data. This allows visualizations and interactions to be conducted
smoothly while data are being fetched. It also leverages modern
multi-core systems by multiprocessing the visual interface and the
query distribution server on separate processors.

The interactions among different components of the system are
shown in Figure 1 with green arrows denoting control flow and blue
arrows showing data flow. During exploration, the analyst interac-
tively pans, zooms, filters, and groups time series through the visual
interface. Based on user interactions, the visual interface predicts
data requirements, sending requests to the query distribution server
via Java remote method invocation. Upon receiving the request,
the query distribution server divides the job according to load and
dispatches the queries to the cluster of database servers. As the
query results return, the query distribution server writes the data
into memory mapped files which are polled by the visual interface
as it creates visualizations.
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Figure 1: The client-server architecture of ATLAS.

We will use two datasets as examples to discuss the design and
performance of ATLAS. The first contains network flows collected
over two months in the Computer Science and Electrical Engineer-
ing Departments at Stanford University. The database has 1.28
billion rows of data with 25 columns of attributes, which include
timestamps, durations, protocols, local and remote ports and IP ad-
dresses, number and size of packets etc. taking up more than 100
GB on disk. Data for each date is stored by kdb+ in a separate direc-
tory with each attribute column stored in a file sorted by time and
indexed by multiple attributes. The second is a financial dataset ob-
tained from the Centre of Research in Security Prices (CRSP) [10]
which consists of daily stock prices of over 25,000 companies be-
tween 1925 and 2006. The database has roughly 73 million rows
of 20 columns consuming 10GB of disk. Its attributes include the
CRSP permanent company numbers, exchange ticker symbols, the



standard industrial classification codes, open and close prices, and
share volume etc. Data are first grouped by the permanent com-
pany number, and then sorted by date. Various fields such as ticker
symbol are indexed.

All timing experiments and performance tests were done on
a compute cluster using 8 rack-mounted SunFire V40z computer
servers, each with 4 AMD Opteron 852 2.6Ghz processors, 32 GB
of PC3200 DDR RAM, and a 300GB 10K RPM SCSI U320 disk.

4.1 Database System

Interactive visual analysis over any large dataset is impossible with-
out an efficient data management system because accessing and
summarizing the data prior to mapping it for visualization is the gat-
ing factor in system performance. The cost of moving data through
the multi-tiered storage hierarchies of today’s systems is so high
that it is critical for applications to try and fetch only needed data.
In situations where analysts can predict interesting aggregations in
advance, datacube techniques are effective performance accelera-
tors. However, one of our goals is to allow analysts to specify
ad hoc aggregations and filters over the data; either of which ren-
ders precomputation ineffective and thus places a premium on be-
ing able to perform runtime processing on servers. Finally, time
series data are intrinsically ordered and traditional analysis in this
field includes algorithms such as the exponentially weighted mov-
ing average which are dependent on ordered data. In ATLAS data
is stored in kdb+, a database designed specifically to support time
series data, which has three major attributes important to achieving
our goals: (a) column-oriented storage; (b) partitioning and index-
ing schemes for ordered data; and (c) a networkable query engine
with a programming language.

Column-oriented storage in kdb+ improves query times by im-
proving locality in several ways. First, since many ad hoc queries
touch just a few columns, only the data associated with them will be
moved through the storage hierarchy thus avoiding the expense of
bringing in data which will lie unreferenced. Second, when a col-
umn is being scanned as part of a filter, its data will lie contiguously
making access sequential whereas row-oriented data would be ac-
cessed with potentially large stride factors. Such dense locality im-
proves speed from the processor cache out to the page tables. Third,
kdb+ accesses data using memory-mapped files wherein a disk file
becomes a piece of the application address space. While the en-
tire file contents are logically available, only those portions which
are referenced are transferred from disk. Transfer occurs through
the highly efficient OS page-fault process. Furthermore, files are
implicitly shared for reading across all processes mapping the same
file. Thus, the combination of column-oriented storage and mapped
files creates granular, shareable, flexible, hardware-assisted access
to data under the simple programming model of vector indexing.

The second design element involves partitioning and indexing
schemes for ordering data. Stock market data is often partitioned by
its ticker symbol because analysts want to compare the performance
of specific groups of stocks. Network flow data is more naturally
partitioned by date because the large number of network addresses;
network devices tend to create traffic every day; and the problems
of interest usually involve contemporaneous behavior. While kdb+
stores each column as a separate flat file, it also allows one to par-
tition data according to the values of one column. Temporal par-
titions can be organized in days, months, or years. Each partition
becomes a directory in the filesystem and the directory’s name be-
comes a virtual column in what is logically a single table. The
columns of data within each partition can also ordered by sorting
on one or more of them. Any column may be indexed in which
case a hash table is appended to its data file. Network data is often
sorted by time then indexed by its categorical dimensions. Queries
of a sorted column can be processed very efficiently with a binary
search. Having the hash index appended to the data column means
not only that it won’t be touched if not in referenced, but also that

it will be logically nearby when needed.

The final important kdb+ element is its networked query engine
and the g query language which has analytic functions for time se-
ries analysis such as moving average and grouping functions includ-
ing ones that expressly bin time values across ar rich set of date and
time granularities. Applications can connect via TCP sockets to the
server natively, from Java, via ODBC, or as a webserver. Queries
may be submitted as SQL92 or in native ¢ with results returned in
tables, CSV, HTML, or XML.

4.2 Query Distribution Server

The query distribution server runs on the client computer. It is re-
sponsible for querying the database cluster and serving the data to
the visualization system. The design goal of this component is to
minimize both the query time from the database cluster and the
transfer time to the visualization system.

The query distribution server fetches data from the database clus-
ter by distributing queries over the servers according to a load bal-
ancing algorithm that tries to equalize the workload among them.
We determine the workload by the total number of records that
needs to be scanned in a query. Depending on the organization and
size of the dataset along with the analysis characteristics, the data
can either be partitioned by time, or by the series. For example, in
the network dataset, we have chosen to partition the load accord-
ing to ranges of days because data are stored in the resolution of
milliseconds, giving orders of magnitude more data points in each
series than there are series. In addition, we have found that analysts
tend to concentrate on a few suspicious machines but would look at
their data over very large time ranges to extract historical trends. To
partition the time ranges so that the workload is distributed evenly,
the system keeps track of the total number of data points per day for
the current set of time series, and estimates workload by computing
the total number of data points in the queried time range.

The query distribution server transfers data to the visualization
system by creating memory mapped files shared between the two
components. Using memory mapped files the query distribution
server can run as a completely separate process from the visualiza-
tion system which allows modern operating systems to more effi-
ciently delegate resources. However, because there is no data du-
plication, effective disk transfer rates are the same as having the
query distribution server running in the memory space of the visu-
alization system. Since the network and financial data has orders
of magnitude more records for each series relative to the number of
series, ATLAS creates a separate memory mapped file for each se-
ries at each aggregation level. To control disk space consumption,
the files are implemented as circular buffers in time.

4.3 Visual Interface

The ATLAS visual interface, as shown in figure 2, supports
scrolling, panning, zooming, ordering, filtering, and grouping time
series displayed as line graphs or bar charts. ATLAS overcomes
the latencies associated with querying large datasets by monitor-
ing the analyst’s actions and predictively caching the data that will
be needed to render subsequent frames. How the predictions are
made will be described later. Here, we note that zoom out is the
most difficult operation to support, since it entails an exponential
increase in the number of records analyzed. This creates two dif-
ficulties: first, there may be too much data to be transferred to the
local client; and second, there are not enough pixels at current res-
olutions to show individual records. ATLAS overcomes these diffi-
culties by coupling zooming with level of detail (LOD). When the
analyst zooms out, we adjust the visual distance between consec-
utive data points until a threshold minimum inter-point distance is
reached. To zoom out further, we issue new queries to the servers to
re-bin the records using familiar temporal intervals such as minutes,
hours, and days. In the network dataset the finest level of detail is
milliseconds. When zooming out, we aggregate records in intervals
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of 1 minute, 10 minutes, 30 minutes, etc. Zooming in requires the
inverse of the above operations with a maximum threshold on the
visual distance. This approach has the advantage that we can dele-
gate the computation to scalable database clusters, and we transfer
the minimal amount of data to the client.

For visualization systems where all data is resident, panning and
random access are trivial modifications to the window boundaries.
Once data exceeds memory, disk access at speeds far slower than
interaction demands must occur. ATLAS hides the disk latency dur-
ing panning by placing a ceiling on the maximum panning speed.
This ceiling is determined by analysis requirements and depends on
the size of the dataset and the performance of the database cluster.
For example, network analysis using four cluster machines resulted
in a ceiling of 600 pixels per second. ATLAS does not support
smooth interaction for temporal random-access, instead an analyst
using ATLAS zooms out from his current temporal location, and
then zooms in to the desired location, similar to Pad++ [1].

Large datasets often contain thousands of time series; however,
the number an analyst can simultaneously examine is limited by the
vertical resolution of the display. ATLAS supports vertical scrolling
by fetching only the series that are currently visible or predicted to
be visible soon in fashion similar to panning. The vertical order-
ing of series is determined by the analyst’s choice of an ordering
attribute. The analyst can change the ordering to juxtapose related
series and thus affect the focal series and future predictions. For ex-
ample, the series in the network data can be ordered according to lo-
cal IP, remote IP, local Port, etc. ATLAS helps the analyst maintain
visual context during vertical scrolling with two panels, one above
and one below the main display area showing as an overlaid time
series those that are immediately above or below the focal series.
This approach is similar to fisheye views [13]. ATLAS can also
show grouped series overlaid as one plot. This can be used reveal
trends in related series, e.g. the stock price for all auto manufac-
turers. Since a group of series might have many members, ATLAS
only shows the top five series in a single group as determined by
the analyst-selected ordering attribute for the group.

ATLAS is designed to hide the query latency associated with
analysis. Ideally, visual analysis tasks can always be performed
on data that is cached. In reality, it is possible that the data is not
ready when it is needed. For example, the database could be un-
expectedly slow because of expensive queries from other analysts.
In such cases, ATLAS does not stop and wait, instead, it highlights
the ranges of any unavailable series in red and allows the analyst
to continue his analysis on the data that is available. Meanwhile,
the front-end polls the mapped files for new ranges or series and
displays them as they arrive.

4.4 Predictive Caching

ATLAS hides the latency associated with querying large datasets by
predicting and preemptively caching required data. The predictive
algorithm is based on observing that there is a sense of momentum
associated with the direction of exploration - e.g. an analyst pan-
ning to the left at time 7 is likely to continue panning left at time
t+1. As seen in figure 3, ATLAS has 6 directions of exploration
(pan left, pan right, scroll up, scroll down, zoom in, and zoom out)
with different interaction triggers fetching in different dimensions—
panning right (left) leads to the fetching of the next (previous) time
window for the same set of series that are currently visible, scrolling
down (up) leads to the fetching of the same time window for the set
of time series that will become visible next, and zooming in (out)
leads to the fetching of a narrower (wider) time window for the
same set of series.

Once the fetch direction is determined, the system needs to de-
cide when to issue the query, and what data to fetch. These deci-
sions are governed by a set of system parameters and constraints,
which will be discussed in section 4.4.1. We create a timing model
for each dataset as a preprocessing step to estimate query process-

Table 1: Variables
Variables

o Size of cache file (S¢qche)
e Number of series to be fetched (N;,jr)
e Time range to be fetched (7jp;;)

Action
Initialization

Panning/ o Number of series to be fetched (Npay /scrolt /z00m)
Scrolling/ o Time range to be fetched (T /scrott /z00m)
Zooming e Time at which the pre-fetch query is issued in

terms of the amount of time before the end of
cache is reached (tpan scroll zrmm)

Table 2: Fixed variables and Constraints

Constants

e Maximum panning speed (Van)

e Maximum scrolling speed (Ve o11)
e Window width (W,,)

e Window height (H,,)

Functions

o NumDataPoint(T) = number of data points in time range T
e TimeRange(W)= time range spanned by width W

e NumSeries (L)= number of time series visible in length L

o TimeToFetch (T, N)= the amount of time taken to fetch time
range T for N series

Constraints

®Scache > NumDataPoint(Tinit + Tpan)
®Ninit = Npan = Nzoom = NumSeries(H,,) +2 x NumSeries(tserol1 / Vseroir)
oTinit = Tscroil = Troom = TimeRange(W,,) 42 x TimeRange(tpan/Vpan)
% pan /scroll |zoom > TimeTOFelCh(T;wn/scmll/womvaan/xcroll/zuom)

oTpan > TimeRange(2 x W,,)

®N;croil > 3

ing time. These models will be discussed in section 4.4.2.

4.41

A major question to answer in predictive caching is “what to fetch”.
A query consists of various variables: the aggregates, the aggrega-
tion level, the filters, the set of series, and the time range. The first
three are defined by users, while the last two are determined by
the system according to the current time window, the set of visible
series, the user interactions, and the parameters governing the num-
ber of series and the time range to pre-fetch. To determine when
queries should be issued, the system needs to take into considera-
tion how long the query would take to complete, as estimated by the
timing model, and when the data is needed, i.e. how long it takes to
reach the end of the currently cached data under the maximum pan-
ning, scrolling, or zooming speed. Table 1 shows the list of system
parameters.

The values of the system parameters are chosen to ensure that
data will always be retrieved in time to support smooth interactions.
We formalize this with a set of constraints that need to be satisfied
by the parameters (Table 2). For example, the cache size needs
to be big enough so that newly fetched data will not overwrite the
data used in the current frame. The number of series fetched dur-
ing panning and zooming has to be large enough so that when the
analyst decides to start scrolling, there will be enough time to fetch
the next set of time series that become visible. Similarly, the time
range queried during scrolling and zooming should accommodate a
sudden panning action. In Table 2, the last two constraints ensure
that queries are not issued too frequently. The solution space of the
constraints is not a unique point, but a region that contains differing
tradeoffs. For ATLAS we prefer a solution that queries data just-
in-time. This minimizes the load on the client machine, the load
on the database cluster, and the overhead associated with the ana-
lyst changing directions during panning / zooming / and scrolling.
Our objective is not to pull the maximum amount of data possible,
but rather to get the minimum amount of data to sustain smooth in-
teractions. If the query speed were instantaneous, we would only

Constraints
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Figure 2: Fontend interface of ATLAS. 1: The main panel where time series in focus are plotted as line graphs. 2: Context panels showing the
time series outside the focal point. 3: List of attributes that can be used for grouping and filtering.

need to fetch data in the current frame. On the other hand, if the
query speed is extremely slow, everything would need to be pre-
computed and stored on the client machine. ATLAS will function
with any solution in the solution space with the tradeoff between
client and server load adjusted depending on available resource.

To show how ATLAS uses the parameters to support smooth in-
teractions, consider the scenario where an analyst pans to the right.
When the motion is detected by the scrollbar, the system will check
the cached files to determine when new data will be needed. If the
minimum time taken to pan to the end of the cached data is smaller
than 7, a query is issued for the N, series that are closest to the
visible window over T4, after the last time point cached. Since f4p
is greater than the estimated time taken for the query to complete,
we expect the data to arrive before they are needed for visualization.

Figure 3: The three dimensions for caching, as defined by panning,
scrolling, and zooming.

3.5

Figure 4: The processing times for queries that span 5 and 10 days
in the network database.

4.4.2 Timing Model

The timing models are used to estimate the time required for a query
to complete. They are specific to each database because of the
differences in size and organization of data; however, they are all
based on the premise that query processing times increase linearly
with the number of records contained in the query range. This is
a reasonable choice since most query times are dominated by disk
and memory access, not computation. As the number of records
depends on the number of time series to be fetched as well as the
time range spanned by the query, we measure the change in query
processing times as these two variables change. During this prepro-
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Figure 5: Change in slope of linear model in the network database.

5000

4000

3000

2000

1000t

0 10 20 30 40 50 60 70

Figure 6: Change in intercept of linear model in the network
database.

cessing step we also vary the number of database servers and use
a load balancing algorithm to simplify the model by measuring the
number of records read and the amount of time taken for the server
with the most work.

For the stock price database we observed that changing the num-
ber of series and the time range of the query have the same effect
on the query processing time. We therefore concluded that the two
variables are redundant and model the query time using the num-
ber of records as the only variable. The timing model was created
by simply running linear regression on the number of records con-
tained in a query range and the response time.

Query speed over the network flow database was highly depen-
dent on the number of days spanned by the query because the net-
work dataset is partitioned by date. However, we did observe a lin-
ear relationship between the query time and the number of records
fetched when when the number of days spanned is held constant.
Figure 4 shows the change in response times for queries that span
5 and 10 days as the number of records increases and their linear
regression lines. Figure 5 and 6 show the changes in the slope and
the intercept of the regression lines as the number of days spanned
by the query changes. As shown, the slope decreases exponen-
tially while the intercept increases linearly with the number of days.
Therefore, to estimate the time it takes for a given query to com-
plete, the number of days spanned by the query is first used to esti-
mate the parameters of a linear model. The resultant linear model is

then used to compute the query time given the number of records.

5 PERFORMANCE

In this section, we evaluate the performance of the main features
of ATLAS: support of ad hoc queries, load balancing, and smooth
interaction. Examples of ATLAS in use are shown in the accompa-
nying video, in which we demonstrate system interactivity and per-
form a case study of network intrusion detection. In the case study,
we follow an analytical process inspired by US CERT analysts [19]
but ATLAS allows the analysis to proceed without having to create
the dramatically reduced sample that they needed to extract because
of limited data capacity of their tools.

In ATLAS, data are stored in a column-oriented database sys-
tem designed and optimized for temporal queries. In Section 5.1,
we will briefly compare the performance of this to a row-oriented
database system to justify our design choice.

As the amount of data being collected and analyzed increases, it
is important for systems to expand their analytic capacity. In Sec-
tion 5.2, we will evaluate our load balancing algorithm by assessing
its performance as more database servers are added.

ATLAS supports smooth interactive explorations via predictive
caching. In Section 5.3, we will measure the performance gained
by the use of predictive caching.

5.1 Database Performance

The query performance of the database server system is criti-
cal if ATLAS is to meet its design goals. To demonstrate that
the column-oriented kdb+ 2.4 system used by ATLAS is a good
choice, we compared it to MySQL 5.0.22, a widely-used, row-
oriented RDBMS with a good reputation for performance in read-
only queries.

The queries were run against one of the SunFire servers with the
1.28 billion row dataset of network flows stored on the local disk.
Each row consists of 25 columns of attributes. As is customary
with this type of data, it is organized in tables by date. For both
kdb+ and MySQL, the overall database size including indices is
128GB. MySQL stores the table data (82 GB) separate from the
indices (46 GB). Performance measures of the raw disk read on the
64-bit Linux 2.6 system showed that it could sustain data transfer
at a rate of 59 MB/sec when the read data was being discarded.

Scanning Queries Scanning queries occur when indices cannot
be used or when the analyst is zoomed out so far that the entire time
span of the dataset must be summarized. In our first test, we mea-
sured the performance of such a scanning query involving summing
one column at initialization when no data has yet been transferred
from disk. MySQL took 2134 seconds whereas kdb+ finished in
113 yielding a speedup of 19 for kdb+. This is near the ratio of the
byte width of a full row in MySQL to the byte width of the selected
column. kdb+ read data at 45 MB/s from disk to MySQL’s 40 MB/s
indicating efficient use of filesystem operations by both.

We then reissued the same query to measure the effect of the op-
erating system’s file cache. In this test, MySQL took 2074 seconds
while kdb+ finished in 28 for a speedup factor of 74 for kdb+. The
change is probably due to the fact that the SGB of data in the 60
files comprising the single column kdb+ reads can be cached in the
RAM of the server whereas MySQL’s retraversal of 82GB of data
overwhelms it.

Simple Indexed + Partitioned Queries Next, we sought to un-
derstand the performance of queries which look at indexed data in
restricted date ranges since experienced analysts will make sure that
important attributes are indexed and for the most likely queries the
date range will be limited to days rather than months. For these
tests, we again summed a single column, but now only interdomain
traffic grouped hourly by network address spanning a few days to
a week. When selecting two relatively quiet addresses over a four
day range, the kdb+ advantage dropped to only a factor of 3 over
MySQL (11.95 versus 3.98 secs). However, adding a third active



address exceeded the configured 8G limit for MySQL’s temporary
RAM table resulting in a disastrous 2709 sec query versus 6.7 sec
for kdb+. The problem here is that while kdb+ will take advantage
of date partitioned tables, MySQL has only the limited functional-
ity of the MERGE table (essentially a listed of concatenated tables)
requiring the application to create temporary MERGE table defini-
tions for the specific date ranges of the query. Thus, while kdb+
indexing may be less sophisticated, it is more predictable and ar-
guably more effective.

Other Queries There are also analytic queries which can be
made in g which are difficult or inexpressible in SQL. For exam-
ple, the “moving average” or “weighted moving average” queries,
which are common in time series analysis and supported by ¢, are
typically not performed in a relational system like MySQL because
they required ordering semantics which cannot be expressed di-
rectly in the language. This is not to say that the functions cannot
be provided, rather that they would have to be explicitly coded in
the ATLAS client or elsewhere.

5.2 Load balancing

ATLAS uses a client-server architecture to offload analytic query
processing from the analyst’s workstation so that as the size of
datasets grow, more database servers can be added to maintain
or improve response time. To manage query processing the AT-
LAS client contains a query distribution server that aims at divid-
ing workload evenly among the available database servers. This
step is essential in optimizing the performance gain when adding
servers. To evaluate the quality of the load balancing algorithm, we
measured query performance while varying the number of database
servers used.

In this experiment, the network flow dataset was used because
of its larger size. We chose from the database the 120 network ad-
dresses with the largest overall number or flows and computed the
sum of application bytes by hour over 60 days. This calculation tra-
verses about half of all rows (600 million records) and so represents
a severe test of processing capacity. We recorded query time as we
increased the number of database servers. The time consists of the
elapsed time for the query, excluding the time for writing the data
to cache files or for displaying the data since that time is negligible
compared to query computation time.
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Figure 7: Speedup of query with the number of database servers

As shown in Figure 7, the speedup, as calculated by the propor-
tional gain in query throughput when compared to the base case
where only one database server was used, increased linearly with
the number of database servers. The trend was consistent as the
number of database servers increased to 15. As we further increased
the number of servers, we observed a decrease in performance gain.

This is due to the current load balancing algorithm which can only
divide queries by date and time bounds. Since data are partitioned
by date in the network database, it is more efficient to divide queries
by time than by lists of series. However, a combined approach that
divides query both by time and the list of series might prove bene-
ficial as we further develop the system to accommodate datasets of
different size and organization.

5.3 Predictive Caching

Predictive caching is necessary to support fluid exploration over
large databases. To demonstrate the performance gain, we com-
pared the smoothness of panning in systems with and without pre-
dictive caching.

In this experiment, we measured the time taken to pan over two
months of data for 15 network addresses at an aggregation level
of 10 minutes. The maximum panning speed was 600 pixels per
second. Each frame was about 900 pixels wide and spanned ap-
proximately 1.6 days. The selected set of network addresses gener-
ated about 2 million flows per day. Thus, each frame requires the
traversal of approximately 3.2 million records and a data rate of 2.1
million records/sec is needed to support panning at the maximum
speed. With predictive caching, the system fetched 15 days of data
as an initialization step, and when it was 2.5 frames away from the
end of the cache, it issued a query to pre-fetch 5 more days of data.
In the version without predictive caching, the system also fetched
15 days of data as an initialization step, but only fetched data when
necessary, i.e. when data for the current frame were not available,
the system issued a query for 2 more days of data.

At the maximum panning speed, an analyst should be able to ex-
amine two months of data in 57 seconds. With predictive caching,
we were able to achieve a performance of 65 seconds including the
time to initialize the cache and to pan over all the data. In contrast,
the system without predictive caching took 96 seconds because it
had to pause and wait for data to be fetched on more than 20 occa-
sions. This not only slowed down analysis, but also disrupted the
process even though each pause took only a second or two. Thus
predictive caching can significantly improve user experience by en-
abling smooth and fluid interactions.

6 DISCUSSION

In this paper we used ATLAS to explore challenges to visualization
created by the dramatic increase in dataset sizes. This involved a
largely straightforward combination of clustered database servers
with load balancing and predictive caching algorithms in a client-
server architecture. The contribution is in specifying the decom-
position of function and the distribution of tasks. Our design is
premised on the notion that one must push as much analysis as pos-
sible onto the database servers because that is the component which
will most naturally scale with data growth. Doing the bulk of an-
alytic computation on the server reduces the amount of data trans-
mitted to the client thereby lowering its disk and bandwidth require-
ments. The analyst’s workstation acts as a cache for the computed
results which are then visualized with new analysis requests gener-
ated by tracking user interactions.

To push as much analysis as possible onto the database system,
we used kdb+ because it parallelizes queries easily and features a
rich query language oriented to analysis of time series data. How-
ever, for any analytic queries which are expressible by a traditional
row-oriented database, we saw that MySQL could also be scaled
to provide interactive performance. For most queries, we observed
that what matters is the effective working set of data that must be
moved through the server’s memory hierarchy. Thus, the princi-
pal advantage for column-oriented databases is that their memory
footprint is smaller.

There is much room to improve the timing and load balancing
algorithms. Our current models estimate query time based on the
number of server instances available; the time range spanned by the
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query; and the number of series to be fetched. The model is pre-
computed for each type of dataset and is static in nature. One way
to make the system more robust would be to adjust the model ac-
cording to measurements taken at run-time. Furthermore, the model
makes no attempt to optimize workload across multiple queries or
track query history by server. Such tracking could be use to direct
future queries at servers which may have already cached the needed
data.

We would like to support more visual analytic tasks. For exam-
ple, in large datasets, analysts want to reason at higher abstraction
levels. Instead of the values of a time series at specific points in
time, analysts are more interested in patterns across time periods.
Being able to efficiently search for interesting patterns and clas-
sify them would be of great value in visual analysis. The ATLAS
architecture could easily support pattern searching as described in
TimeSearcher [6] in large datasets by distributing the search over
a cluster of database servers. However, predictive caching will not
be as effective due to the difficulty in predicting the pattern of in-
terest and the algorithm’s reliance on inertia in user actions. More
sophisticated methods of identifying potentially interesting features
in datasets will be needed.

The one thing that is certain is that dataset sizes will continue to
grow. Since the value of visual analytics is often critically depen-
dent being able to freely explore data, designing systems to main-
tain interactivity over massive datasets is now vitally important.
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